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Background: Frailty is common in atrial fibrillation (AF) patients, but the specific 
risk factors contributing to frailty need further investigation. There is an urgent 
need for a risk prediction model to identify individuals at high risk of frailty.

Aims and objectives: This cross-sectional study aims to explore the multiple risk 
factors of frailty in older adult patients with AF and then construct a nomogram 
model to predict frailty risk.

Methods: We recruited 337 hospitalized patients over the age of 60 (average 
age: 69, 53.1% male) with AF between November 2021 and August 2022. Data 
collected included patient demographics, disease characteristics, sleep patterns, 
mental health status, and frailty measures. We used LASSO and ordinal regression 
to identify independent risk factors. These factors were then incorporated into a 
nomogram model to predict frailty risk. The model’s performance was assessed 
using the concordance index (C-index) and calibration curves.

Results: Among the AF patients, 23.1% were classified as frail and 52.2% as 
pre-frail. Six risk factors were identified: age, gender, history of coronary heart 
disease, number of chronic conditions, sleep disruption, and mental health 
status. The internal validation C-index was 0.821 (95% CI: 0.778–0.864; bias-
corrected C-index: 0.795), and the external validation C-index was 0.819 
(95% CI: 0.762–0.876; bias-corrected C-index: 0.819), demonstrating strong 
discriminative ability. Calibration charts for both internal and external validations 
closely matched the ideal curve, indicating robust predictive performance.

Conclusion: The nomogram developed in this study is a promising and practical 
tool for assessing frailty risk in AF patients, aiding clinicians in identifying those 
at high risk.

Relevance to clinical practice: This study demonstrates the utility of a 
comprehensive predictive model based on frailty risk factors in AF patients, 
offering clinicians a practical tool for personalized risk assessment and 
management strategies.
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1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia, 
affecting 2 to 4% of adults and approximately 37.57 million 
individuals worldwide (1). AF significantly heightens the risk of 
ischemic stroke by 4 to 5 times (2), doubles the likelihood of 
myocardial infarction (3), and greatly increases the risk of vascular 
dementia and Alzheimer’s disease (4). Frailty, a geriatric syndrome 
caused by the decline of physical function and physiological 
reserves, renders individuals more vulnerable to adverse events 
and stressors (5). Research indicates that neuroendocrine 
disorders, chronic inflammation, impaired energy metabolism, 
social environment, and psychological factors are involved in the 
occurrence and regression of frailty (6). Given that frailty and AF 
share similar pathogenic pathways like chronic inflammation and 
neuromodulation (3) the prevalence of frailty is notably high 
among AF patients (7). Meanwhile, frailty is strongly linked to 
increased stroke and bleeding risks in these patients (8), in 
addition, to reducing the possibility of maintaining sinus rhythm 
(9). Frailty progresses dynamically and is reversible, thus, early 
detection of risk factors and targeted interventions can help reverse 
pre-frailty and slow its advancement. Previous studies have 
highlighted various sociodemographic and clinical risk factors, 
covering age, polypharmacy, loneliness, and sleep status (10, 11). 
However, studies focusing on integrated risk factors for frailty 
specifically in AF patients are scarce. A prediction model based on 
these risk factors could more effectively identify high-risk 
individuals compared to existing diagnostic tools like the FRAIL 
scale which only provides broad categorizations (12). This model 
enables more precise and personalized prediction of frailty 
occurrence. Currently, frailty risk prediction models are widely 
used in many diseases (13). However, to our knowledge, there has 
not been a frailty risk predictive tool in the AF field. Among the 
many tools for visualization of the results of prediction models, the 
nomogram has simple and intuitive advantages it can quickly and 
personally calculate risk probabilities (14). Therefore, we aim to 
construct and validate a nomogram model to predict the risk of 
frailty in AF patients by combining multi-dimensional risk factors 
from socio-demographic, behavioral, and mental dimensions, to 
provide clinicians with a valuable tool to assess frailty risk more 
accurately in this population.

2 Methods

2.1 Study participants

This study employed a cross-sectional survey design and included 
337 older adult patients diagnosed with AF who were admitted to the 
Affiliated Hospital of Teaching in Tianjin between November 2021 
and August 2022. Among them, 242 patients enrolled from November 
2021 to April 2022 were assigned to the training group, while the 
remaining 95 patients constituted the testing group.

