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Background: The amount and quality of foods consumed not only impact on 
individual health, as reflected in body composition, but they could influence on 
greenhouse gas emissions and then, on environment.

Aim: This study aims to assess the relationship between the body composition 
and the CO2 emissions resulting from the dietary choices of an adult population.

Design: A cross-sectional study on baseline data from 778 participants aged 
55–75 years old, with metabolic syndrome (MetS) as part of the PREDIMED-Plus 
study.

Methods: Food intake was registered using a validated semi quantitative 143-
item food frequency questionnaire. The amount of CO2 emitted was calculated 
using data from the Agribalyse® 3.0.1 database. Anthropometry (body weight, 
height, and waist, and hip circumference, and body mass index) was determined 
by usual measurements, and body composition (fat mass, visceral fat, muscular 
mass, fat free mass, and total body water) were assessed by bioimpedance.

Results: CO2 emissions were linearly and positively associated with weight, waist 
circumference, visceral fat, fat free mass, total body water and energy intake.

Conclusion: Body composition is associated with dietary CO2 emissions. The 
higher total body water, fat free mass, and body weight, the higher the dietary 
CO2 emissions were, following a linear relationship.

Clinical trial registration: http://www.isrctn.com/ISRCTN89898870, ISRCTN 
89898870.
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1 Introduction

The increased greenhouse gas emissions (GHGEs) mostly contribute to the climate change 
and global warming, which are the main effects resulting from this GHGEs increase in the 
atmosphere, specifically from the rise in carbon dioxide (CO2), which is the main contributor 
(1). A significant portion of the generation of these GHGEs is of human origin. The human 
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metabolic activity contributes to GHGEs by two ways: respiration and 
food intake. First, respiration cyclically involves the intake of oxygen 
(inspiration) and the release of carbon dioxide (expiration). Oxygen 
intake is used in oxidation reactions that release energy, yielding 
carbon dioxide CO2. Second, the energy expenditure of a human 
being on performing a specific task is compensated by a food intake 
of proportional energy (2). The choices we make when selecting the 
type of food to meet our energy needs have a very significant impact 
on the environment and the CO2 emissions generated, as the current 
food system contributes to this environmental impact (3–5). The food 
choices we make also affect our health and body shape (6). Therefore, 
it would be interesting to explore how the diet can contribute in a dual 
sense to both the health of the population and environmental 
well-being.

To identify diets that support individual health and environmental 
sustainability is the first step in developing strategies to promote 
sustainable consumer behaviors (3). Previous findings pointed out that 
around 16% of the US population changed their diets to align with 
recommendations for environmental sustainability (7). Diets consumed 
by Spanish (8), British (9), or Lebanese (10) people showed that GHGEs 
was lower in diets following the Mediterranean-style diet. The same 
was described for British people following the DASH diet (10, 11).

In addition to the relationship between health and diet, there is a 
special connection between body composition and diet. Body 
composition refers to the proportion of fat, muscle, bone, and other 
tissues that make up the body. It provides valuable insights into 
individual’s health status, offering a more precise understanding of 
physical condition than body weight alone. The connection between 
dietary intake and body composition is evident in how diet can affect 
energy consumption, acquired nutrients, and consequently, the 
distribution of fat and muscle mass in the body (12). This interrelation, 
in turn, is connected to environmental impact, as dietary choices 
influence food production and distribution, contributing to GHGEs (13).

The assessment of body composition emerges as a crucial aspect 
in evaluating nutritional status, providing pertinent data for detecting 
potential nutrition-related diseases and evaluating nutritional 
interventions (12). Anthropometry is based in non-invasive 
quantitative body measurements such as height, weight, head 
circumference, body mass index (BMI), body circumferences (waist, 
hip, and limps), and skinfold thickness (14). Body compartments such 
as fat, bone and muscle mass can be  predicted from these 
anthropometric measurements (15).

Body composition measures may be  inherently linked to 
environmental impact due to the direct influence of dietary choices 
and consumption patterns on both aspects (16). The amount and 
quality of foods consumed not only impact on individual health, as 
reflected in body composition, but also, they could exert substantial 
influence on GHGEs and, consequently, on environmental impact. 
This adverse situation could be diminished by changing dietary habits 
(17). The adoption of more sustainable diets can not only promote a 
healthy body composition, but they may be also associated with lower 
CO2 emissions (18–21).

