
Frontiers in Public Health 01 frontiersin.org

Evidence of repeated zoonotic 
pathogen spillover events at 
ecological boundaries
Antoine Filion 1*, Mekala Sundaram 2,3, John Paul Schmidt 4, 
John M. Drake 4 and Patrick R. Stephens 1

1 Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States, 
2 Department of Infectious Diseases, University of Georgia, Athens, GA, United States, 3 Savannah River 
Ecology Laboratory, University of Georgia, Aiken, SC, United States, 4 Odum School of Ecology and 
Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States

Anthropogenic modifications to the landscape have altered several ecological 
processes worldwide, creating new ecological boundaries at the human/wildlife 
interface. Outbreaks of zoonotic pathogens often occur at these ecological 
boundaries, but the mechanisms behind new emergences remain drastically 
understudied. Here, we  test for the influence of two types of ecosystem 
boundaries on spillover risk: (1) biotic transition zones such as species range 
edges and transitions between ecoregions and (2) land use transition zones 
where wild landscapes occur in close proximity to heavily impacted areas of 
high human population density. Using ebolavirus as a model system and an 
ensemble machine learning modeling framework, we  investigated the role of 
likely reservoir (bats) and accidental host (primates) range edges and patterns 
of land use (defined using SEDAC categories) on past spillover events. Our 
results show that overlapping species range edges and heightened habitat 
diversity increase ebolavirus outbreaks risk. Moreover, we  show that gradual 
transition zones, represent by high proportion of rangelands, acts as a buffer 
to reduces outbreak risks. With increasing landscape changes worldwide, 
we provide novel ecological and evolutionary insights into our understanding of 
zoonotic pathogen emergence and highlight the risk of aggressively developing 
ecological boundaries.

KEYWORDS

disease ecology, Schmalhausen’s law, ecological boundaries, spillover, filovirus, 
disease emergence

Introduction

The past few decades have been marked by a drastic increase in zoonotic pathogen 
spillover events worldwide (1–3). The recent COVID-19 pandemic was an unfortunate 
demonstration of the dire effects that zoonotic pathogen spillover can have on human 
and animal health (4). In the face of the rising number of emerging zoonotic pathogens 
(1), the One Health approach, which considers human, animal and environmental 
health simultaneously, has been proposed as a powerful conceptual tool to help tackle 
the rise of emerging zoonotic pathogens (5). However, a major component leading to 
pathogen spillover events, environmental health, is often neglected and stands as a 
deficiency to providing a truly comprehensive One Health approach (6). To prepare for 
and mitigate future zoonotic pathogen emergence, a better understanding of how 
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environmental factors influence disease risk is needed. Ecosystem 
boundaries have been suggested as a common environmental 
factor that may contribute to zoonotic spillover by being areas 
where many host species can come into contact, fostering cross 
species transmission and potential spread of pathogens into 
human populations (7). However, direct empirical tests of 
whether ecosystem boundary areas have higher spillover risk than 
other regions remain surprisingly rare. Further, even in cases 
where this hypothesis has been tested [e.g., (8, 66)] it remains 
unclear whether ecological and evolutionary factors, the simple 
confluence of human and wild animal populations, or both 
contribute to spillover risk.

Broadly speaking, ecosystem boundaries can be  thought of as 
reflecting two types of transitions zones (1) biotic transition zones 
between ecoregions or biomes, which can also manifest as areas where 
the edges of many species geographic ranges occur, and (2) land use 
transition zones, where transitions from wild to anthropogenically 
dominated landscapes occur, and thus where human populations are 
likely to come into contact with a wide variety of potential disease 
reservoir host species. Whether these two types of transition zones 
influence spillover risk, and if so which does so most strongly, has 
infrequently been tested empirically (23). This is important because 
the mechanisms by which biotic vs. land use transition zones are likely 
to influence spillover risk, and whether they would even necessarily 
be expected to do so, somewhat differ.

