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Pneumoconiosis is a widespread occupational pulmonary disease caused by

inhalation and retention of dust particles in the lungs, is characterized by

chronic pulmonary inflammation and progressive fibrosis, potentially leading to

respiratory and/or heart failure. Workers exposed to dust, such as coal miners,

foundry workers, and construction workers, are at risk of pneumoconiosis. This

review synthesizes the international and national classifications, epidemiological

characteristics, strategies for prevention, clinical manifestations, diagnosis,

pathogenesis, and treatment of pneumoconiosis. Current research on the

pathogenesis of pneumoconiosis focuses on the influence of autophagy,

apoptosis, and pyroptosis on the progression of the disease. In addition,

factors such as lipopolysaccharide and nicotine have been found to play

crucial roles in the development of pneumoconiosis. This review provides

a comprehensive summary of the most fundamental achievements in the

treatment of pneumoconiosis with the purpose of indicating the future direction

of its treatment and control. New technologies of integrative omics, artificial

intelligence, systemic administration of mesenchymal stromal cells have proved

useful in solving the conundrum of pneumoconiosis. These directional studies

will provide novel therapeutic targets for the treatment of pneumoconiosis.
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1 Introduction

Pneumoconiosis is an incurable but preventable interstitial lung disease caused by

occupational inhalation and retention of dust particles (1), such as silica dust, coal mine

dust, and asbestos fibers (2). The definition of pneumoconiosis varies from country

to country. National Institute for Occupational Safety and Health of USA defines
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pneumoconiosis as a group of lung diseases caused by the

lung’s reaction to inhalation of certain dusts (3), and the

main cause of the pneumoconiosis is work-place exposure

and environmental exposures have rarely been related to

these diseases (4). This definition underscores the connection

between pulmonary reaction and work place. Pneumoconiosis

in the UK is defined as a pulmonary disease caused by

inhalation of dust and its retention in the lungs. In China,

pneumoconiosis is defined as a disease mainly characterized by

diffuse fibrosis of lung tissue caused by long term inhalation of

productive mineral dust and their retention in the lungs during

occupational activities. Unlike two definitions in the USA and

UK, this definition in China focuses on the mineral dust and

pulmonary fibrosis.

The emergence of new materials and new industries, such

as denim jean production, domestic benchtop fabrication, and

jewelry polishing, has resulted in a rising trend of pneumoconiosis,

underscoring the need to be cautious about identifying and

controlling the sources of novel occupational exposure (5).

Although pneumoconiosis is preventable, its incubation period is

long and clinical symptoms are not obvious in the early stage. In

addition, it could be very difficult to distinguish pneumoconiosis

from other lung diseases, including lung cancer, tuberculosis,

and sarcoidosis, due to its prolonged latency and similar clinical

symptoms (6). Because no effective treatment methods have been

established (2), early diagnosis and timely intervention are vital to

patients with pneumoconiosis. Therefore, it is of much significance

to develop and apply novel diagnostic biomarkers, methods, and

therapeutic targets.

This review article aims to provide a more in-

depth analysis of the specific pathogenesis, novel

diagnostic biomarkers and technologies, new therapeutic

targets, prospective drugs, and promising treatments of

pneumoconiosis that may be applied on a large scale in

the future.

The paper begins with the international and national

classifications and epidemiological characteristics of

pneumoconioses. Then we broaden the understanding

on the strategies for prevention, clinical manifestations,

and diagnosis. In the diagnosis of pneumoconiosis, we

respectively describe current status of pneumoconiosis

diagnosis, prospective biomarkers for diagnosis, and

advanced diagnostic techniques. Moreover, to uncover this

disease’s pathogenesis, autophagy, apoptosis, pyroptosis, and

epigenetics on the progression of pneumoconiosis are expressly

analyzed. Finally, therapeutic approaches to pneumoconiosis

are presented for future investigations, which include the

promising targets, promising drugs and other therapies

for pneumoconiosis.

2 Methodology

Articles were therefore reviewed by searching PubMed, Scopus,

Web of Science, Web of Knowledge, Medline, and Google Scholar.

The following key words were retrieved: “pneumoconiosis,”

“evolution,” “classification,” “prevention,” “manifestation,”

“diagnosis,” “pathogenesis,” “inflammation,” “fibrosis,” “therapy,”

“treatment,” etc.

3 International and national
classifications of pneumoconioses

Specific kinds of pneumoconioses are listed as occupational

diseases by International Labor Organization (ILO) and Chinese

government. Based on The Occupational Diseases Catalogue, 2010

edition released by ILO, pneumoconioses can be divided into

two types: pneumoconiosis caused by fibrous mineral dust and

pneumoconiosis caused by non-fibrous mineral dust (7). In

the Classification and Catalogue of Occupational Diseases, 2013

Edition released in China, twelve kinds of pneumoconioses have

been listed as statutory occupational diseases, including silicosis,

coal workers’ pneumoconiosis, graphite pneumoconiosis, carbon

black pneumoconiosis, asbestosis, talc pneumoconiosis, cement

pneumoconiosis, mica pneumoconiosis, kaolin pneumoconiosis,

aluminosis, electric welder pneumoconiosis, and foundry worker

pneumoconiosis. Since it is sometimes difficult to determine

the main cause of pneumoconiosis, people still name the

disease according to the patients’ occupations, such as welder’s

pneumoconiosis and grinder’s pneumoconiosis.

Apart from above kinds of pneumoconioses listed as

occupational diseases, several classification systems of

pneumoconioses have been devised over the years on different

criteria. The specific classifications of pneumoconioses in

some countries and regions are listed in Table 1. According

to International Classification of Diseases, 11th Edition,

pneumoconioses can be divided into 11 major categories,

and there are three subgroups of pneumoconiosis caused by

siliceous dust. In Japan, silicosis in miners was not identified as

an occupational disease until 1930. Silicosis caused by free silica

dust and silicosis with tuberculosis were identified as occupational

diseases in 1936 (8). Several other types of pneumoconiosis, such

as asbestosis and talc pneumoconiosis, were also added. Based

on the recommendation of National Institutes of Health of USA,

pneumoconioses can be divided into five types: silicosis, asbestosis,

coal workers pneumoconiosis, other kinds of pneumoconiosis,

and benign pneumoconiosis (9). European Union classified

pneumoconioses into four categories: silicosis, silicosis with

tuberculosis, asbestosis, and pneumoconiosis caused by silicate

dust. Only three types of pneumoconiosis are identified in India,

including silicosis, asbestosis, and coal workers pneumoconiosis

(10). In China, pneumoconioses can be divided into five categories

based on the type of dust inhaled: silicosis caused by inhalation

of dust containing free silica; silicate lung caused by inhalation of

dust containing silica such as asbestos, mica, and nephelite; carbon

pneumoconiosis caused by inhalation of coal, graphite, activated

carbon, carbon black and other powders; mixed pneumoconiosis

caused by inhalation of dust containing free silica and other types

of dust (organic dust, inorganic dust, synthetic dust); and other

pneumoconioses, caused by metal or other compounds, such as

aluminum, and glass wool (11).
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TABLE 1 International and national classifications of pneumoconioses.