Understanding and exploring the connection between body 
composition and environmental impact can shed light on the 
importance of adopting sustainable dietary practices for both 
individual health and environmental preservation. To fill this gap in 
the current literature, this current study aims to assess the relationship 
between the body composition and the CO2 emissions resulting from 
the dietary choices of an adult population.

2 Methods

2.1 Design

The current study was a cross-sectional analysis carried out on 
several baseline participants of the PREDIMED-PLUS trial, an eight-
year, parallel-group, randomized trial conducted in several regions in 
Spain which aimed to see the effect of an energy-restricted traditional 
Mediterranean Diet combined with physical activity on cardiovascular 
disease morbimortality. Specific information related to the study 
protocol can be  found elsewhere (22) and at http://predimedplus.
com/. The trial was registered by The International Standard 
Randomized Controlled Trial (ISRCT)1 with the number 
89898870 in 2014.

2.2 Participants, recruitment, and ethics

Inclusion criteria of participants were to be 55–75-year-old, to 
have a body mass index (BMI) 27–40 kg/m2 and had to meet three or 
more criteria of the metabolic syndrome according to the International 
Diabetes Federation and the American Heart Association/National 
Heart, Lung, and Blood Institute (23). A number of 1,077 participants 
were initially assessed for eligibility. The final analysis in the present 
study was done with 778 participants, which had complete data on 
body composition, and on food consumption. Figure 1 shows the 
eligible participant’s flow-chart.

Ethical committees based on the ethical standards of the 
Declaration of Helsinki approved the study protocol for all the 
participating institutions, including the approval from the Ethics 
Committee of the Balearic Islands (ref. IB 2251/14 PI; Feb 26, 
2014). All participants provided an informed written consent 
before participation.

2.3 Assessment of dietary intake

To assess the food consumed and the usual dietary intake of 
participants, a validated semi quantitative 143-item food frequency 
questionnaire (24–26) was administered by trained dietitians to assess 
usual dietary intakes of participants. Energy and nutrient intakes were 
calculated using a computer program based on available information 
from Spanish food composition tables (27, 28). The results determined 
the amount of food (in grams) and the energy intake (in kcal) 
consumed for each participant per day.

1 http://www.isrctn.com/ISRCTN89898870

Abbreviations: BIA, bioimpedance analysis; BMI, body mass index; CO2, dietary 

carbon dioxide; ELR-diet, EAT-Lancet reference diet; GHGEs, greenhouse gas 

emissions; MetS, metabolic syndrome.
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2.4 Calculation of CO2 emissions

Agribalyse® 3.0.1 database was used to calculate GHGEs. It was 
developed collaboratively by the French Agency for the 
Environment and Energy Management (ADEME) in conjunction 
with the CIQUAL French food composition table (29, 30). 
Ecoinvent® also cooperated with Agribalyse® 3.0.1, contributing 
with data for non-agricultural processes such as electricity and 
transport, as well as imported production data. This joint effort 
aimed to capture the production and market conditions prevalent 
in European countries. The project started in 2009, with the 
database being officially published in 2021.

The Agribalyse® 3.0.1 database serves as a valuable resource for 
reference data on the environmental impacts associated with 
agricultural and food products. It follows a comprehensive Life 
Cycle Assessment (LCA) methodology, breaking down the food 
chain into distinct stages. These stages encompass agricultural 
production, transportation, processing, packaging, distribution, 
retailing, consumer preparation, and disposal of packaging, with 
the exclusion of home wastage and transport from retail to 
households. The methodology adheres to internationally 
recognized LCA standards, including ISO 14040 and ISO 14044 
(31, 32), LEAP guidelines (33), and the product environmental 
footprint (PEF) framework (34). Environmental indicators are 
reported per kilogram of product, yielding a total of 14 indicators 
with a single-score environmental footprint.

The amount of GHGEs from the dietary intake was calculated 
according to calculated grams of food consumed. GHGEs were 
calculated in terms of kg of carbon dioxide equivalents (CO2eq), 
applying the following formula for each specific food item:

GHGEs = ((grams of each reported food) x (kg of CO2eq emitted 
for that specific food)) / (1,000 grams of the corresponding food)

Subsequently, the sum of the total CO2eq emissions for the entire 
diet was determined.