If we define a biotic transition zone as an area where many species 
ranges edges occur, two macroecological hypotheses have important 
implications for expected patterns of spillover risk. The geographic 
center-abundant hypothesis (9) predicts that individuals of species 
located near their geographic range center thrive due to better overall 
conditions compared to those near species range edges, which results 
in higher reproductive success and higher abundance near the center 
of any given species geographic ranges (10, 11). While this theory and 
the validity of its predictions are still disputed (12), it focuses on the 
idea that the center of a species range represents an area of greater 
ecological suitability than range edges (13). Ecologically challenging 
localities at the edge of a species range could increase a reservoir’s 
ecophysiological stress, potentially allowing pathogens to reach higher 
prevalence or abundance, increasing spillover risk by increasing the 
chance of transmission when individuals come unto contact (7). 
Conversely, lower expected abundance of reservoir host species could 
actually decrease spillover risk by decreasing contact rates between 
reservoirs and other species including humans (14).

Another macroecological mechanism relating species range-edges 
to spillover risk is Schmalhausen’s law (15–18). Schmalhausen’s law 
predicts that whenever individuals in a population are pushed to the 
edges of their ecological or physiological tolerances, unusual 
phenotypes will be observed due to gene expression outside of the 
range of environments for which species genotypes have been 
canalized by previous natural selection (17, 19). In the context of 
spillover, this could lead to unusual population dynamics or that 
might affect transmission risk (15). If the range-center-abundance 
hypothesis is correct, species range edges represent the types of 
environments in which species are likely to be  pushed to their 
physiological limits. Thus, Schmalhausen’s law can be regarded as 
another mechanism by which the range-center-abundance hypothesis 
might be related to spillover risk. So far, this theory has primarily been 
tested in systems involving vector-borne pathogens (15, 18, 20), 

though a recent study showed evidence that it may influence outbreak 
size in at least one directly transmitted pathogen, Marburg virus (16).

In contrast to purely biotic transition zones, we define land use 
transition zones as areas where wild habitats, relatively unaffected by 
anthropogenic change and with low human population density, 
transition into urban or agricultural landscapes with much higher 
human population density (Figure  1). These unnatural ecological 
boundaries, forming transition zones between environments (21), are 
hypothesized to be  fertile grounds for the emergence of zoonotic 
pathogens (2). For instance, the extinction-filter evolutionary hypothesis 
predicts that species that evolve in high-disturbance areas should 
be more resilient to anthropogenic environmental changes, such as 
human encroachment and habitat fragmentation (22). Thus, in 
disturbed habitats these species will be among the survivors and be able 
to reach high abundance. If such a species is a disease reservoir, it could 
greatly increase spillover risk in disturbed habitats (23). Conversely, even 
if species that evolved in stable environments are able to survive in these 
areas, they will presumably still be under great stress (22), which could 
also lead to higher pathogen prevalence and increased spillover risk. 
More, simply land use transition zones might represent “mixing zones” 
between wild and settled areas, where human populations from highly 
impacted settled areas tend to come into contact with populations of 
host species being maintained in less impacted wild areas, such as 
forests, and to which these transitional zones are still “permeable” (7).

Few studies have considered both types of transition zones 
simultaneously (in fact none that we are aware of), and thus tested 
which sets of mechanisms are most likely to influence spillover risk. 
However, if biotic transitions zones are more important to driving 
spillover, we would expect spillover risk to increase near areas where 
many species geographic ranges occur (Figures 1A,B). Conversely, if 
land use transition zones are more important (Figure 1C) we would 
expect spillover to occur in regions where both human-impacted and 
relatively undisturbed wild areas occur in close proximity. While land 
use transition zones will certainly represent new range edges for some 
species that cannot tolerate close association with humans in settled 
areas, in general anthropogenic disturbances in the environment are 
expected to affect the population dynamics, and thus range 
boundaries, of different species idiosyncratically (24). Co-occurrence 
of multiple species range-edges would only be expected to strongly 
predict spillover risk if biotic transitions zones per se are affecting 
zoonotic disease dynamics. The confluence of both types of transition 
zones might also lead to even higher spillover risk than either alone.