Nation Number
of

categories

Type

International

level

11 Pneumoconiosis caused by silica dust

(CA60.0)

Talc pneumoconiosis (CA60.00)

Specific pneumoconiosis caused by silica

dust (CA60.0Y)

Unspecified pneumoconiosis caused by

silica dust (CA60.0Z)

Coal workers’ pneumoconiosis (CA60.1)

Pneumoconiosis caused by mineral fibers

(CA60.2)

Pneumoconiosis related to tuberculosis

(CA60.3)

Aluminosis (CA60.4)

Pulmonary bauxite fibrosis (CA60.5)

Berylliosis (CA60.6)

Pulmonary graphite fibrosis (CA60.7)

Siderosis (CA60.8)

Tin pneumoconiosis (CA60.9)

Other specific pneumoconioses (CA60.Y)

Japan 8 Silicosis

Asbestosis

Welder’s lung

Coal workers pneumoconiosis

Aluminum pneumoconiosis

Indium pneumoconiosis

Beryllium pneumoconiosis

Cemented carbide pneumoconiosis

America 5 Silicosis

Asbestosis

Coal workers’ pneumoconiosis

Other kinds of pneumoconioses

Benign pneumoconiosis

European

Union

4 Silicosis

Silicosis with tuberculosis

Asbestosis

Pneumoconiosis caused by silicate dust

China 5 Silicosis caused by inhaling dust containing

free silica

Silicosis caused by inhaling dust containing

silica

Carbon pneumoconiosis

Mixed pneumoconiosis

Other pneumoconioses

India 3 Silicosis

Asbestosis

Coal workers’ pneumoconiosis

4 Epidemiological characteristics of
pneumoconiosis

According to the Global Burden of Disease Study 2019, a

total of 0.20 (0.17–0.23) million new cases of pneumoconiosis

were diagnosed and 0.92 (0.76–1.12) million disability-adjusted

life years (DALYs) were calculated in the year 2019, implying

that pneumoconiosis is still a major concern worldwide (12).

Based on the Global Burden of Disease Study 2017, cases of

pneumoconiosis have increased in the five sociodemographic

index regions from 1990 to 2017 while the age-standardized

incidence rates (ASIR) have shown a downward trend. A reduction

was observed in ASIR of silicosis, coal workers’ pneumoconiosis

(CWP), and other pneumoconioses. However, the ASIR of

asbestosis displayed an increasing trend (13). Increase in ASIR of

asbestosis was the biggest in high-income continents like North

America and Australasia, suggesting the importance of intensifying

the controlment of asbestos in the market. In addition, higher

incidence of pneumoconiosis was observed in males than in

females. Besides, the highest ASIRs in 2017 were noted in China,

Papua New Guinea, and North Korea. Middle- Socio-demographic

Index regions had the highest ASIR of pneumoconiosis. The

ASIR of pneumoconiosis is inversely correlated with human

development index (14).

Distinct occurrence patterns of pneumoconiosis have been

reported in different countries and regions (13). For example, in

America, pneumoconiosis-associated-deaths decreased by 40.4%

from 1999 to 2018. CWP (69.6%) and silicosis (53.0%) accounted

for the largest proportion of declining cases. On the other hand,

asbestosis was the most reported pneumoconiosis, which was

consistent with the world epidemic trends of pneumoconiosis. The

matter of concern was that the incidence of pneumoconiosis due

to other inorganic productive dust increased dramatically (e.g.,

aluminum, bauxite, beryllium, iron, and tin oxide) (1). Notably,

the national prevalence of CWP among working coal miners is

increasing, especially in central Appalachia, which will likely be

reflected in future trends for severe and disabling disease, including

progressive massive fibrosis (15), and it is speculated that the nano-

sized coal dust is likely to be one of the reasons for the increase in

the prevalence of CWP (16).

China suffered from the world’s largest health loss from

pneumoconioses in 2019, accounting for two-thirds of the

global health loss from pneumoconiosis (2). According to the

Occupational Diseases Report in 2021, 11,809 newly reported

cases of occupational pneumoconiosis were diagnosed in China,

accounting for 77.65% of all new occupational disease cases,

making it urgent to prevent and control pneumoconiosis. Newly

diagnosed cases and DALYs of pneumoconiosis continued to rise

during 1990–2019 in China. However, age standardized calculation

showed a significant downward trend in the incidence, death,

and DALY rates due to pneumoconiosis, with the exception of

incidence of silicosis and asbestosis-associated mortality (2). This

achievement was mainly attributed to the unremitting efforts

of Chinese government. Other factors which contributed to

this decline include intensified regulatory supervision, expanded

in medical accessibility, and improved medical treatment. In

China, silicosis accounted for the largest proportion of confirmed

pneumoconiosis cases, followed by CWP, other pneumoconiosis,

and asbestosis in 2019 (17). Notably, the age-standardized

death rate of pneumoconiosis in western China was higher

than that in the eastern coastal area of China, and there is

an urgent need for adequate supervision and medical services

of occupational diseases in Western China (2). Additionally,

new cases, deaths, and DALYs due to pneumoconiosis in

males accounted for approximately 95% of the corresponding

total numbers in 2019, which was consistent with previous

reports (2).

Accurate data on the prevalence of pneumoconiosis is essential

for health resource planning and policy development. In 2016,
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pneumoconiosis was found to have caused 21,488 deaths worldwide

(13). However, it must be pointed out that the actual burden of

pneumoconiosis in China may be greater than reported, which

could be caused by the following factors. First, due to the low

frequency of occupational health examinations and absence of

strict diagnostic criteria for pneumoconiosis (18), timely diagnosis

is not available for all potential patients in relevant industries,

leading to an underestimate of existing cases. Secondly, workers

in small industrial enterprises or small informal workshops

tend to solve health and safety problems by themselves, and

such cases go unreported (19). Thirdly, the frequent flow of

migrant workers and long incubation period of pneumoconiosis

can also result in underreporting (2). Besides, some workers

are reluctant to take a physical examination, especially a chest

examination for fear of losing jobs, even if relevant symptoms have

appeared (20).

With the emergence of new industries, such as denim jean

production, benchtop fabrication, and jewelry polishing (5), the

incidence of pneumoconiosis, especially silicosis, is increasing.

Workers may inhale fumes containing sand and other toxic

chemicals while sandblasting, which is used to get the look of

buff pants (21). The incidence of silicosis is on the rise in

Spain, Australia, and some other regions where artificial stones

(AS) get popular (6). Unlike natural stone associated silicosis,

AS-associated silicosis was characterized by short latency, rapid

radiological progression, accelerated decline in lung function,

and high mortality (17). The respirable crystalline silica (RCS)

is a by-product of AS production, and the dust is composed

of inhalable particles with a diameter usually smaller than

5µm (6). RCS could be disregarded easily because it is

colorless, odorless, and accumulates quickly. Much exposure

to RCS has been reported to result in the occurrence and

progression of silicosis (6). Likewise, increase in the use of

nanomaterials due to the emergence of nanotechnology, in which

the generated nanoparticles are cytotoxic to lung epithelial cells,

has resulted in a higher incidence of pulmonary inflammation and

fibrosis (22).

5 Strategies for preventing
pneumoconiosis

Although pneumoconiosis poses a major threat to global

public health, preventive measures can be taken to reduce its

harm. Medical workers need to perform follow-up visits for

key populations, including patients diagnosed with advanced

pneumoconiosis at first diagnosis, patients of older age, and

patients with prolonged exposure to dust, and strict supervision

should be carried out in industries with high incidence of

pneumoconiosis, such as coal mining and construction (23).

Workers at risk of pneumoconiosis need occupational

safety education to raise their awareness of personal protection,

ensuring that they are responsible for their health (1). Rapid

progression of pneumoconiosis in miners has been reported to

be strongly correlated with exposure to high concentrations

of mineral dusts (24), indicating the necessity of clean

working environment.