2.5 Sociodemographic characteristics

Sociodemographic characteristics information such as sex, age, 
and educational level (primary school, secondary school, college 
school technician or bachelor’s degree) were self-reported 
by participants.

2.6 Anthropometric and body composition 
measurements

Anthropometric measurements were obtained, and BMI was 
calculated with the standard formula: Weight in kilograms divided by 
the square of height in meters (kg/m2). Registered dieticians measured 
height two-times with the participant’s head maintained in the 
Frankfurt Horizontal Plane using a wall-mounted stadiometer (Seca 
213, HealthCheck Systems, Brooklyn, NY). Both waist and hip 
circumference were measured twice with an anthropometric tape, the 
average value of each measurement was used in the analysis. Waist 
circumference was measured halfway between the last rib and the iliac 
crest and hip circumference was measured around the widest part of 
the hip.

Body weight (kg), fat mass (kg), muscular mass (kg), fat free mass 
(kg) total body water (kg), and visceral fat rating (being 13 the cut-off 
point between low and high values) were assessed using a Segmental 
Body Composition Analyzer for impedance testing, BIA (Tanita 
MC780P-MA P, Tanita, Tokyo, Japan). Percentages were also 
calculated for all measures except for visceral fat, which was assessed 

FIGURE 1

Flow chart of eligibility of participants.
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in absolute terms. To measure body composition, participants needed 
to be in a standing position and wear light clothes and no shoes (0.6 kg 
was subtracted for their clothing). The BIA is based on the application 
of a weak electrical current through the human body to characterize 
the conductive and nonconductive tissue and fluid components of the 
body. The applied current flows in different rates depending on the 
body composition: It is well-conducted by water and electrolyte-rich 
tissues (blood and muscle) but is poorly conducted by fat, bone, and 
air-filled spaces (35). Fat mass, muscular mass, fat free mass and total 
body water measurements were calculated in kg and then divided by 
the squared size (m2) to adjust by height.

2.7 Statistics

SPSS statistical software package version 27.0 (SPPS Inc., Chicago, 
IL, USA) was used to perform the analysis. The quantity of CO2eq 
emitted was separated in quintiles from the group that emitted the 
lowest emissions to that emitted the highest: Quintile 1 (Q1); ≤4.3 kg 
CO2, quintile 2 (Q2); 4.4–5.1 kg CO2, quintile 3 (Q3); 5.2–5.8 kg CO2, 
quintile 4 (Q4); 5.9–6.7 kg CO2 and quintile 5 (Q5); >6.7 kg CO2. 
Prevalence data was expressed as simple size and percentage. Data was 
shown as mean and standard deviation (SD) for continuous variables 
and UNIANOVA was calculated adjusted by sex for anthropometric 
and body composition variables. To measure linear correlation, 
Pearson correlation was calculated between quintiles of CO2 emissions 
and anthropometric and body composition variables. Linear 
regression analysis was done for those variables that showed 
significance on the Pearson analysis and scatter plot graphics were 
also presented.

3 Results

Characteristics of the sample are showed in Table 1. Table 2 shows 
parameters of body composition distributed by sex according to CO2 
emissions distributed in quintiles, and presented as the whole sample, 
and by sex. Body weight, waist circumference, hip circumference, fat 

mass (in kg), fat free mass (in kg), total body water (in kg), and 
visceral fat were directly associated to CO2 emissions quintiles. Table 2 
also shows a significative correlation between energy intake and CO2 
emissions. The higher the body composition values mentioned and 
energy intake, the higher the CO2 emissions were.

The highest values of most of body composition parameters (body 
weight, waist circumference, hip circumference, fat mass, fat free mass, 
visceral fat, and energy intake) were found in the last quintile (highest 
CO2 emissions) in both sexes.

Table 3 shows correlations between quintiles of CO2 emissions 
and body composition. The correlation between energy intake and 
quintiles of CO2 emissions is also shown. Quintiles of CO2 emissions 
were linearly and positively correlated (p < 0.001) with weight 
(r = 0.149), waist circumference (r = 0.099), fat free mass (r = 0.198), 
total body water (r = 0.495), visceral fat (r = 0.118), and energy intake 
(r = 0.629).