Regardless, to establish which, if any, of the mechanisms 
we discuss may be at play in driving spillover risk, a first step is to ask 
whether biotic transition zones, land use transition zones, or both 
show increased spillover risk. Ebolaviruses [by which we here refer to 
any African species of Orthoebolavirus sensu (25)] present a 
compelling study system for this exercise. Ebolavirus outbreaks 
produce extremely high mortality in human populations, often in 
excess of 50% (26). Likely because of this, ebolavirus is the subject of 
intense monitoring and research effort (27), and we speculate that a 
larger proportion of spillover events have likely been documented 
compared to many other sporadically occurring pathogens in tropical 
regions. Ebola virus is also a generalist pathogen that can infect a wide 
variety of species including bats, ungulates, and primates including 
humans (26), and thus a pathogen in which biotic transition zones 
(i.e., areas where many host species geographic range boundaries 
overlap) might be expected to influence spillover risk. Although fruit 
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bats have been strongly implicated as a reservoir (28), the source of 
spillover events into human populations has often been primates (29). 
Collectively, the spatial ranges of the bat and primate species that are 
susceptible to ebolaviruses cover most of sub-Saharan Africa and all 
of the areas where ebolavirus spillover events have occurred. It is thus 
possible to combine large scale land-use and species geographic range 
data in an integrative framework to test whether species range edges 
or patterns of land use most strongly affect spillover risk (Figure 1).

While a number of studies have investigated the drivers of 
Ebolavirus spillover risk [e.g., (8, 30–32)], few studies have specifically 
tested for species range edge-effects or contrasted their influence with 
that of transition zones related to patterns of human land use. Here, 
we investigate the role of natural biotic and anthropogenically created 
ecological boundaries in contributing to repeated disease spillover 
events using the Ebola virus as a model system. We quantify biotic 
transition zones based on the overlapping range edges of the most likely 
primary (bats) and secondary amplifying (primates) hosts (28). We 
define land use transitions zones as areas where relatively pristine and 
human-altered land use types occur in close proximity. Using this 
system, we make two predictions: (1) Due to their high potential for 
ecological disturbances, land-use transition zones will be important in 
contributing to higher outbreak risks. (2) If Schmalhausen’s principles 
hold true, areas closer to biotic transition zones of Ebola virus reservoirs 
or accidental hosts range edges will have a higher outbreak risks. Using 
ensemble machine-learning methods and a presence pseudo-absence 
framework, we test whether models of biotic transition zones, land use 

transitions zones, or that include both best predict the location of sites 
where previous Ebola virus spillover events have been documented.

Methods

Outbreak data collection

We compiled all reported Ebola outbreaks with human cases from 
Kuhn (26), the Centers for Disease Control (33), and ProMED (34). 
We then pruned the dataset to include only outbreaks confirmed to 
be Ebola virus (including both species Sudan ebolavirus and Zaire 
ebolavirus) by laboratory testing and that originated from a wild 
source (e.g., we  excluded data points from accidental laboratory 
spillover events). For each outbreak, we compiled the date of outbreak, 
its geographical origin, and the number of human cases, allowing us 
to work with 44 outbreaks ranging from 1976 to 2020, inclusively (and 
excluding outbreaks reported after we initiated our work).

Pseudo-absence matrix collection

Following previous studies of filoviruses and other pathogens [e.g., 
(16, 32, 35)], we investigated the spatial characteristics of localities 
where outbreaks originated using a presence/pseudo-absence approach 
where the sites at which outbreaks are known to have originated are 

FIGURE 1

Potential main processes along with their directionality explaining the main mechanisms underlying transition zones in directly transmitted pathogens. 
(A) Expected overall directionality of spillover risk with increasing of ecological boundaries (blue). (B) If such patterns are generated by evolutionary 
mechanisms, spillover risk should be more tightly correlated with the distance to the edge of the geographic range of competent host species 
(orange). (C) If such patterns are related to artificial transition zones such as conversion to agricultural landscapes or unnatural ecotones, spillover risk 
should be more tightly correlated with the proportion of land being used for croplands or rangelands that mark the transition between wild and settled 
areas (orange).
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compared to randomly selected localities in the same regions (e.g., 
background points). First, we converted a shapefile of Africa to raster 
[package: Raster (36)] with a 50 km grid square. Then, we defined strict 
land boundaries based on regions where the environmental conditions 
are broadly similar to those where outbreaks have occurred in the past 
(32), and performed a seeded random sampling to create our pseudo-
absence dataframe (R code is provided in the Supplementary material).