Employers and business enterprises should ensure that

sufficient personal protective equipment forms an indispensable

part of the workers’ gear. Workers can use filter type dustproof

respiratory protective equipment to prevent the inhalation of dust

in the working environment. Protective efficiency of filtering dust

respirators relies on the properties of filter materials, from which

filters are made, and the structure of a half mask frame. A new

half mask frame design has been proposed, which is flexible

and fits the face surface well (25). The priority is to improve

the controlling measures, including elimination, substitution, and

exhaust ventilation, in addition to the supply of respirators (6). It is

important to use technical measures of ventilation, dust removal,

detoxification, noise reduction, and isolation, to eliminate dust

hazards.Wet dedusting is the main coal dust suppression technique

commonly used in coal mines, and coal wettability is the main

factor that influences dust suppression efficiency (26). Based on

the two-fluid (Euler-Euler) frame model, a mathematical model

for wet deducting process has been established to explore the

effect of particle size distribution of the dust particle, spray flow,

and ventilation rate on the dedusting efficiency of wet dedusting

method. This model revealed that droplets with a diameter between

15µm and 70µm can ensure high capture efficiency of respirable

dust, and that spray quantity and dedusting efficiency are not

necessarily proportional (27). Another mathematical model was

proposed for cyclonic spray dedusting, and the spray can be

used to promote agglomeration of particles and improve the dust

removal efficiency in the swirl field (28). With the increased

attention toward pneumoconiosis and rapid development of

science and technology, several novel wet dedusting technologies

have been invented, including pneumatic spiral spray system

(29), novel wind-assisted centralized spraying dedusting device

(30), and pre-injection foam dedusting technology (31). With

remarkable dust suppression performance, these technologies can

help to improve the work environment effectively. Furthermore,

employers should provide some medical services for workers in

the forms of health questionnaires, physical examination, lung

function, and chest radiology (6). Moreover, both employers and

health care providers should inform relevant public health agencies

of the identification of cases, so that timely interventions can be

performed and adequate treatment can be administered to patients

with pneumoconiosis (23, 32).

Government should improve surveillance and guarantee

systems of occupational diseases, step up the intensity of regulatory

surveillance, and instruct employers to standardize the protocols of

safe production (1). It is also necessary to increase the investment

in frontier research and technology development to explore

novel measures of prevention. Meanwhile, the government should

encourage the use of replaceable and harmless productive materials

to reduce the incidence of pneumoconiosis (2). A systematic review

indicates that exposed workers suffer from a higher risk of lung

cancer when asbestosis or silicosis is present (33). Attention should

also be paid to pneumoconioses caused by other inorganic dust,

for the incidence rate is rising in recent years. Inhalation of silica

dust is correlated with systemic autoimmune diseases (34), and

it is important to take an occupational history in patients with

autoimmune diseases to improve recognition of workplace silica

exposure (32).
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FIGURE 1

Clinical manifestation of pneumoconiosis. Most people have no obvious symptoms in the early stages of pneumoconiosis. Then, dyspnea, cough,

expectoration, and chest pain would be the main manifestation of pneumoconiosis. There would be a series ofcomplications including tuberculosis,

emphysema, and COPD at the irreversible stage of progression. Finally, patients would die of respiratory and/or heart failure.
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6 Clinical manifestations and diagnosis
of pneumoconiosis

6.1 Clinical manifestations

The incubation period of pneumoconiosis is long, and the

majority of the patients do not show any obvious symptoms.

The main clinical manifestations of pneumoconiosis are dyspnea,

cough, expectoration, and chest pain (23), which appear after

persistent exposure to mineral dusts. Most of patients are often

in the irreversible stage with a series of complications, including

tuberculosis, emphysema, and chronic obstructive pulmonary

disease (COPD) (2, 35). Pulmonary inflammation and progressive

fibrosis are typical pathological changes of pneumoconiosis, which

can result in respiratory and/or heart failure (36). Clinical

manifestation and the developing process of pneumoconiosis is

shown in Figure 1.

6.2 Diagnosis of pneumoconiosis

6.2.1 Current status of pneumoconiosis diagnosis
Pneumoconiosis is diagnosed on the basis of functional

changes of lungs identified by pulmonary function test (PFT)

and morphological changes of lungs determined by radiological

findings, including computed tomography (CT) scanning of the

chest, chest radiography, or lung biopsy findings in conjunction

with occupational history exposure to mineral dust, clinical

manifestations, and working environment (23, 32, 37, 38). PFT

shows that patients have normal ventilation function in early

stage of pneumoconiosis, and their dispersion function decreases

during middle and late stages with varying degrees of restrictive or

obstructive ventilation disorders. Besides, auxiliary examinations

also include X-rays and arterial blood gas analysis. Arterial

blood gas analysis shows patients of pneumoconiosis suffer from

hypoxemia, and hypercapnia aggravates the situation in advanced

stage. As common characteristics of pneumoconiosis, Pulmonary

inflammation, and fibrosis can be used as diagnostic clues (6).

It indicates the possibility of pneumoconiosis if there are

presence of nodular or reticulonodular lesions in chest radiography

or small nodules with peri lymphatic distribution on thin-section

CT with or without eggshell calcifications in the population

exposed to dust (39). Current diagnostic criteria are based on the

International Labour Organization/International Classification of

Radiograph of Pneumoconiosis (ILO/ICRP), 2011 Edition, which

contains a set of digital standard images. The X-ray images of

pneumoconiosis are characterized by small opacities and pleural

plaques, which are not specific to this disease (23). ILO has

subdivided pneumoconiosis from three aspects: technical quality,

substantial abnormalities, and pleural abnormalities. According

to the guidelines of ILO/ICRP, parenchymal abnormalities of

pneumoconiosis can be divided into small opacities and large

opacities. Small opacities have three subdivisions in profusion,

shape and size, and mixed. Large opacities have four levels of 0,

A, B, and C. Based on the GBZ70-2002-Diagnostic Criteria for

Pneumoconiosis, China divides the progression of pneumoconiosis

into three stages, and the radiographic criteria include the

overall density of small opacities, lung range of small opacities,

TABLE 2 The diagnostic stages of pneumoconiosis in China.

Diagnostic
stages

Reference symptoms

Stage I a) There is a small opacity with an overall density of 1, which

is distributed in at least 2 lung regions.

b) Exposure to asbestos dust showed a small opacity with an

overall density of 1, distributed in only 1 lung area, and

pleural plaques appeared.

c) Exposure to asbestos dust resulted in an overall

concentration of small opacities of 0, but a concentration

of small opacities of 0/1 in at least two lung areas

accompanied by pleural plaques

(People with one of these symptoms can be diagnosed

with pneumoconiosis.)

Stage II a) There is a small opacity with an overall density of level 2,

distributed over 4 lung regions.

b) There was a small opacity with an overall density of level

3, and the distribution range reached 4 lung regions.

c) Exposure to asbestos dust, a small opacity with an overall

density of 1, distributed in more than 4 lung areas, with

pleural plaques that have involved part of the heart margin

or diaphragmatic surface.

d) Exposure to asbestos dust, with a small opacity of overall

concentration level 2, distributed over 4 lung areas.

Pleural plaques are present at the same time and have

involved part of the heart margin or

diaphragmatic surface.

(People with one of these symptoms can be diagnosed

with pneumoconiosis.)

Stage III a) There is a large opacity with a long diameter of no

<20mm and a short diameter of no <10mm.

b) There are small opacities with an overall density of level

3 distributed over 4 lung regions with small shadow

clusters.

c) There is a small opacity of total intensity level 3 and the

distribution range is more than 4 lung regions with large

shadow.

d) Exposure to asbestos dust presents a small opacity with

an overall concentration of grade 3, covering more than 4

lung regions, and the length of a single or multiple

pleural spots on both sides exceeds half of the length of

the unilateral chest wall or involves the heart margin and

makes it partially disheveled.

(People with one of these symptoms can be diagnosed

with pneumoconiosis.)

and whether small opacities converge into big opacities, pleural

plaques or other symptoms, China divides pneumoconiosis into

three stages based on the GBZ70-2002-diagnostic criteria for

pneumoconiosis. Specific diagnostic criteria for each stage are listed

in Table 2.