Table 4 shows R and R2 values of the linear analysis between total 
CO2 emissions and body composition. R2 values were 0.016 (weight), 
0.005 (waist circumference), 0.030 (fat free mass), 0.226 (total body 
water), 0.011 (visceral fat) and 0.500 (energy intake), all with high 
significance level.

Figure 2 shows scatter plot graphics and regression lines of the 
total CO2 emissions and weight, waist circumference, fat free mass, 
total body water, visceral fat, and energy intake. The data of all 
parameters analyzed show an uphill pattern from left to right, which 
indicates a positive linear relationship between X values (weight, waist 
circumference, fat free mass, total body water, visceral fat, and energy 
intake) and Y values (total CO2 emissions).

4 Discussion

The current study showed that individuals with higher energy 
intake, and correspondingly higher total body water (kg), fat free mass 
(kg), and body weight (kg), have higher dietary CO2 emissions than 
individuals with lower energy intake and smaller body size, following 
a linear relationship.

Body composition reflects the nutritional and health status (36, 
37). Measuring body compartments, such as fat mass, visceral fat, and 
muscle, mass allows for a better diagnosis of nutritional status (38). 
The current results showed higher values of fat free mass and total 
body water as dietary CO2 emissions increased. Higher fat-free mass 
is advantageous with aging and is protective against sarcopenia (39), 
but only if this fat-free mass is attributable to muscle mass. Fat-free 
mass comprises muscle, organs, bones, and body water (40). The 
current results for muscular mass and fat-free mass showed trends in 
opposite directions across quintiles, which may seem contradictory. 
This discrepancy arises because, in the older adult population, data on 
fat-free mass can be misinterpreted due to increased water retention 
in older individuals (41), not due to an increase in muscle mass. It is 
important to note that the current findings showed how the increase 
in fat-free mass may be primarily attributed to the rise in total body 
water, rather than being attributed only to a rise in dietary 
CO2 emissions.

Body composition, referring to the distribution of tissues like fat 
and muscle, tends to vary between sexes due to biological and 
hormonal differences. Generally, women have a slightly higher body 
fat percentage, while men typically have more muscle mass. These 

TABLE 1 Characteristics of the sample.

n (%)

Total 778

Sex
Men 418 (53.7)

Women 360 (46.3)

Highest school level 

completed

Bachelor’s degree 187 (24.0)

College School Technician 55 (7.1)

Secondary School 270 (34.7)

Primary School 266 (34.2)

Mean (±SD)

Age (yr) 64.6 (5.2)

Body weight (kg) 88.2 (13.4)

BMI (kg/m2) 32.8 (3.5)

Energy intake (Kcal/day) 2,477 (746)

SD, Standard deviation; BMI, Body Mass Index.
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TABLE 2 Body composition measurements distributed by sex according to CO2 emissions (quintiles).

Q1 = 155
(<4.3 kg CO2)

Q2 = 156
(4.4–5.1 kg CO2)

Q3 = 156
(5.2–5.8 kg CO2)

Q4 = 156
(5.9–6.7 kg CO2)

Q5 = 155
(>6.7 kg CO2)

p

Body weight (kg) 86.4 (13.8) 86.4 (12.7) 87.5 (13.2) 88.9 (13.2) 92.2 (13.2) 0.002

Men 94.1 (13.6) 93.3 (11.1) 94.8 (11.2) 94.5 (11.2) 96.2 (12.1)

Women 81.3 (11.4) 78.6 (9.7) 80.1 (10.7) 80.8 (11.8) 84.1 (11.8)

Waist circumference (cm) 108.9 (10.5) 108.3 (9.7) 108.8 (10.2) 109.1 (10.1) 112.1 (9.7) 0.002

Men 112.5 (9.3) 112.3 (8.8) 113.2 (9.6) 113.0 (9.1) 114.2 (9.2)

Women 106.6 (10.5) 103.9 (8.7) 104.4 (8.8) 103.5 (8.5) 108.0 (9.4)

Hip circumference (cm) 113.0 (9.6) 110.5 (8.7) 111.6 (9.1) 110.9 (8.1) 112.5 (9.4) 0.017

Men 109.6 (7.6) 108.6 (7.4) 110.1 (8.0) 109.3 (6.8) 110.5 (8.2)