Anthropogenic biomes data collection

To quantify patterns of land use we  used the Anthropogenic 
Biomes of the World V1 raster (37) from the Socioeconomic Data and 
Application Center (SEDAC) to assign one of six large categories of 
land use to each locality in Africa: (1) dense settlements, (2) villages, 
(3) croplands, (4) rangelands, (5) forested, (6) wildlands. We used 
version 1, downloaded March 17th 2023 at a gridded resolution of 
0.083 km2, for analyses.

Species ranges

We obtained the spatial ranges of all fruit bat (Pteripodidae) and 
primate species in sub-Saharan Africa as a polygon shapefile from the 
IUCN red list repository (38). We focused on these species because 
Sundaram et  al. (28) showed that they are likely to be  the most 
important primary and secondary amplifying hosts (respectively) and 
because firsthand accounts of past outbreaks highlight their importance 
(26, 39). For each presence and pseudo-absence locality we extracted 
the minimum distance to the edge of the nearest geographic range 
polygon for each species using the dist2line function [package: 
geosphere (40)], representing a minimum distance between an Ebola 
virus outbreak and the distributional edge of either natural reservoirs 
of Ebola virus or accidental hosts [packages: sp. (41); Raster]. We then 
calculated the median distance between an outbreak event and the 
range-edges of all bat species and all primate species, separately, as the 
variables to use in our models, representing the areas where many 
species range-edges overlap, representing biotic transition zones.

Species edge composition

We extracted the spatial edges of all our bat and primate species by 
converting each species polygon file into a spatial line object (package: 
sp), and using the dist2line function (package: geosphere) to create a 
40 km buffer around the geographic range edge of each species. 
We chose a 40 km buffer because preliminary analyses showed that 
nearly all Ebola virus outbreaks happen within 40 km of the range-edges 
of the suspected reservoirs of Ebola virus (see Supplementary Figure S1). 
We then matched buffer zones with the anthropogenic biomes data to 
capture land use composition at the edge of our species ranges.

Landscape composition around outbreaks 
locations

We calculated the same 40 km buffer around our outbreak and 
pseudo-absence locations, and then extracted all geographic 

coordinates in that buffer. We then matched these coordinates with 
the anthropogenic biomes data (37) to capture land use composition 
near outbreaks locations. We next calculated the percentage area of 
each of the six types of land use tracked by the SEDAC 
anthropogenic biomes data within each zone. To determine 
whether habitat conversion to a specific landscape type or highly 
fragmented habitat drive Ebola virus spillover risk, we calculated a 
Simpson diversity index [package: vegan (42)] for the anthropogenic 
biomes data around the outbreaks and pseudo-absence locations. 
A priori, we  expected that areas with high values of Simpson’s 
diversity index (SDI) would be more likely to contain areas with 
both relatively pristine and human-altered land use types in 
close proximity.

However, high values of SDI alone do not necessarily indicate that 
human-altered and wild land use types occur in the same general area, 
it only indicates multiple land use types are present and no one type 
dominates in terms of relative area. To determine whether high values 
of SDI were associated with areas that could often be considered land 
use transition zones (in the sense of both wild and human-dominated 
landscapes occurring together), we  divided land use types into 
human-dominated (agriculture, villages, and urban areas) and 
wilderness/low human-population densities (wildlands, rangelands, 
and forest). We then determined whether the 40 km radius around 
each presence and pseudoabsence locality contained only human-
dominated land use types, only wilderness land use types, or at least 
one example of both so that we could test whether areas that contained 
examples of both exhibited significantly higher SDI values.