Notably, it is not easy to distinguish pneumoconiosis from

lung cancer, tuberculosis and sarcoidosis due to prolonged latency

and similar clinical symptoms (6). With the rapid development

of technologies, magnetic resonance imaging has proven useful

in distinguishing progressive massive fibrosis from lung cancer

(39). Bronchoalveolar lavage fluid can also be used to detect the

biomarkers of pneumoconiosis, which will be of much helping

accurate diagnosis.

6.2.2 Prospective biomarkers in pneumoconiosis
diagnosis

Early and accurate diagnosis of pneumoconiosis is difficult

due to the delayed appearance of clinical manifestations and the

complexity of the diagnostic procedures, and this is why the
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TABLE 3 The biomarker of pneumoconiosis.

Biomarker Expression level Tissue/cell/patients References

HO-1 Up Blood serum (40)

PGD Up Human lung tissue (41)

Thromboxane A (TXA) Up Human lung tissue (41)

IL-8 Up Blood serum (42)

Tumor necrosis factor α (TNF-α) Up Blood serum (42)

HECTD1 Up AMs and RAW264.7 macrophage cell

line

(44)

High-mobility group box-1 (HMGB-1) Up Blood serum (53)

Apoptosis of AMs Up Patients with silicosis (46)

circulating double-stranded DNA Up Sputum (54)

C-X-C motif chemokine ligand 10 Up Sputum (54)

Krebs von den Lungen 6 Up Blood serum (55)

Surfactant protein-D Up Blood serum (55)

Matrix metalloproteinase-2 Up Blood serum (55)

Npnt Up Patients with silicosis (45)

Activating transcription factor 3 Up Patients with silicosis (43)

Propylparaben Up Blood serum (56)

Has-miR-4516 Up Blood serum (48)

Circular RNA hsa_circ_0058493 Up Peripheral blood (57)

majority of the patients are already in the advanced stage at the

time of diagnosis, when the condition is irreversible and no effective

treatment is available. Fortunately, with the deepening research

on the pathogenesis of pneumoconiosis in the recent years, new

biomarkers have been discovered and can be potentially used as

novel diagnostic tools. Prospective biomarkers of pneumoconiosis

in the process of diagnosis are summurized in Table 3.

A previous study on patients with silicosis and BALB/c mice

shows that increasing the content of pulmonary heme oxygenase-1

(HO-1) can inhibit the activity of reactive oxygen species (ROS) and

subsequent pathologic changes, thereby attenuating progression

of silicosis (40). Cytokines and inflammatory factors, as well

as proteins, can be helpful in the diagnosis and treatment of

pneumoconiosis. Some cytokines and inflammatory factors, such

as interleukin (IL-8) and Prostaglandin D (PGD), can be used

as indicators of pneumoconiosis (41, 42). Transcription factor 3,

an inflammatory repressor, can be activated for early diagnosis

of silicosis (43). In addition, changes in the expression of some

proteins can also be used for the diagnosis of pneumoconiosis.

For example, HECT domain E3 ubiquitin ligase 1 (HECTD1)

may serve as a potential marker of silicosis, as it promotes silica-

induced activation of macrophages via ubiquitination, thereby

inducing proliferation and migration of fibroblasts (44). Similarly,

development of fibrosis can be recognized by serum nephronectin

(Npnt), which is a new member of the integrin family of ligands,

suggesting that Npnt seems to play a role in the progression of

fibrosis with other cytokines and can be used in the diagnosis

of pneumoconiosis (45). Alveolar macrophages (AMs) apoptosis

could be used as a potential biomarker for human silicosis,

which promotes the development and progression of silicosis via

activating the fatty acid synthetase (Fas)/fatty acid synthetase ligand

(FasL) pathway (46).

MicroRNAs (miRNA) have great application prospects as

biomarkers in diagnosing pneumoconiosis, and they may serve as

indicators of organ or cell-specific toxicity, disease, and biological

status (47). It is noteworthy that has-miR-4516 targeted genes

encodes basonuclin2, inhibitors of growth family member 4, the

potassium voltage-gated channel, and “sha-1-related subfamily

member 1” proteins, which shows that has-miR-4516 could be

used as a potential biomarker of pulmonary fibrosis progression

in patients with pneumoconiosis (48). Besides, an increase was

observed in miR-107 in serum exosomes and lung tissue in

the experimental silicosis mouse model, while the inhibition of

miR-107 reduced pulmonary fibrosis, which provided a rationale

for using miR-107 for intervening in silicosis progression (49).

However, miRNAs have not been routinely used as non-invasive

biomarkers, for lack of standard approaches to sample preparation

and miRNAmeasurement, as well as uncertainty in their biological

interpretation (50).

Circular RNAs (circRNAs) are non-coding RNAs with a

closed loop structure, and they are identified as competing

endogenous RNAs (ceRNAs) serving as a sponge for miRNA

through complementary base paring (44). Long non-coding

RNAs (IncRNAs) are a large class of non-coding transcripts

of >200 in length with no protein-coding capacity, and

they are involved in chromosome modification, transcription

and post-transcriptional processing (51). Several studies have

demonstrated that IncRNAs can function as ceRNAs in the
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process of fibrosis by binding to and undergoing crosstalk with

miRNAs, and more relevant research can be conducted on

IncRNAs (52).

6.2.3 Advanced diagnostic techniques for
pneumoconiosis

With the rapid development of science and technology,

more and more diagnostic methods have been developed for

the diagnosis and assessment of severity of silicosis, and high-

resolution computed tomography (HRCT) and chest radiography

(CR) are two of them. A previous study shows that HRCT is more

reproducible and more accurate than CR in the diagnosis of early

pneumoconiosis, suggesting that HRCT is more correlated with
lung function test. However, the results of the study did not support

the hypothesis that HRCT was more sensitive than CR in the

early detection of silicosis (58). Electrical impedance tomography

(EIT) can be used to detect the spatial distribution of electrical

properties of tissues by measuring the transfer impedances between
electrodes on the body surface (59). This technique is usually

applied to functional chest examinations with the purpose of

identifying patients with chronic pulmonary diseases at early

stage (60). The feasibility of EIT perfusion imaging has been

proved (61). Although EIT has widespread applications, uniform
diagnostic criteria have not been developed, and recommendations

are needed on how EIT findings can be used to generate diagnoses.

Magneto pneumography was invented to investigate the remanent

magnetism of foreign intrathoracic ferromagnetic particles after

magnetization by an external magnetic field, and one advantage of
this technique is noninvasiveness (62). A lot of work has to be done

in this field before it can be widely used in clinic practice, due to its

uncertainty in safety, sensitivity, and specificity (37).

Artificial Intelligence (AI) has several development prospects

in the diagnosis and management of pulmonary diseases (63),

such as lung nodule evaluation, tuberculosis or pneumonia

detection, and quantification of diffuse lung diseases (64).

Computer-aided detection based on machine learning is an

emerging research field, especially artificial neural network and

convolutional neural networks (64, 65), which have demonstrated

significant performance gain over the classic machine learning

techniques. AI-assisted radiography screening and diagnosis in

occupational lung diseases has proven feasible and effective (66).

CR is a near perfect domain for the development of deep

learning algorithms for automatic interpretation, requiring large

annotated datasets, in view of the high number of procedures and

increasing data availability (64). Compared with classic machine

learning techniques, deep learning methods have led to substantial

performance gain (64). Zhang et al. set out to establish an AI-based

model, which could help doctors to diagnose pneumoconiosis

and stage the course of the disease through CR. The system of

chest X-ray was created with the help of a training queue and

confirmed with the help of an independent evaluation queue. Their

groundbreaking study evaluated the possibility and effectiveness

of AI-assisted radiological diagnosis and screening in the field of

occupational lung disease (66). Zhang et al. proposed a technique

of diagnosing pneumoconiosis using wrist pulse signals, in which

wrist pulse signals were collected from both non-pneumoconiosis

and pneumoconiosis patients, and then a single piece of pulse signal

was separated. They used machine learning methods to process

and analyze the pulses, and reported that their 13-dimensional

feature could be used as the main feature for the diagnosis of

pneumoconiosis (67).