Women 115.2 (10.2) 112.5 (9.6) 113.1 (10.0) 113.3 (9.1) 116.6 (10.5)

BMI (kg/m2) 33.4 (3.5) 32.4 (3.3) 32.7 (3.6) 32.5 (3.2) 33.2 (3.7) 0.053

Men 32.7 (3.3) 32.2 (3.0) 32.6 (3.4) 32.3 (3.0) 32.8 (3.6)

Women 33.8 (3.6) 32.7 (3.7) 32.8 (3.8) 32.6 (3.4) 34.0 (3.8)

Fat mass (kg) 32.7 (8.1) 32.1 (7.2) 32.7 (8.2) 31.7 (8.1) 33.0 (8.2) 0.003

Men 29.1 (7.2) 30.1 (7.0) 30.2 (7.5) 29.2 (6.9) 31.0 (7.4)

Women 35.1 (7.8) 34.3 (6.7) 35.4 (8.0) 35.5 (8.2) 37.5 (8.3)

Fat mass (%) 38.5 (7.6) 37.8 (7.4) 37.6 (7.8) 36.1 (7.9) 36.0 (7.6) 0.170

Men 31.2 (4.4) 32.2 (4.6) 31.7 (4.7) 31.0 (4.8) 32.0 (4.1)

Women 43.5 (4.8) 43.8 (4.6) 43.8 (5.1) 43.9 (5.0) 45.1 (5.7)

Muscular mass (kg) 37.3 (14.6) 37.0 (15.3) 36.6 (15.4) 38.8 (17.1) 34.1 (15.7) 0.411

Men 41.1 (16.4) 43.1 (16.0) 41.7 (15.9) 44.3 (17.4) 39.6 (15.4)

Women 34.4 (12.3) 31.2 (12.1) 31.4 (13.0) 29.1 (11.5) 23.5 (9.8)

Muscular mass (%) 42.6 (16.8) 38.5 (16.8) 37.8 (16.1) 36.7 (14.7) 35.7 (17.4) 0.169

Men 41.5 (17.0) 40.2 (17.5) 39.1 (15.9) 38.5 (14.5) 41.1 (18.2)

Women 43.6 (16.7) 36.8 (16.1) 36.3 (16.4) 33.5 (14.7) 24.8 (8.8)

Fat free mass (kg) 52.3 (11.1) 53.1 (11.2) 54.4 (10.9) 56.5 (11.7) 58.7 (11.3) 0.003

Men 63.4 (7.6) 62.3 (6.5) 63.7 (5.7) 64.2 (7.4) 64.6 (6.7)

Women 44.8 (5.3) 43.2 (5.1) 44.6 (4.7) 44.7 (5.6) 45.1 (7.1)

Fat free mass (%) 61.4 (7.6) 62.1 (7.6) 62.3 (7.8) 63.8 (7.9) 63.9 (7.6) 0.169

Men 68.9 (4.3) 67.7 (4.6) 68.2 (4.7) 68.8 (4.8) 67.9 (4.1)

Women 56.4 (4.8) 55.9 (5.0) 56.1 (5.1) 56.1 (4.9) 54.8 (5.7)

Total body water (kg) 36.7 (4.7) 35.3 (4.0) 40.6 (7.6) 44.7 (6.9) 44.6 (9.1) 0.006

Men 42.5 (4.0) 42.5 (1.7) 46.3 (2.2) 49.4 (3.5) 47.0 (6.8)

Women 34.4 (2.5) 33.7 (2.1) 32.0 (1.1) 37.0 (3.1) 28.0 (0.0)

Total body water (%) 45.1 (4.7) 46.1 (4.9) 46.1 (5.0) 46.1 (4.1) 47.8 (4.3) 0.079

Men 50.9 (2.5) 49.6 (3.7) 50.4 (2.8) 48.6 (2.3) 49.5 (3.1)

Women 42.2 (2.4) 42.9 (3.5) 42.3 (3.1) 41.4 (1.8) 41.4 (1.9)

Visceral fat (units) 15.2 (3.8) 15.7 (4.1) 15.7 (4.3) 15.8 (3.9) 16.9 (4.2) 0.034