Data analysis

All analyses were performed using R version 4.0.2 (43). 
We provide R code as Supplementary material to allow readers to fully 
reproduce our results and have access to our models’ conditions. Prior 
to modeling, all our predictor variables were checked for collinearity. 
We  then removed redundant predictor variables to reduce model 
variance, following the recommendations of Elith et  al. (44) for 
boosted regression trees analyses with small data sets. We focused on 
gradient-boosted regression trees (GBM) for our models, implemented 
in caret v. 6.0–86 (45). This ensemble machine learning method only 
requires the user to specify distribution of the response variable (i.e., 
the correct link function), and is robust to the inclusion of predictor 
variables with virtually any underlying distribution and with complex 
patterns of covariation, including spatial correlation (44). 
We resampled the rows of the full database prior to the analysis to 
avoid data clumping (i.e., all outbreaks and pseudo-absences together). 
To avoid artificially inflating the AUC scores of models, we used down 
sampling to avoid overrepresenting pseudo-absence points. 
We  checked all variable importance using Final Model call (45). 
Variables that had a zero status were considered as having little 
importance as predictors. Furthermore, all variables that had relative 
influence scores of less than 10% were considered non-important, 
somewhat arbitrarily, and we did not investigate their directionality 
using marginal plots (see below) or include them in subsequent 
models. For all models, we used (1) presence (1) or absence (0) of a 
documented Ebola virus outbreak at each locality as the response, 
with a Bernouilli distribution as the link function in our boosted 
regression tree analyses; (2) 2/3 of our database to train the model and 
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1/3 as holdout data; and (3) 10-fold cross-validation with 100 replicate 
to validate their robustness and to ensure that models were not overfit.

We constructed several sets of models, in each case using presence 
vs. background as the response variable with down-sampling of 
background localities to match the number of presence localities. To 
assess the importance of ecological vs. anthropogenic environmental 
factors we compared the AUC scores of models based on species 
geographic range edges to models based on patterns of land use 
(Figure 1).

To investigate the effects of host range edges on outbreak risk, 
we first constructed a model based on the median of the distance to 
the range edge of all bat or primate species, contrasting the relative 
influence of bat vs. primate range edges. To further disentangle the 
potential role of these two highly correlated predictors (R2 = 0.89), 
we built a separate model for each of them individually, and compared 
their AUC scores. Second, to understand the importance of bat and 
primate species identity in contributing to Ebola virus outbreak risk 
we constructed a model where we compared the relative influence of 
proximity to the range-edge of all bat and primate species that 
overlapped with the origin of at least one outbreak. As there was high 
potential of correlation among the many predictors, we replicated this 
model 99 times to minimize background noise using the “replicate” 
function in R.

To investigate the role of anthropogenic landscape structuring in 
contributing to Ebola virus outbreak risk, we used the percentage of 
coverage of each of six types of land type (e.g., Dense settlements, 
Villages, Croplands, Rangelands, Forested, Wildlands) and Simpson’s 
diversity index based on the number and relative area of these land 
use types within the 40 km buffer zone around outbreak and 
pseudoabsence localities as predictors.

To see whether models that included both land use and biotic 
transition zones better predicted spillover risk than models that 
included only one of these factors, we included all the variables with 
relative influence >10% in previous models for a final combined 
analysis. In this model, we used the median distance to bat species 
range edge, the median distance to primate species range edge, and 
the landscape characteristics surrounding our mapped data points 
(rangelands and SDI).

Results

Overall, our database consisted of 44 known outbreak locations 
and 440 pseudo-absence data points. All confirmed outbreaks 
overlapped with at least one bat species range (see 
Supplementary Figure S2). Both bats and primate range edges were 
dominated by agricultural land uses (both forest and cropland), 
reaching as high as 93% of overall edge composition for one bat 
species (Casinycteris argynnis) and > 95% for a few primate species 
(see Supplementary Figure S3 for further details).

Distance to the median of species edges

We identified a negative influence of both the median distance to 
the range edge of any species of fruit bat and the median distance to 
any primate range edge, with spillover risk decreasing with increasing 
distance to both bat and primate range edges (AUC = 0.80, Table 1A). 

Overall, the model including only median distance to bat range edge 
performed better (AUC = 0.79) than the one including only median 
distance to primate range edge (AUC = 0.76).

Species importance in contributing to 
spillover events

The proximity to range edge of only a handful of species showed 
high relative influence scores in models of Ebola virus outbreak risk. 
Among bats, Scotonycteris bergmansi, Hypsignathus monstrosus, and 
Casinycteris argynnis all had high (>10%) relative influence scores (see 
Figure  2). Among primates, only Papio papio had a high relative 
influence (see Figure 3).