7 Pathogenesis of pneumoconiosis

The pathogenesis of pneumoconiosis involves several complex

mechanisms. In this review article, silicosis, the most common type

of pneumoconiosis, has been taken as an example to elucidate the

pathogenesis of pneumoconiosis.

7.1 Basic mechanism of silicosis

Silica particles entering the distal airways and alveoli have to

be RCS, with a diameter usually smaller than 5µm (6). When

these particles arrive at their destination, the alveolar macrophages

(AMs) identify and swallow silica dusts through macrophage

receptor with collagenous structure (MARCO) (68, 69). Silica (Si-)

and Silicon monoxide (SiO-) radicals react with water to generate

ROS, reactive nitrogen species, and nitic oxide (NO), which could

lead to lipid peroxidation of cell membranes and apoptosis in

macrophages and other cells (70). Macrophage polarization is

closely associated with the occurrence and development of silicosis,

and could be the key to further elucidating the pathogenesis

of silicosis (71). Classically activated macrophage is the primary

type of alveolar macrophage polarization occurring in the early

stage of silicosis. As the disease progresses, alternatively activated

macrophage gradually becomes the dominant type of polarization

to promote tissue repair. Additionally, signal transducer and

activator of transcription (STAT) and interferon regulatory factor

signaling pathways are also involved in the process of macrophage

polarization in silicosis (71).Moreover, the activation of nucleotide-

binding oligomerization domain-receptor interacting protein 2-

nuclear factor-k-gene binding signaling pathway may also lead to

the polarization of macrophages (72). Besides, the cyclic GMP-

AMP synthase (cGAS) activates the stimulator of interferon genes

(STING) and then brings about an increase in ROS generation.

The cGAS-STING pathway, as a result, is crucial for silica-

induced pulmonary inflammation (73). When silica particles are

phagocytosed, the H-bonding reaction occurs and damages the

lysosomes in AMs. Lysed lysosomes activate the inflammasome,

a polyprotein complex in the cytoplasm, and the activation leads

to the increased expression of inflammatory cytokines, including

TNF-α, transforming growth factor β (TGF-β), and interleukin

1β (IL-1β). A previous study demonstrated a potential role of IL-

1beta-dependent NO-mediated apoptosis in evolution of murine

silicosis, thereby showing an association between apoptosis and

inflammation (74).

Periodic acid-Schiff-positive material accumulation occurs in

the alveoli due to dysfunction of AMs, and this accumulation is

the typical characteristic of pulmonary alveolar proteinosis (PAP)

(75). PAP could promote profibrotic response by transforming

fibroblasts into myofibroblasts through LOC103691771 induced by

TGF-β1 (52), and PAP also would result in collagen deposition

and fibrosis of lungs (76). Fibrocytes and myofibroblasts derived

from lung type II epithelial cells play a crucial role in the early

stage of silicosis, while myofibroblasts derived from resident lung

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1435840
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hou et al. 10.3389/fpubh.2024.1435840

fibroblasts play a key role during the formative period of fibrosis

(77). Additionally, the extracellular matrix-related molecules, such

as integrins and their ligands including fibronectin, vitronectin,

laminin, and collagens, also exert an important influence on

the process of fibrosis (45). Activation of fibroblast is initiated

by cluster of differentiation 44-ras homolog gene family-yes-

associated protein (CD44-RhoA-YAP) signaling (78). A study

demonstrated the fibrogenic effect of glycolysis through the circular

RNA HIPK3 (Homeodomain-interacting protein kinase)/micro-

30a-3p/Forkhead box K2 regulatory pathway, indicating the

important role of glycolysis in the development of pneumoconiosis

(79). Exosomal protein and miRNAs including sulphation of

secreted phosphoprotein I and a miR-125a-5p derived from

macrophage exosomes, used for intercellular communication,

have been reported to play a key role in fibroblast trans

differentiation and the development of silicosis (80, 81). Silica-

exposed macrophage-derived exosomes promote the progression

of fibrosis, which is mediated by endoplasmic reticulum (ER)

stress (82). The basic mechanism of silicosis is presented in

Figure 2.

7.2 Autophagy on the progression of
pneumoconiosis

It was reported that phosphatidylinositol3-kinase/Protein

Kinase B/Mechanistic Target of Rapamycin (PI3K/Akt/mTOR)

signaling pathway was involved in the autophagy induced by

silicon dioxide exposed, and autophagy may play a protective role

in the process of pulmonary fibrosis (83). Autophagy can also

be activated by the adenosine monophosphate activated protein

kinase/mammalian target of rapamycin (AMPK-mTOR) signaling

pathway (84). Genetic loss of Gas6 reduces the expression of

Mer receptor, leading to the decline of accumulation of silica-

induced autophagosomes (85). Autophagy plays a two-sided role

in the occurrence of silicosis. Under normal circumstances,

autophagy degrades intracellular matter to produce new building

blocks and energy for cellular renovation and homeostasis (86).

With the ability of reducing apoptosis of alveolar epithelial cells,

autophagy could relieve silica-induced fibrosis (87). However,

inhaling silica particles cause lysosomal rupture leading to excessive

accumulation of autophagosomes in AMs, which may lead to

apoptosis in AMs (88). ZC3H4, a member of the Cys-Cys-Cys-His

(CCCH) zinc finger protein family, is involved in silica-induced

endothelial-mesenchymal transition (EndoMT) through ER stress

and autophagy (89). ZC3H4 was reported to regulate the secretory

function of monocytes, which, in turn, inhibited fibroblast function

in early inflammation through autophagy signaling, thereby

reducing pulmonary fibrosis (90). ETS-like transcription factor

(ELK-1) could promote epithelial mesenchymal transition (EMT)

via the upstream activity of OS and downstream signaling of

ZC3H4 expression (85). It was reported that silica dust exposure

could induce autophagy by changing the connectivity of Beclin1

from Bcl-2 to PIK3C3 (91). Autophagy could be inhibited by FAS-

caspase-8 due to the activation of TNF-α-TNF-receptor (TNF-α-

TNFR) signal pathway, which results in apoptosis of AM (92). In

the progression of pneumoconiosis, signaling pathways and targets

involved under the influence of autophagy are shown in Figure 3.

7.3 Apoptosis on the progression of
pneumoconiosis

Silica-induced apoptosis exerts an inflammatory effect in the

lung parenchyma and creates immunologic abnormalities in the

regional lymph nodes, which could promote the progression

of silicosis (93). Fas/FasL pathway may regulate the process of

apoptosis. Expression of Fas ligand was reported to increase after

silica inhalation, and led to the apoptosis of Fas ligand-dependent

macrophage (94). Cytochrome c can help the combination of

apoptotic protease activating factor-1 (APAF-1) and pro-caspase 9,

resulting in the enzymatic cascade and apoptosis (95). TNFR1/Phox

interaction is a crucial event in the pathogenesis of silicosis, and

it inhibits the formation of mitochondrial ROS (mtROS) and

reduces macrophage apoptosis (96). Up-regulation of Bax and

down-regulation of Bcl-2 lead to the cleavage of caspase-9 and

activization of caspase-3, respectively. Caspase-8 could activate

caspase-3 through extrinsic apoptin pathway, thereby initiating a

caspase-cascade and cell apoptosis (97). p53 plays a significant

role in silica-induced apoptosis (98). Research showed that, after

exposure to silica dust, all the levels of p53, plasminogen activator

inhibitor-1, and apoptosis increased, and the levels of urokinase

plasminogen activator decreased (99). TNF-α exerts an important

influence on the pathogenesis of silicosis through NF-κB, which

mediates the occurrence of apoptosis and inflammation (100). ER

stress could attenuate the activation of caspase-12 and protein

kinase RNA-like ER kinase (PERK)/eukaryotic initiation factor 2

α/C/EBP homologous protein pathways, thus inhibiting the silica-

induced apoptosis (101).