Participants were selected based on the following criteria: (1) a 
diagnosis of AF according to the European Society of Cardiology 
guidelines (15); (2) age 60 years and older, in line with Chinese 
geriatric criteria; (3) ability to communicate effectively and willingness 
to participate in the study. Exclusion criteria included patients with 

(1) severe mental illness that would impede cooperation, and (2) 
reversible AF caused by hyperthyroidism or electrolyte disorders.

2.2 Baseline data collection

2.2.1 Baseline data
Baseline characteristics included a range of variables: (1) 

demographic variables such as age, gender, and education level; (2) 
clinical parameters including AF type, Body Mass Index (BMI), AF 
duration, number of chronic ailments, and a history of diabetes, 
hypertension, coronary heart disease, heart failure, and ischemic 
stroke; (3) lifestyle factors such as smoking status and alcohol 
consumption; and (4) laboratory indices comprising low-density 
lipoprotein (LDL), high-density lipoprotein (HDL), high-sensitivity 
C-reactive protein (Hs-CRP), brain natriuretic peptide (BNP), left 
atrial diameter (LA), left ventricular end-diastolic diameter (LVEDD), 
and left ventricular ejection fraction (LVEF).

2.2.2 Ethics approval and consent
This study received approval from the Ethics Committee for 

Clinical Research of Tianjin Medical University General Hospital 
(approval number IRB2022-WZ-053). All procedures adhered to 
relevant guidelines and regulations. Informed consent was obtained 
from all participants.

2.2.3 Data collection method
Clinical and biochemical data were retrieved from hospital 

medical records, while general information was obtained through 
interviews and questionnaire surveys. Researchers explained the 
study’s goals and procedures to participants to secure informed 
consent. Out of 350 distributed questionnaires, 337 were completed 
and valid, resulting in a high response rate of 96.2%.

2.3 Assessment of frailty, mental health 
status, and sleep status

Frailty was evaluated using the Chinese version of the FRAIL 
scale, which incorporates five components: fatigue (over the past 
month), resistance, ambulation (ability to climb stairs or walk 200 
meters unassisted), illness (presence of ≥5 chronic conditions), and 
weight changes (weight loss>3 kg in the past 3 months). Each 
component is scored between 0 and 1Scores are classified as follows: 
robust (score of 0), pre-frail (scores of 1–2), and frail (scores of 3–5). 
The scale demonstrated strong reliability and validity, with a 
Cronbach’s α coefficient of 0.826 (12). Mental health was evaluated 
using the Mental Health Inventory-5 scale (MHI-5), a validated 5-item 
subscale of the SF-36 questionnaire which assesses both negative 
emotions such as anxiety and depression, and positive emotions like 
happiness and peace experienced over the past month (16). Scores 
were recorded using a Likert scale from 1 (“All the time”) to 5 (“None”), 
with total scores ranging from 0 to 100. Previous studies categorized 
patients into four groups based on their MHI-5 scores: 86–100, 76–85, 
53–75, and 0–52, with the86-100 serving as the reference group and 
scores ≤52 indicating severe depressive symptoms (17). The reliability 
and applicability of the MHI-5 in AF populations have been extensively 
demonstrated and utilized (18). Sleep status was assessed across three 
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fronts: sleep duration, sleep disruption, and difficulty falling asleep 
within the past month. Sleep duration quantifies actual nighttime 
sleep, sleep disruption tracks the frequency of awakenings not related 
to nocturia, and difficulty falling asleep assesses the inability to initiate 
sleep after more than 30 min of preparation.

2.4 Statistical analysis

Statistical analysis was performed using SPSS 23.0 and R 
version 4.1.3. Additional data processing utilized software packages 
including “MASS,” “Brant,” “RMS,” and “GLMNet.” These tools 
facilitated comprehensive exploration and interpretation of the 
collected data. Continuous variables were described using 
mean ± standard deviation or median (range), while categorical 
variables were presented as proportions and percentages. 
Descriptive analysis focused on elucidating the frailty status and 
socio-demographic characteristics of older adult AF patients. 
Lasso regression was employed to select variables, addressing 
multicollinearity and reducing the risk of model overfitting. 
Variables with a non-zero penalty coefficients were retained as 
candidates. Ordinal regression was then applied to identify the 
most significant candidates, which were integrated into a 
nomogram model for frailty prediction in AF patients. Ultimately, 
the C-index and the calibration curve were considered to appraise 
the discrimination and predictive ability of the model, respectively. 
The C-index is a measure used to assess the discriminative ability 
of a predictive model, specifically evaluating how well the model 
can accurately determine the likelihood of an event occurring for 
a patient. The C-index ranges from 0.5 to 1, where 0.5 indicates 
that the model’s predictive ability is no better than random 
guessing, and 1 signifies perfect predictive accuracy. A higher 
C-index reflects better predictive performance of the model. The 
C-index>0.7 indicated good discrimination.