Landscape composition around outbreaks

We identified two main landscape effects driving Ebola virus 
spillover risk. The relative proportion of Rangelands had the highest 
relative influence score in this model, negatively affecting Ebola virus 
outbreak risks (Table  1B), with areas with higher frequency of 
rangelands showing less outbreak risk. The next most influential 
variable was Simpson diversity index for land use types, with high 
values associated with higher Ebola virus spillover risk (AUC = 0.88, 
Table 1B). No other type of landscape had an influence score over 
10%. Post hoc analyses also confirmed that SDI was significantly 
higher in areas that had at least one wilderness and one human-
dominated land use type (see Supplementary Table S1).

Combined model

Among the predictors that had a at least a 10% relative influence 
score in the previous models, we show that three predictors, namely 
proportion of rangelands, median distances to bat range edges and 
Simpson diversity index are the most influential drivers of Ebola spillover 
risk (AUC = 0.89, Table 1C). The only other predictor included in this 
model, median distance to primate range edge, had weak or no effect.

Discussion

Our results suggest that both biotic and land use transition zones are 
associated with heightened risk of Ebola virus spillover into human 
populations. Specifically, areas where the median distance to the range-
edges of bat species are low increased Ebola virus spillover risk 
(Table 1A). Moreover, we demonstrated that high SDI values, related to 
conversion of wild landscapes, where interactions between human and 
wildlife are limited, into high heterogeneity landscapes increases spillover 
risk. Rangelands was the land use type with the highest relative influence 
scores in both our Landscape and Combined models (Tables 1B,C).

Biotic transition zones outbreak pattern

Ebola virus outbreak risk is associated with proximity to 
overlapping range edges of both potential reservoirs (fruit bats) and 
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TABLE 1 Results of all boosted regression tree models.

A. Results for the evolutionary model

Parameter Relative influence score Directionality Model AUC

Median distance to bat species range 

edge

70.68 0.796

Median distance primate species range 

edge

29.32

B. Results for the landscape model

Parameter Relative influence score Directionality Model AUC

Rangelands frequency 58.75 0.885

Simpson diversity index 28.03

Agricultural forest frequency 4.70 Not shown

Wildlands frequency 3.22 Not shown

Croplands frequency 2.95 Not shown

Villages frequency 2.31 Not shown

Dense settlements frequency 0 Not shown

(Continued)
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secondary amplifying hosts (primates, Table 1A). Marginal plots 
also showed a clear increase in outbreak risk closer to overlapping 
range-edges (Supplementary Figure S4). While the processes 
shaping species distributional ranges are numerous, they are often 
associated with changes in habitat quality or overall niche suitability 
(46). The results we  observed could be  driven by either of two 
mechanisms. First, if the interior of species range represents areas 
most suitable to a species ecological niche, reduction in habitat 
quality near the edge of a species range could increase 
ecophysiological stress, limiting the resources available for 
allocation toward immunological defence, and potentially 
increasing both pathogen shedding and spillover risk (47). Second, 
if areas near specie range edges are near the limits of species 
ecological tolerances, Schmalhausen’s law would predict that species 
could exhibit unusual population dynamics, which in some cases 
could amplify rates of transmission and spillover risk (17). The 
relative influence score of species in models also showed clear 
phylogenetic trends (Figures  2, 3), indicating that variation in 
species traits could play an important role in determining which 
species influence spillover risk.

One hypothesis that concerns species trait variation and spillover 
risk relates to pace-of-life syndrome. The pace-of-life syndrome 
predicts that among-species or within-species physiological traits are 
optimized by natural selection along a continuum related to survival 
and rates of reproduction, establishing a trade-off mediated by the 
stability of the environment (48). Higher environmental variability at 
species range-edges could increase within-species trait variance 
through disruptive selection and require higher overall resource 
allocation to reproduction than to immune defences (48). To test this 
hypothesis, we  conducted a post hoc analysis of the relationship 
between the relative influence score of species in models and two 
reproductive traits: (1) litter size and (2) litters per year (Figures 2, 3). 
However, we found no evidence of a correlation between the relative 
influence score of species in models and their reproductive 
characteristics (see Supplementary Appendix S1 for a full description 
of the data sources, methods and results for these analyses). Based on 
these preliminary analyses, there is no tendency for species with 
faster pace-of-life syndromes (i.e., faster reproductive rates) to have 
a greater influence on outbreak risk, contrary to the predictions of 
Merril et  al. (47). Based on previous work, this is perhaps 