7.4 Pyroptosis on the progression of
pneumoconiosis

Pyroptosis is mediated by NOD-like receptor thermal protein

domain associated protein 3 (NLRP3) inflammasome, a cytosolic

multiprotein complex, which is composed of the innate immune

receptor protein NLRP3, adapter protein apoptosis-associated

speck-like protein containing a CARD, and inflammatory protease

caspase-1. The assembled NLRP3 inflammasome can activate

protease caspase-1, which promotes the release of IL-1β and

IL-18 (102). Nalp3 inflammasome is associated with dust-induced

pulmonary diseases, and it was reported to play a crucial role as

a main proinflammatory “danger receptor” (103). Silica-induced

activization of NLRP3 inflammasome was confirmed with co-

localization of Caspase-1 and NLRP3, as well as increased levels of

IL-1β and IL-18 (104). In addition, a new pathway of pyroptosis was

discovered, and it was mediated by Caspase-3/-8/Gsdme pyroptotic

pathways (105). Exosomal circRNA11:120406118|12040782

could facilitate NLRP3-induced macrophages pyroptosis (106),

suggesting that more attention should be paid to the exosomes

in terms of pathogenesis of pyroptosis. Under the influence of
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FIGURE 2

The basic mechanism of silicosis. RCS particles inhaled would be identified and swallowed by MARCO of AMs. After entering the cytoplasm,

crystalline silica would cause the lysosome to break, resulting in the activation of inflammasome followed by the inflammatory cascades and fibrosis.

The interaction of these mechanisms will lead to apoptosis.

apotosis and pyroptosis, pathways and targets involved in the

progression of pneumoconiosis are shown in Figure 4.

7.5 Epigenetics on the progression of
pneumoconiosis

The role of epigenetics in the pathogenesis of silicosis

should be studied extensively. Progression of silicosis may be

caused by a combination of environmental and genetic factors.

The relationship between genotype and phenotype, and the

association between their correlation and disease susceptibility

are very complicated due to the discrepancy in environment,

lifestyle, and nutritional status (107). Recently, N-methyladenosine

methylation has received considerable attention in the research on

the progression of pneumoconiosis, and was found to be closely

related to “phagosome,” “antigen processing and presentation„ and

“apoptosis” (108). Environmental factors should be considered

carefully, including smoking and bacteria.

TNF-α-308 G/A and−238A/G polymorphisms may be

correlated with silicosis susceptibility, especially in Asians

(109, 110). Telomerase gene variants and short telomeres may

increase the susceptibility to silicosis, but do not affect the

severity of the disease (111). The rs12812500 variant of the

carboxypeptidase M gene may increase the susceptibility to

silicosis (112). Genetic loss of Gas6 partly attenuates silica-

induced autophagosomes accumulation (85), which may

affect the progression of silicosis. Deficiency of RAB20 in

macrophages/monocytes could promote the release of IL-1b and

the activation of NLRP3 inflammasome, resulting in injury to the

lysosome (113).

A recent study showed that smoking cessation could help

reduce the risk of silicosis in silica-exposed workers (114). Nicotine,

an addictive component in cigarettes, may induce apoptosis by

blocking AM autophagic degradation of AM (115). LPS initiates

the formation of autophagosomes through a Toll-like receptor

4 (TLR4)-dependent pathway and exacerbates apoptosis in AMs

(116). LPS induces autophagy and apoptosis in macrophages. With

the progression of silicosis, the level of Beclin 1 increased and
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FIGURE 3

Influence of autophagy on the progression of pneumoconiosis. PI3K/Akt/mTOR signaling pathway and AMPK-mTOR signaling pathway are involved

in the silica-induced autophagy. The activation of Gas6/Mer would also promote autophagy. ZC3H4 is involved in autophagy by ER stress, which is

promoted by ELK-1. The increase of monocyte chemoattractant protein-induced protein 1 could promote autophagy. FAS- caspase-8 inhibits

autophagy through TNF-α-TNFR signal pathway. Environmental factors, including lipopolysaccharide (LPS), nicotine etc., also exert influence on

autophagy.

the levels of the phosphorylation of MTOR, TLR4, MYD88, and

TICAM1 decreased (116). A novel circRNA-SNP may increase

the susceptibility to silicosis, so further investigations need to

be conducted on the role of circRNAs in the progression of

pneumoconiosis (117).

8 Therapeutic measures for
pneumoconiosis

No cure is available for pneumoconiosis and most

medical treatments can only decrease further lung damage

and symptoms, underscoring the urgency of novel treatment

modalities (2).

Whole lung lavage (WLL) can remove a certain amount of

dust, cells, and soluble materials from the lungs, improving oxygen

uptake and ventilatory efficiency in pneumoconiosis patients (118).

However, negative suction pressure will cause different degrees

of lung damage during WLL. Additionally, pulmonary function

parameters were reported to worsen after WLL, including forced

expiratory volume, residual volume, and diffusing capacity of the

lungs for carbon monoxide (119).

Since there are no effective treatments available for end-stage

pneumoconiosis, lung transplant is the only option for patients

with fatal respiratory failure (5). However, lung transplantation

has some limitations, including donor shortage, proper selection

of candidates, primary graft dysfunction, and chronic lung

allograft dysfunction (120). Meanwhile, lung transplant recipients

were reported to have a short median survival time of only

6–7 years (6).

8.1 Promising targets for pneumoconiosis

An increasing amount of evidence has demonstrated that

the dysregulation of miRNAs may play an important role in

the progression of pneumoconiosis (121). miRNAs play an

important role in the progression of pneumoconiosis, and they

have emerged as potent regulators of EMT and mesenchymal

epithelial transition (MET). A recent study proved that miR-

770-5p suppressed the activation of pulmonary fibroblasts and

further inhibited silica-induced pulmonary fibrosis by targeting

transforming growth factor beta receptors (TGFBR1). It was

reported that transduction of TGF-β1 signaling pathway decreased

TGFBR1, and the activation of MRC-5 cells was inhibited after

TGFBR1 was knocked out, while increase in the growth of

these cells was observed after the overexpression of TGFBR1

(121). Spouty1 (SPRY1) is identified as the target gene of miR-

7219-3p, and its knockout or overexpression could promote or

inhibit fecal microbiota transplantation (FMT), respectively, via
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FIGURE 4

Influences of apoptosis and pyroptosis on the progression of pneumoconiosis. The activation of Fas/FasL pathway mediated by silica results in

apoptosis. Cytochrome c can lead to the combination of APAF-1 and pro-caspase 9, resulting in the enzymatic cascade and apoptosis. Caspase-3 is

activated by caspase-8, initiating a caspase-cascade and cell apoptosis. The inhibition of Caspase-12 results in apoptosis. TNFR1/Phox interaction

inhibits the formation of mtROS, reducing macrophage apoptosis. TNF-α, NO, and exosomes are also involved in the development of apoptosis.

Pyroptosis is mediated by the activation of NLRP3 inflammasome.

the Ras/ERK/MAPK signaling pathway. Therefore, miR-7219-3p

could be deemed a novel therapeutic target for pneumoconiosis

treatment (122).

ZC3H4 participates in macrophage activation and EMT.