The calibration curve is used to evaluate the calibration 
performance of the predictive model, specifically the consistency 
between the predicted probabilities and the actual probabilities of the 
events. Ideally, the calibration curve should be a straight line passing 
through (0,0) and (1), indicating that the model’s predicted 
probabilities perfectly align with the actual probabilities. Deviations 
from this straight line indicate discrepancies between the predicted 
and actual probabilities. If the curve falls below the line in a certain 
range, it suggests that the model underestimates the probability of the 
event occurring in that range; conversely, if the curve is above the line, 
it indicates that the model overestimates the event probability. p < 0.05 
was considered to be statistically significant.

3 Results

3.1 Patient characteristics and baseline 
comparison

The average age of the patients was 69 ± 6 years. A total 179 were 
male (53.1%), 30.5% had a smoking history, and 20.7% had a history 
of alcohol consumption. Among the AF patients, the prevalence rates 
were 24.7% for robust, 52.2% for pre-frail, and 23.1% for frail 
individuals (Table 1).

3.2 Screening variables

Variable selection utilized lasso regression with fourfold cross-
validation, identifying six key predictors from an initial pool of 25 
variables. The selected predictors included age, gender, history of 
coronary heart disease, number of chronic diseases, sleep disruption 
frequency, and mental health status (Figure 1). The parallel line test 
confirmed the suitability of ordinal regression with a. p-value of 0.69. 
The ordinal regression results revealed significant associations with 
frailty for the following predictors: age (66–70 years: OR, 1.0 [95% CI, 
0.51–1.92]; 71–75 years: OR, 2.28 [95% CI, 1.02–5.19]; 76–80 years: 
OR, 3.91 [95% CI, 1.43–15.86]; ≥80 years: OR, 4.13 [95% CI, 1.14–
15.86]; p = 0.005), gender (female: OR, 1.86 [95% CI, 1.06–3.31]; 
p = 0.029), history of coronary heart disease (OR, 2.46 [95% CI, 1.31–
4.67]; p = 0.004), number of chronic diseases (>4: OR, 5.08 [95% CI, 
2.57–10.36]; P < 0.001), sleep disruption <3 times/week: OR, 1.50 
[95% CI, 0.71–3.19]; ≥3 times/week: OR, 2.59 [95% CI, 1.36–4.98]; 
p = 0.012), and mental health status (76–85 points: OR, 1.45 [95% CI, 
0.74–2.86]; 53–75 points: OR, 3.00 [95% CI, 1.39–6.57]; 0–52 points: 
OR, 6.98 [95% CI, 2.40–21.30]; P < 0.001) were significantly associated 
with frailty (Table 2).

3.3 Development of a nomogram model 
for frailty prediction in AF patients

Based on the ordinal regression results, we developed a nomogram 
model to predict frailty risk among AF patients (Figure  2). Each 
predictor in the nomogram is assigned a specific score displayed at the 
top. Clinicians can calculate a patient’s total score by summing these 
values and then estimate the probability of pre-frailty and frailty by 
drawing a line from the total score to the risk axis. For instance, a 
74-year-old male with a history of coronary heart disease, a mental 
health status score of 52, more than four chronic diseases, and sleep 
disruption exceeding three times per week, would have a total score 
of 323.5, indicating a 0.99% risk for pre-frailty and an 85% risk 
for frailty.

3.4 Performance of the nomogram model

The nomogram model’s performance was assessed through 
discrimination and calibration plots. Calibration plots (Figure  3) 
demonstrated a high degree of alignment between actual and ideal 
curves, reflecting strong predictive accuracy. The C-index for the 
training group (0.821, 95% CI: 0.778–0.864; bias-corrected C-index: 
0.795) and testing group (0.819, 95% CI: 0.762–0.876; bias-corrected 
C-index: 0.819) underscored the model’s strong discriminatory power.

4 Discussion

4.1 Improved risk prediction with 
multidimensional predictors

The study developed and validated a nomogram model to predict 
the risk of frailty in AF patients. Key predictors included age, gender, 
history of coronary heart disease, number of chronic illnesses, sleep 
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TABLE 1 Basic characteristics of older adult AF patients.