Men 18.1 (3.3) 17.9 (3.5) 18.0 (3.8) 17.7 (3.1) 18.4 (3.9)

Women 13.1 (2.5) 13.3 (3.4) 13.1 (3.2) 12.7 (3.0) 13.6 (2.3)

Energy intake (kcal/day) 1843.9 (439.7) 2187.6 (433.6) 2374.7 (492.2) 2759.8 (547.1) 3219.8 (863.1) <0.001

Men 1879 (455) 2,276 (436) 2,391 (511) 2,862 (545) 3,315 (940)

Women 1821 (428) 2090 (410) 2,358 (473) 2,612 (516) 3,026 (641)

Values are presented in mean (SD). BMI, Body Mass Index; CO2, Carbon dioxide. Q1: Quintile 1. Q2: Quintile 2. Q3: Quintile 3. Q4: Quintile 4. Q5: Quintile 5. SD, Standard deviation. 
Differences between groups were tested by UNIANOVA adjusted by sex.
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variations, are influenced by genetic, hormonal, and metabolic factors, 
contribute to differences in appearance and body composition 
between men and women (42). When the current results were 
analyzed by sex, changes between groups vary slightly depending on 
it, and the overall trend remained consistent with the combined data 
for both sexes, except for total body water. In the case of women, total 
body water decreased as CO2 increased. This phenomenon seems to 
be  attributed not to an increase of muscle mass but rather to the 
age-related increase in total body fat. The rise in subcutaneous fat 
accumulation is especially prevalent in women, while visceral fat tends 
to increase more in men (39).

Current findings also showed a close relationship between energy 
intake and dietary CO2 emissions. This underscores the significance 
of energy intake on both body composition and environmental 
impact, and it is consistent with previous studies showing that the 
relationship between diet quality and GHGEs becomes more apparent 
when considering energy intake (9). The impact of energy intake on 
dietary CO2 emissions was also considered in previous studies 
evaluating dietary characteristics (14, 43, 44). Our current research 
shows that as the dietary CO2 emissions rose, there was a 
corresponding increase in energy intake, which is aligned with an 
increase in body weight, visceral fat, and waist circumference.

The current findings on the association of body composition with 
the environmental impact of a diet is consistent with findings observed 
in other studies (45–47). The EAT-Lancet Reference Diet (ELR-diet) 
found inverse associations between higher adherence to ELR-diet and 
anthropometric markers such as body weight, waist circumference, 
BMI, fat free mass index, and body fat percentage. Higher ELR-diet 
adherence was also inversely associated with lower environmental 
impact, measured in GHGEs and land used (47). Another study 
identified that enhancing awareness and nutritional education could 
serve as a strategy to simultaneously improve both sustainability and 
anthropometry toward healthy values. The research revealed that as 
sustainable consumption behaviors and food literacy increased, there 
was a corresponding reduction in BMI, body weight, and waist-to-hip 
ratio (48). The observed decrease in visceral fat among current 
participants following a lower dietary CO2 may be attributed to a key 
characteristic of a sustainable diet: a decrease in the consumption of 
animal products and an increase in the intake of plant-based products 
(49). Consistent with these findings, a previous study pointed out that 

a plant-based diet showed a reduction in visceral adipose tissue (50). 
A high GHGEs diet typically consists of frequent consumption of red 
and processed meats, dairy products, and energy-dense, ultra-
processed foods (8, 44, 51). In contrast, transitioning to a low GHGEs 
diet involves reducing these items and incorporating more plant-
based foods, such as legumes, whole grains, fruits, vegetables, and 
nuts. These dietary patterns align closely with the principles of the 
Mediterranean diet, which emphasizes plant-based ingredients and 
minimal animal products, contributing to both environmental 
sustainability and improved health outcomes (18, 20, 43).

The increase of adipose tissue registered in obesity may be also 
related to dietary CO2 emissions. Previous studies showed that obesity 
is associated with around 20% greater GHGEs relative to the normal 
weight state, because of increased oxidative metabolism due to greater 
metabolic demands. Globally, obesity contributes to an extra around 
700 megatons per year of CO2 equivalent, which is about 1.6% of 
global GHGEs (52).