Research has confirmed that ZC3H4 participates in the silica-

induced EndoMT via ER stress and autophagy, indicating the

possibility of treating pneumoconiosis by targeting ZC3H4 (89).

According to a new study, A2a receptor (A2aR) could reverse

EMT by mediating Wnt/β-catenin pathway and inhibit the

development of silicosis (123). Glycolytic reprogramming is an

important metabolic feature of the progression of pulmonary

fibrosis (124), however, the specific mechanism of glycolysis in

silicosis is still unclear. A study have confirmed that N-acetyl-seryl-

aspartyl-lysyl-proline (Ac-SDKP) treatment can inhibit glycolytic

reprogramming in silica-induced lung macrophages and alleviate

pulmonary fibrosis (125).

CD44-RhoA-YAP signaling is involved in mechanics-induced

fibroblast activation, therefore, fibrosis in pneumoconiosis could

be reversed by targeting this signaling pathway (78). Activating

associated autophagy pathways, such as PI3K/Akt/mTOR and

Gas6/Mer-mediated autophagy signaling pathway, is proved to

have therapeutic effect on pneumoconiosis (83, 85). Fas/FasL

pathway may be involved in the progression of AM apoptosis,

suggesting that silicosis could be prevented or treated by inhibiting

this signaling pathway (46).

Lymphatic vessels are beneficial to the removal of silica dust and

the suppression of inflammation (126). Promoting the formation of

lymphatic vessels is helpful in the early prevention and treatment

of pneumoconiosis (126). Ginsenoside Rg1 promoted lymphatic

transport in silicotic rats through vascular endothelial growth factor

C/vascular endothelial growth factor receptor 3 signaling pathway,

exerting a protective influence on lung burden of silica (127).

Specific therapeutic targets for pneumoconiosis treatment are listed

in Table 4.

8.2 Promising drugs for pneumoconiosis

Drugs used to treat other diseases, such as corticosteroids

and amiodarone, could also be used in the management of

pneumoconiosis (137, 138). Amiodarone, a unique antiarrhythmic

agent, is effective in the treatment of a wide range of rhythm

abnormalities (139). With the ability to inhibit the activity of

AM and the whole lung phospholipase, amiodarone can increase

the amount of phospholipids in lung cells, airways, and alveoli

(138). A previous study showed that the increase in pulmonary

phospholipid reduced the acute damage caused by intratracheal

instillation of silica in rats, indicating that amiodarone can

attenuate acute damage in lungs by increasing the content of

phospholipids (138).
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TABLE 4 New therapeutic targets for pneumoconiosis.

Targets Expression level Mechanisms E�ects References

miR-449a Up Promotes autophagy Ameliorates pulmonary fibrosis (128)

miR-205-5p Up Promotes autophagy by inhibiting S-phase

kinase-associated protein 2-mediated Beclin1

Ameliorates pulmonary fibrosis (129)

miR-29b Up Promotes MET and by suppressing EMT Ameliorates pulmonary fibrosis

ang pulmonary function

(130)

miR-770-5p Up Targets TGFBR1 Ameliorates pulmonary fibrosis (121)

miR-411-3p Up Inhibits MRTF-A/SRF signaling Ameliorates pulmonary fibrosis (131)

SPRY1 Down Inhibits the Ras/ERK/MAPK signaling pathway

and reduces the expression of miR-7219-3p

Inhibits FMT and pulmonary

fibrosis

(122)

miR-326 Up Promotes autophagy by TNF superfamily14 and

polypyrimidine tract-binding protein 1

Ameliorates pulmonary fibrosis (132)

ZC3H4 Down Regulates ER stress and autophagy Ameliorates pulmonary fibrosis (89, 90)

RhoGDIα Down Inhibits myofibroblast trans-differentiation Ameliorates pulmonary fibrosis (133)

IgE and FcεRI Down Reduce the role IgE and FcεRI play Ameliorates pulmonary fibrosis (134)

BCL2 binding component 3 Down Inhibits autophagy Ameliorates pulmonary fibrosis (135)

Cav-1 Up Inhibited infiltration of inflammatory cells and

secretion of inflammatory factors

Ameliorates pulmonary

inflammation and fibrosis

(136)

A2aR Up Reverses the EMT process Ameliorates pulmonary fibrosis (123)

CD44-RhoA-YAP signaling Inhibit Inhibits fibroblast activation Ameliorates pulmonary fibrosis (78)

In addition, some drugs extracted from natural plants with

anti-inflammatory and anti-fiber properties can also be used

to treat pneumoconiosis, including anti-snake venom injection

(140), dihydrotanshinone I (141), and intranasal curcumin

(142). Dioscin, a steroidal saponin, reduces the recruitment of

fibrocytes and inhibits TNFβ/Smad3 signaling, which greatly

suppresses the activation of fibroblasts (143), and it could alleviate

pulmonary inflammation and fibrosis by promoting autophagy and

reducing apoptosis of AMs (144). Dihydroquercetin, a flavonoid

compound with anti-inflammatory property, could be used for

pneumoconiosis treatment because it inhibits ferritinophagy-

mediated human bronchial epithelial cells ferroptosis and

alleviates pulmonary fibrosis (145). Specific drugs are listed

in Table 5.

8.3 Other therapies for pneumoconiosis

Systemic administration of Mesenchymal stem cells (MSCs)

was reported to ameliorate lung inflammation and attenuate

fibrosis in experimental silicosis, and could be used as an

emerging treatment for pulmonary fibrosis (155). The group

with adipose-derived MSC (AD-MSCs) transplantation showed

a significant increase in Bcl-2/Bax ratio and a drastic reduction

in the inflammatory response and Caspase-3 protein expression,

implying that AD-MSCs may slow the development of silicosis

by influencing inflammation and apoptosis (156). Bone marrow

mononuclear cells significantly alleviate pulmonary inflammation

and fibrosis, especially when transplanted from healthy individuals

(157). However, the direct use of stem cells for therapeutic

purposes has remained limited due to several factors, such as

safety and high expenditure. Magnetic targeting (MT) is regarded

as a potential means of prolonging MSC retention in the lungs

to improve their beneficial effects, indicating that MT could be

adopted as a prospective strategy to enhance MSC therapies for

pneumoconiosis (155).

Exosomes secreted from stem cells hold great therapeutic

potential with the added advantage of being free from the

restrictions of cell-based therapy. Exosomes derived from

human umbilical cord mesenchymal stem cells (hucMSC-

Exos) were reported to play a potential role in improving

pulmonary fibrosis (158), since they transfer let-7i-5p

to inhibit the activation of fibroblasts and then alleviate

pulmonary fibrosis through the TGFBR1/Smad3 signaling

pathway (159). MSC-derived extracellular vesicles (MSC-

derived EVs) also have similar therapeutic potential in treating

pneumoconiosis (160).

Hepatocyte growth factor (HGF) is a potential anti-

inflammatory and anti-fibrotic growth factor (161), and it

was reported to play a significant role in pulmonary tissue

repair in adults (162). Administration of HGF protein or ectopic

expression of HGF induced normal tissue repair and prevented

fibrotic remodeling in animal models of pulmonary fibrosis

(162). HGF inhibits fibrotic remodeling, which is mediated

by multiple direct and indirect mechanisms, including the

induction of cell survival, proliferation of pulmonary epithelial and

endothelial cells, and reduction of myofibroblast accumulation

(162), suggesting that HGF can be used to treat pneumoconiosis.

HGF could also be applied to polyethyleneimine-polyethylene

glycol/plasmid encoding human HGF gene/hyaluronic acid

(PEG-PEI/pHGF/HA) nanoparticles carrying HGF gene through

chemical synthesis; pHGF was delivered into the lungs of
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TABLE 5 Prospective drugs for pneumoconiosis.