Item Characteristic All patients (n  =  337) Training group 
(n  =  242)

Testing group (n  =  95)

Frail status

Robust 83 (24.7%) 55 (22.7%) 28 (29.5%)

Pre-frail 176 (52.2%) 130 (53.7%) 46 (48.4%)

Frail 78 (23.1%) 57 (23.6%) 21 (22.1%)

Age (year) — 69 ± 6 69 ± 6 68 ± 7

BMI (Kg/m2) — 25.56 ± 3.38 25.8 ± 3.4 24.85 ± 2.91

Duration (month) — 20 (7.65) 29 (9.77) 12 (3.36)

Number of chronic diseases — 3.68 ± 1.79 3.83 ± 1.78 3.32 ± 1.78

Gender
Male 179 (53.1%) 135 (55.8%) 44 (46.3%)

Female 158 (46.9%) 107 (44.2%) 51 (53.7%)

AF type
Paroxysmal 208 (61.7%) 150 (62.0%) 58 (61.1%)

Persistent 129 (38.3%) 92 (38.0%) 37 (38.9%)

Education

Primary school 49 (14.5%) 35 (14.5%) 14 (14.7%)

Junior high school 118 (35.0%) 89 (36.8%) 29 (30.5%)

Senior high school 92 (27.3%) 63 (26.0%) 29 (30.5%)

Junior college 78 (30.2%) 55 (22.7%) 23 (24.2%)

Diabetes Yes 73 (21.7%) 48 (19.8%) 25 (26.3%)

Hypertension Yes 217 (64.4%) 166 (68.6%) 51 (53.7%)

Coronary heart disease Yes 133 (39.5%) 93 (38.4%) 40 (42.1%)

Heart failure Yes 37 (11.0%) 18 (7.4%) 19 (20.0%)

Ischemic stroke Yes 88 (26.1%) 60 (24.8%) 28 (29.5%)

Smoking

No 234 (69.4%) 165 (68.1%) 69 (72.6%)

Smoking cessation 51 (15.1%) 42 (17.4%) 9 (9.5%)

Yes 52 (15.4%) 35 (14.5%) 17 (17.9%)

Drinking

No 267 (79.2%) 184 (76.0%) 83 (87.4%)

Abstinence 23 (6.8%) 22 (9.1%) 1 (1.1%)

Yes 47 (13.9%) 36 (14.9%) 11 (11.6%)

Sleep duration

>7 h 97 (28.8%) 71 (29.3%) 26 (27.4%)

5–7 h 195 (57.9%) 137 (56.7%) 58 (61.1%)

<5 h 45 (1345%) 34 (14.0%) 11 (11.6%)

Sleep disruption

None 102 (30.3%) 67 (27.7%) 35 (36.8%)

<3 times/week 81 (24.1%) 125 (51.7%) 23 (24.2%)

≥3 times/week 154 (45.7%) 117 (48.3%) 37 (38.9%)

Difficulty falling asleep
No 132 (39.2%) 85 (35.1%) 47 (49.5%)

Yes 205 (60.8%) 157 (64.9%) 48 (50.5%)

LDL (mmol/L) – 2.68 ± 0.86 2.66 ± 0.89 2.74 ± 0.79

HDL (mmol/L) – 1.12 (1.01, 1.30) 1.12 (1.02, 1.29) 1.13 (0.96, 1.35)

Hs-crp (mg/L) – 1.42 (0.75, 2.80) 1.42 (0.73, 2.54) 1.43 (0.82, 3.67)

BNP (pg/ml) – 143 (71,282) 139 (70,273) 164 (76,314)

LA (mm) – 42.21 ± 5.55 42.11 ± 5.43 42.48 ± 5.90

LVEDD (mm) – 48.08 ± 4.16 48.08 ± 4.03 48.06 ± 4.53

LVEF (%) – 62 (60.63) 62 (60.63) 62 (59.63)

Mental health status (points) – 74.60 ± 16.62 75.68 ± 15.62 72.75 ± 16.87

Basic data are expressed as Mean ± SD or Median (IQR) or Number (%). *p < 0.05. LA, left atrial diameter; LV, left ventricular end-diastolic diameter; LVEF, Left ventricular ejection fraction; 
BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; Hs-crp, high-sensitivity c-reactive protein; BNP, brain natriuretic peptide, troponin.
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FIGURE 1