TABLE 1 (Continued)

C. Results for the combined model

Parameter Relative influence score Directionality Model AUC

Rangelands frequency 41.00 0.893

Median distance to bat species range 

edge

29.86

Simpson diversity index 25.65

Median distance to primate species 

range edge

3.45 Not shown

Sum of relative influence scores for each model is equal to 1. Models with high AUC values have a higher probability of correctly predicting Ebola spillover risk. Directionality represents the 
overall effect based on marginal plots (shown in Supplementary material).
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unsurprising. For example, Sundaram et al. (28) showed that, when 
all African mammals are considered, mammalian clades containing 
primary and secondary amplifying Ebola virus hosts tend to consist 
of species with relatively slow pace-of-life syndromes. However, this 
result does not rule out pace-of-life trade-offs occurring through 
within-species variation among individuals or populations. 
Phenotypic plasticity could also potentially be  a major driver of 

outbreaks dynamics for generalist parasites (49) such as Ebola virus, 
which can infect a wide variety of host species (26). For example, a 
recent review found that trait-variance in mosquito vectors is a driver 
of vector-borne diseases dynamics (50). However, we are unaware of 
any existing data sources that would have allowed us to specifically 
test for the influence of within-species trait variance or phenotypic 
plasticity in this system. Future studies could test whether changes in 
niche suitability at the edge of species range are associated with 
increased intraspecific trait variance, and whether this facilitates 
pathogen shedding due to increase in stress or selection toward a 
faster pace-of-life.

Landscape transition zones outbreak 
patterns

We show mixed evidence for the importance of anthropogenic 
land-use transition zones. We define these as areas where relatively 
undisturbed wild habitats (not exceeding a human population density 
of 4 person/km2 (51)) transition into anthropogenically altered and 
human dominated land use types. Models based on land use 
proportion patters had higher AUC scores than models that excluded 
land use patterns (Tables 1A–C). We also showed that high values of 
SDI were associated with increased spillover risk 
(Supplementary Figure S5), and areas that included both wild and 
human dominated land use types had significantly higher SDI values 

FIGURE 2

Relative influence scores of bats species in models of Ebola spillover 
risk.

FIGURE 3

Relative influence scores of primates species in models of Ebola spillover risk.
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that areas that contained only one or the other (see 
Supplementary Table S1; Supplementary Figure S5). The factor with 
the highest relative influence score in models that included land use 
variables was also proportion of rangelands (Tables 1B,C). At first 
glance, this would appear to further support the land-use transition 
zone hypothesis.

Areas identified as rangelands by the SEDAC database are 
mostly comprised of lands used by humans for livestock, albeit with 
low population densities (37). It usually includes areas with mix of 
vegetations types including grasslands, shrubs and woodlands (52). 
Rangelands are thus unique as they cannot be classified as only one 
category of land use, but rather as a mix of different vegetation types 
and land uses (37, 51), effectively acting as a gradual transition zone 
between more homogenous human-dominated or wild-dominated 
areas. We thus consider rangelands somewhat of a “transitional” 
land use type in its own right. However, surprisingly, rangelands 
appear to reduce spillover risk while higher SDI values increases it. 
Marginal plot showed spillover risk was drastically reduced in areas 
that had more than a small percentage of rangelands 
(Supplementary Figure S4), and much higher in areas where it was 
completely absent. In fact, few of the spillover localities in our data 
contained any rangelands at all (Supplementary Figure S7). Given 
that rangelands can contain a variety of habitat types, we assumed 
a priori that rangelands might increase spillover risk by bringing 
species with differing microhabitat requirements into 
close proximity.

We are unaware of any previous studies that have directly tested 
for an influence of rangelands on spillover risk. However, we speculate 
these areas exhibit reduced spillover risk due to the either (1) low 
availability of habitat suitable for any individual reservoir species, 
which presumably only occur in relatively small and disconnected 
patches or (2) reduced contact rates between reservoirs and human 
populations. This could limit the population density of species that 
depend on any particular habitat, which in combination with the 
generally low human population density of these areas (37) could 
drastically lower spillover risk. Some important Ebola virus reservoirs, 
such as forest specialist bat species (28, 53), could also be excluded 
from rangelands altogether. Far from increasing spillover risk, 
rangelands seem to act as a buffer between human inhabited areas and 
areas with high reservoir abundance. While this does further support 
the influence of altered landscapes on spillover risk, only high SDI 
areas show increased risk consistent with the mechanisms proposed 
for land-use transition zones (2, 22, 23).