Drugs Mechanisms Involved signaling
pathways

E�ects References

Pirfenidone Inhibits the secretion of IL-17A Inhibits

macrophage polarization Inhibits

epithelial-mesenchymal transition

TGF-β1/Smad pathway

JAK2/STAT3 signaling

pathway

Ameliorates pulmonary

inflammation and fibrosis

(146–148)

Fostamatinib Targets SYK Not reported Ameliorates pulmonary

inflammation and fibrosis

(149)

Gefitinib Targets EGFR Not reported Ameliorates pulmonary

inflammation and fibrosis

(149)

Metformin Activates autophagy AMPK-mTOR signaling

pathway

Attenuates pulmonary fibrosis (84)

Ramatroban Blocks the receptors of PGD and TXA Not reported Inhibits the progression of

silicosis

(41)

Astragaloside IV Reduces the expression of Collagen I, fibronectin

and α-SMA

TGF-β1/Smad signaling

pathway

Attenuates pulmonary fibrosis (140)

Intranasal curcumin Reduces airway inflammation and structural

changes

Not reported Ameliorates lung damage (142)

Dihydrotanshinone I Regulates the Th immune response Inhibits

STAT1 and STAT3

Not reported Ameliorates pulmonary

inflammation

(141)

Carvedilol Underlies inflammatory and fibrotic sequel P-AKT/mTOR/TGFβ1

signaling

Ameliorates pulmonary

fibrosis

(150)

Tetrandrine Inhibits both the canonical and non-canonical

NLRP3 inflammasome pathways

Canonical and non-canonical

NLRP3 inflammasome

pathways

Ameliorates pulmonary

inflammation and fibrosis

(151)

Dioscin Modulates innate and adaptive immune responses

Reduces the recruitment of fibrocytes, protected

epithelial cells Inhibits fibroblast activation

Promotes autophagy Reduces apoptosis

TNFβ/Smad3 signaling Ameliorates pulmonary

inflammation and fibrosis

(143, 144)

Atractylenolide III Inhibits autophagy mTOR-dependent signaling

pathway

Alleviate the apoptosis of

AMs

(152)

Tanshinone IIA Decreases the expression of collagen I, fibronectin

and α-SMA Reduces NADPH oxidase 4 expression

TGF-β1/Smad signaling

Nrf2/ARE pathway

Ameliorates pulmonary

inflammation, structural

damage and fibrosis

(153)

Glycyrrhizic acid Inhibits the interaction between HMGB1 and

BRG1

PI3K/Akt/mTOR pathway Ameliorates pulmonary

fibrosis

(154)

silicostic mice effectively via PEG-PEI(HA), and it resulted in a

decrease in inflammation and collagen deposition in the lungs.

Therefore, gene therapy with PEG-PEI/pHGF/HA nanoparticles

is a promising strategy for the treatment of silicosis, and it would

provide research foundation and novel ideas for the treatment

of silicosis (163). The combination of MSC and HGF has been

reported to have good therapeutic effect on some pneumoconiosis

patients (164).

Nanotechnology can be integrated with existing drugs for the

treatment of pneumoconiosis or be applied to the development of

new therapies, which will make drugs more effective and reduce

the undesirable side effects, and the therapeutic goals can be

better achieved. Compared with stand-alone drugs in traditional

respiratory therapy, the integration of drugs and different

nanostructures showed a better drug bioavailability, transport, and

delivery (165). A study reported that fullerene nanoparticles

(FNs) could effectively inhibit the activation of NLRP3

inflammasome, which could prevent the secretion of mature

IL-1β and neutrophil influx due to its superior ROS scavenging

capability. Importantly, FNs did not cause any obvious toxicity

after pulmonary administration (166). New nanotechnologies

such as FNs will be a boon to the treatment of pneumoconiosis in

the future.

9 Prospects of pneumoconiosis

Further research needs to be conducted on the pathogenesis of

pneumoconiosis to find novel and accurate targets for diagnosis

and to develop new therapeutic approaches. Recently, increasing

research has revealed that autophagy, apoptosis and pyroptosis are

involved in the development of pneumoconiosis to a certain extent

(166). The occurrence of pneumoconiosis is dependent on the

interaction between three above-mentioned phenomena (167), and

molecules and signaling pathways involved in these processes can

be used as diagnostic and therapeutic targets for pneumoconiosis.

Additionally, the mechanism of pneumoconiosis should be

considered from the perspective of the interplay between genetic

and environmental factors (107). More environmental factors and

relevant genes are expected to be discovered in future studies,
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which would help to explain the pathogenesis of pneumoconiosis

more clearly. As carriers, exosomes could transport specific cargoes

such as nucleic acids, lipids and proteins, and promote biological

process and idiopathic pulmonary fibrosis (82). Further research

on the role of exosomes in pathogenesis of pneumoconiosis would

uncover novel promising biomarkers, therapeutic targets, and

relevant drugs.

Developing effective specific models such as pre-clinical

and human organoid-based models is significant for further

exploration on the mechanisms of pneumoconiosis (36). Like

any other controllable model organisms, complex patient-

derived mannequin systems will consequently become powerful

research tools for understanding human physiology and disease

development (168). Besides, it is equally important to apply various

new research techniques to the field of pneumoconiosis because a

single technique alone fails to explain the mechanism of this disease

in most of the cases. For example, integrative omics plays a key role

in the prediction and early diagnosis of pneumoconiosis as well as

in the treatment and prognosis (169). Multi-omics approach was

used and it was found that mA methylation played an essential

role in the occurrence of silicosis. Multi-omics approach could

be used as a novel and viable strategy for the prevention and

treatment of silicosis. These approaches have paved the way for

clarifying the epigenetic mechanisms underlying the pathogenesis

of silicosis (108). Rapid development of integrative omics such

as genomics, transcriptomics, proteomics, and metabolomics

has revealed the differences among individuals indicating that

personalized medicine has great application prospect. Personalized

medicine would provide specific individuals with interventions

for their diseases, and the treatments can be tailored to their

nuanced needs caused by the differences in the levels of molecule,

physiology, environmental exposure, and behavior.

New lung scanning methods, including HRCT, EIT, and

magneto pneumography, have improved the reliability of diagnosis

of pneumoconiosis, making early diagnosis of pneumoconiosis

possible (58, 59, 62). Standardized techniques, coordination, and

consensus should be adopted to promote the clinical application of

these imaging methods (60). AI, a hot topic in medical imaging,

is a promising method in the diagnosis of pneumoconiosis, for it

can develop diagnostic algorithms in an innovative way with the

advantage of evaluating multiple issues rapidly (63). In addition,

it is important to find novel biomarkers for early and accurate

diagnosis of pneumoconiosis (2). Existing methods, such as WLL,

cause damage to human body, though they can alleviate the

progression of pneumoconiosis (119). Several drugs with anti-

inflammatory and anti-fiber properties have been found useful

in the treatment of pneumoconiosis. Researchers are expected to

develop more new drugs that can treat pneumoconiosis effectively

(88). Being adult stem cells, MSCs have shown promising results in

the treatment of pneumoconiosis (156), with strong differentiation

ability and immune regulation function (170). Importantly, the

secretory factors produced by MSCs play critical roles in tissue

repair, which support both engraftment and trophic functions

(autocrine and paracrine) (170). With these features, MSCs have

been increasingly utilized in clinical trials for cell replacement

and immune suppression, and they are considered promising in

the treatment of pneumoconiosis. It is worth noting that HGF’s

anti-inflammatory and anti-fibrotic attributes make it possible

to treat pneumoconiosis and alleviate its progression (162). The

combination of HGFwith nanotechnology orMSCswill be ofmuch

significance to the treatment of pneumoconiosis (163, 164).
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