Variables selection by using least absolute shrinkage and LASSO regression. (A) Cross-validation plot for the penalty term: The 2 dashed lines 
correspond to two special lambda values: lambda. Min(left) and lambda. l SE (right). We ultimately selected the six variables associated with the 
lambda.1 SE value. (B) Values of the penalty parameter: The curve in the figure represents the change trajectory of each independent variable 
coefficient, the vertical coordinate is the value of the corresponding coefficient of the independent variable, the lower abscissa is log(λ), and the upper 
abscissa is the number of variables with non-zero coefficients in the model at this time.
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disturbances, and mental health status emerged as independent 
predictors. Both internal and external validations consistently 
affirmed the model’s robust discriminatory and calibration capabilities. 
The prevalence of pre-frailty and frailty in our AF cohort were 52.2 
and 23.1%, respectively—aligned closely with meta-analytic findings 
(pre-frailty: 39.7%, range: 29.9–50.5%; frailty: 35.0%, range: 26.1–
45.1%) (19). Comparatively, the prevalence of frailty in Chinese 
community residents is lower, reported at 9.9%, with a range of 2.3 to 
12.7% (20). The higher frailty rates in the AF cohort could be attributed 
to shared underlying pathogenic mechanisms (3). Frail AF patients 
exhibited elevated risks of all-cause mortality, ischemic stroke, and 
bleeding (19). Hence, identifying risk factors and constructing 
predictive models are imperative for assessing frailty risk in the AF 
population. Prior studies enrolled diversiform factors such as dietary 
habits, age, exercise habits, and social support into frailty risk models, 
which demonstrated that incorporating comprehensive predictors is 
more effective than relying solely on physiological indicators, given 
that frailty results from multi-systems working together (21).

Our study’s innovation lies in integrating diverse risk factors 
encompassing demographic, sociological, lifestyle, mental health, and 
sleep-related parameters. This nomogram model is user-friendly, 

enabling clinicians to swiftly compute patient frailty risks with 
intuitive ease.

4.2 AF patients with advanced age, female, 
and various chronic diseases are more 
prone to frailty

Aging leads to differential declines in physiological systems, 
notably marked changes in skeletal muscle. Firstly, there is a reduction 
in muscle contractile tissue and an increase in non-contractile tissue, 
such as fat and connective tissues (22). Secondly, skeletal muscle 
experiences a decrease in capillary density and oxidative capacity (23). 
Even with high-protein diets or physical exercise, muscle protein 
synthesis rates decline (24). Concurrently, degeneration of the basal 
ganglia affects motor planning, thereby compromising motor control 
(22). These changes contribute to decreased muscle quantity and mass, 
culminating in reduced muscle strength (24). Physical activity has 
been shown to enhance muscle strength and attenuate frailty 
progression (25). However, the relationship between AF and exercise 
is nuanced; long-term endurance exercise may increase AF risk in a 
J-shaped pattern, while mild to moderate physical activity provides 
protection against AF (26). Gender differences exist in the association 
between exercise and AF; moderate to vigorous exercise reduces AF 
risk in women, whereas vigorous exercise increases risk in men (27). 
Clinicians should tailor exercise recommendations to the type, 
intensity, and duration of activity and address psychological barriers 
like kinesiophobia that hinder physical activity (28). Older adult AF 
patients are particularly vulnerable to multimorbidity including heart 
failure, stroke, and coronary artery disease. In our study, 30.2% of 
older adult AF patients exhibited four or more concurrent diseases, 
exacerbating frailty progression under chronic stress. Notably, AF 
patients with coronary artery disease demonstrated a 2.4-fold higher 
frailty risk.

The challenge of managing multiple chronic conditions often 
leads to polypharmacy, which increases the risk of adverse drug effects 
and, consequently, frailty (29). Frailty itself also increases the risk of 
drug-related harm (30). Thus, careful medication management, 
including appropriate dosages and schedules, is essential for older 
adult AF patients.

Furthermore, we identified that women had a 1.86-fold higher 
frailty risk compared to men. Older women exhibit lower skeletal 
muscle mass and higher fat mass relative to older men (31), partly due 
to postmenopausal estrogen depletion (32). Cultural and lifestyle 
choices, such as engaging in high-intensity household activities 
without sufficient structured exercise, may also contribute to 
functional impairments and frailty progression among older women, 
particularly in Chinese populations (33).