We have shown that high habitat diversity, represented by high 
SDI values, are correlated with both high number of different land use 
types and a mix of land use (see Supplementary Figures S5, S6). As 
such, we believe that at least two mechanisms likely contribute to 
heightened spillover risk in areas with high SDI. First, highly 
heterogenous patterns of disturbed and undisturbed landscape are 
known to force multiple species to interact together, increasing 
outbreak risks (see review by (54)). On top of that, by increasing 
competition for resources, these highly heterogeneous landscapes 
could increase stress in animals, again heightening spillover risks. 
Second, high disturbance rates in these areas could push species to the 
edge of their ecophysiological tolerance, further increasing spillover 
risks. Habitat fragmentation and conversion from natural habitats to 
agricultural lands are a major driver of disease emergence and 

dynamics in many disease systems (2, 55). By increasing habitat 
conversion and creating disturbances, anthropogenic modifications to 
the landscape promote the presence of generalist species, which are 
often pathogen reservoirs (56). The extinction-filter theory predicts 
that generalist species will be  more tolerant to anthropogenic 
disturbances, and should be  more resilient to anthropogenic 
environmental changes, therefore more abundant in disturbed habitats 
(22, 57). We have shown that Ebola virus spillover risk is heightened 
in areas with a high diversity of habitats, supporting the hypothesis 
that habitat generalists are important in driving spillover. Intermixed 
patterns of land use have also been observed to increase spillover risk 
across a wide range of tropical and emerging infectious disease 
systems (58, 59).

Perhaps our most surprising result is the finding that rangelands 
drastically reduce Ebola virus spillover risk. It remains to be seen 
whether this pattern is peculiar to Ebola viruses, many reservoirs of 
which are forest specialists, or whether it will apply to other zoonotic 
pathogens. As a potential counter example, Rift Valley Fever is spread 
to humans by mosquitos from ruminant reservoirs (60), species 
which thrive in rangelands (61). Future studies could investigate the 
effects of rangelands for spillover and outbreak risk in other zoonotic 
pathogens. Overall, our study strongly supports the influence of both 
biotic and land-use transition zones to driving Ebola virus spillover 
risk. Future work will be needed to isolate the specific mechanisms 
among those proposed for ecosystem boundaries and transition 
zones [e.g., (2, 7, 22, 23, 47)] are most influential in this system. Our 
study also adds additional evidence that dynamics similar to those 
predicted by Schmalhausen’s law (15, 17) may influence a variety of 
disease systems (16, 18, 20). We suggest that one particularly useful 
way forward would be to investigate the predictions of Schmalhausen’s 
law in more detail with compartmental mechanistic models [e.g., (62, 
63)] where compartments near the edge of a hypothetical species 
range have less predictable transmission dynamics than 
compartments near the center. This could help refine the types of 
conditions under which Schmalhausen’s law like effects would 
be  expected to contribute to increased spillover risk or 
larger outbreaks.

Conclusion

Gaining a deeper understanding of the mechanisms that drives 
disease spillover events in transition zone is of prime importance to 
disease ecology. Taken together, our results highlight the importance 
of both biotic and land-use transition zones for predicting spillover 
risk. With humans encroaching further in the landscape, one could 
predict that humans and wildlife are bound to interact even more 
closely together. By changing the purpose of the landscape and 
increasing ecophysiological stress in already evolutionary challenging 
areas (e.g., biotic transition zones), there is the potential for an 
increase in disease outbreak risk due to unusual outbreak dynamics. 
With the current rate of emerging infectious zoonotic diseases 
potentially coming from all over the world, we bring forward a suite 
of mechanisms that are candidate explanations for causal processes 
causing severe outbreak risk in many systems. More importantly, 
we demonstrate that evolutionary mechanisms and anthropogenic 
encroachment can create synergistic effects in contributing to 
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pathogen outbreaks, and that specific types of land conversion can 
affect risk in expected ways.
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