It has been also pointed out that environmental factors such as diet, 
activity, stress, and environmental pollution could modify some genes, 
leading to increased body fatness (53). Environmental contaminants were 
also associated with metabolic disruptions, becoming a contributing 
factor to changes in body composition (54). Controlling some of these 
factors with a healthy, and sustainable diet could be a possible solution to 
avoid those unwanted body composition changes.

It has been estimated that a 10 kg weight loss of all obese and 
overweight people would result in a decrease of 49.560 Mt. of CO2 per 
year, which would equal to 0.2% of the CO2 emitted globally in 2007. 
This reduction could help meet the CO2 emission reduction targets 
and would have a great benefit to the global health (55).

Therefore, moving toward healthier lifestyles would improve the 
body composition and, at the same time, would alleviate the current 
environmental detrimental situation, which is affecting the planetary 
health (56–58).

4.1 Strengths and limitations

The current paper is a new source of information, since it allows to 
consider anthropometric measurements under an environmental 
perspective, and not only under a healthy point of view. The huge sample 
size of the PREDIMED-Plus trial is the very first strength of this paper. A 
validated food frequency questionnaire was used by experimented 
dietitians to record dietary intake precisely, which is the second strength. 
Grams consumed by each participant were summed and used to calculate 
GHGEs in kg of CO2eq, taking data from AGRIBALYSE database, which 
considers all the processing steps, and would be considered as the third 
strength. Measuring anthropometrics in duplicate represents a third 
strength to avoid possible measuring errors, and the use of the 
bioimpedance analysis is a reliable technic in research, since it is done 
within a specific action protocol. Body composition measurements (fat 
mass, muscular mass, fat free mass and total body water, measured in kg) 
were adjusted by height (squared size in m2), and data for continuous 
variables and UNIANOVA were calculated adjusted by sex.

This paper has some limitations too. Causal interferences cannot 
be established because of the cross-sectional design. Considering CO2 
alone to evaluate sustainability is a limitation because the lack of other 
parameters such as energy, land, or water. Results cannot 
be extrapolated to a younger population since our participants were 
between 55 and 75 years old. Finally, fat-free mass could be better 

TABLE 3 Pearson correlations between body composition, energy intake 
and CO2 emissions.

r p

Body weight (kg) 0.149 <0.001

Waist circumference (cm) 0.099 <0.001

Hip circumference (cm) −0.007 0.772

BMI (kg/m2) −0.016 0.541

Fat mass (kg) 0.000 0.997

Muscular mass (kg) −0.040 0.267

Fat free mass (kg) 0.198 <0.001

Total body water (kg) 0.495 <0.001

Visceral fat (units) 0.118 <0.001

Energy intake (kcal/day) 0.629 <0.001

Person correlation was calculated between quintiles of CO2 emissions and anthropometric 
and body composition variables, and energy intake. BMI, Body Mass Index; CO2, Carbon 
dioxide; r, Correlation coefficient.
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TABLE 4 Linear regression analysis between total CO2 emissions and body composition.

Weight Waist
circumference

Fat free mass Total body 
water

Visceral fat Energy 
intake

Total CO2 

emissions

R 0.125 0.074 0.173 0.476 0.105 0.707

R2 0.016 0.005 0.030 0.226 0.011 0.500

y= 82.59–1.01*x 1.07E2 + 0.45*x 48.05 + 1.25*x 26.42 + 2.57*x 14.39 + 0.27*x 691 + 316*x

p <0.001 0.004 <0.001 <0.001 <0.001 <0.001

Linear regression analysis was done for Pearson significant variables. Correlation and determination coefficients were calculated, and regression line was showed. CO2, Carbon dioxide; R, 
Correlation coefficient; R2, Determination coefficient. *means multiplying.

FIGURE 2

Scatter plot graphics and regression lines of the total CO2 emissions and weight, waist circumference, fat free mass, total body water, visceral fat, and 
energy intake.
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estimated independently from water, since fat-free mass hydration 
would be greater in older population (37).

5 Conclusion

Body composition is associated with dietary CO2 emissions. The 
higher energy intake and correspondingly higher total body water, fat 
free mass, and body weight, the higher the dietary CO2 emissions 
were, following a linear relationship. Identifying less environmentally 
harmful diets with lower GHGEs and, promoting their adoption 
among the population could serve as a strategy to enhance both 
human health and environmental sustainability.
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