4.3 AF patients with sleep disruption are 
more prone to frailty

Studies indicate a high prevalence of sleep issues among AF 
patients (34). Our research demonstrates a positive correlation 
between sleep disruption and increased frailty, possibly 
exacerbated by the symptom burden associated with AF (35). 
During the night, with the activation of the vagus nerve, the 

TABLE 2 Ordinal regression analysis of frailty in older adult AF patients.

Item P OR

OR (95%CI)

Lower 
limit

Upper 
limit

Age

60–65

0.005*

– – –

66–70 1 0.51 1.92

71–75 2.28 1.02 5.19

76–80 3.91 1.43 15.86

≥80 4.13 1.14 15.86

Gender

Male
0.029*

– – –

Female 1.86 1.06 3.31

History of coronary heart disease

No
0.004*

– – –

Yes 2.46 1.31 4.67

Number of chronic diseases

≤4
<0.001*

– – –

>4 5.08 2.57 10.36

Sleep disruption

No

0.012*

– – –

<3 times/week 1.5 0.71 3.19

≥ 3 times/week 2.59 1.36 4.98

MHI-5 score

86–100

<0.001*

– – –

76–85 1.45 0.74 2.86

53–75 3 1.39 6.57

0–52 6.98 2.4 21.3

*P < 0.05. OR, odds ratio.

https://doi.org/10.3389/fpubh.2024.1434244
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lin et al. 10.3389/fpubh.2024.1434244

Frontiers in Public Health 07 frontiersin.org

incidence of symptoms such as palpitations and dyspnea increases. 
In addition, reduced sensory stimulation from the environment 
leads patients to be more sensitive to symptoms. These effects stack 
up, leading to an increased risk of sleep disruption. Sleep 
disruption causes dysfunction of the hypothalamic–pituitary–
adrenal axis and gonadal axis, decreased cortisol responsiveness, 
and decreased levels of growth hormone and insulin-like growth 
factor-1 (36), which are crucial in frailty development. Another 
study noted a significant association between sleep duration and 
frailty (37). However, this study did not obtain the same effect 
which may be related to only considering the night sleep time and 
ignoring the factors like napping. To mitigate these effects, 
healthcare providers should advise patients to reduce electronic 
device use before bedtime, use relaxing music, and optimize their 
sleep environment.

4.4 AF patients with negative mental health 
status are more prone to frailty

Our investigation underscores a negative correlation between 
mental health status and frailty in AF patients. Those scoring ≤52 
on the MHI-5 scale faced a 6.4-fold higher frailty risk, echoing 
findings by Uchmanowicz I  (38). Negative mental states trigger 
neuroimmune responses that increase inflammatory cytokine 
release, leading to muscle mass and strength decline and thus 

promoting frailty. These inflammatory processes additionally 
impact brain regions managing emotions like fear and anxiety, 
exacerbating conditions such as anxiety and depression (39). A 
meta-analysis confirmed that depression increased frailty prevalence 
by fourfold, while frailty also significantly raised depression 
incidence. (40). Clinical strategies should prioritize assessing mental 
health in older adult AF patients and recommending interventions 
such as aromatherapy and meditation for emotional stabilization.

4.5 Strengths and limitations

This study offers valuable insights into the factors influencing 
frailty in AF patients and has developed a predictive model for frailty 
risk. This model enables healthcare providers to assess frailty risk 
more accurately. However, the study has limitations, including a small 
sample size and the absence of large-scale multicenter trials. 
Furthermore, frailty was assessed using subjective Frail scales rather 
than objective measures such as grip strength and stride length. The 
focus on hospitalized patients also introduces potential selection bias.

5 Conclusion

Frailty emerges as a prevalent condition among older adult 
patients with AF. Factors such as age, gender, history of coronary 

FIGURE 2

Nomogram for estimating frailty probability in older adult patients with AF. This nomogram includes age, gender, number of chronic diseases, history 
of coronary heart disease, sleep disruption, and mental health status. The horizontal scale labeled “Points” reflects the impact of each variable. Draw a 
line up to the points axis for each variable, The total score was calculated by summing all the variables. Then, the probability of pre-frail and frail was 
acquired by drawing a line down from the total points axis to the horizontal axis “Risk of pre-frail” and “Risk of frail” below.
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heart disease, comorbidity burden, sleep disturbances, and mental 
health status significantly influence frailty development in AF 
patients. A nomogram model incorporating these significant risk 
factors demonstrates robust predictive and discriminative capabilities.
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