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Background: The time-varying reproduction number R is a critical variable

for situational awareness during infectious disease outbreaks; however, delays

between infection and reporting of cases hinder its accurate estimation in

real-time. A number of nowcasting methods, leveraging available information

on data consolidation delays, have been proposed to mitigate this problem.

Methods: In this work, we retrospectively validate the use of a nowcasting

algorithm during 18 months of the COVID-19 pandemic in Italy by quantitatively

assessing its performance against standard methods for the estimation of R.

Results: Nowcasting significantly reduced the median lag in the estimation of

R from 13 to 8 days, while concurrently enhancing accuracy. Furthermore, it

allowed the detection of periods of epidemic growth with a lead of between

6 and 23 days.

Conclusions: Nowcasting augments epidemic awareness, empowering better

informed public health responses.

KEYWORDS

reproduction number, situational awareness, epidemic surveillance, nowcasting,

outbreaks

Background

Epidemiological surveillance is a critical tool for policy making, allowing public

health professionals to monitor epidemic trends and the effectiveness of the adopted

interventions. One important quantity that can bemonitored during an epidemic outbreak

by relying on surveillance system data is the time-varying reproduction number (R)

(1). The reproduction number is defined as the average number of secondary infections

caused by an average infectious individual and represents a summary metric that measures

changes in transmissibility over time, indicating whether and how fast an epidemic is

growing (when R > 1) or declining (when R < 1). R can be estimated with established

statistical methods (2–5) from the time series of the number of cases occurring in a given

geographic unit (also known as “epidemic curve”), provided that the generation time

distribution of the considered infection is known.
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Surveillance systems are in most cases unable to trace the date

at which cases were infected, and the temporally closest proxy

event that can be measured is the onset of symptoms. Therefore,

estimating R from epidemic curves organized as number of cases by

date of symptom onset provides the closest estimate in time to the

actual transmission events, even when symptomatic cases represent

a small subset of all identified cases (6). Indeed, it has been shown

that estimates of the reproduction number are robust as long as the

proportion between symptomatic cases and total infections remains

stable or even drifts slowly over time (5, 7).

Between the onset of symptoms for a patient and the

insertion of their record in the surveillance database, temporal

delays occur depending on the medical-seeking behavior of the

individual, the logistics of case ascertainment (e.g., testing), the

organization of healthcare response systems (e.g., administration

of epidemiological questionnaires, contact tracing), and the socio-

technological infrastructure for data collection, quality control,

data upload and integration. These delays may change over

time not only as a function of the progressive improvement

of organizational aspects as the outbreak develops but also

depending on the saturation of resources for diagnosis, contact

tracing, data collection and transmission, and on other factors

such as the population’s perceived importance of medical seeking

at different stages of the epidemic. As much as surveillance

systems can be optimized to minimize some components of these

delays, their data provide information that is always somewhat

lagged with respect to the current epidemiological situation.

The above-mentioned delays result in an underestimation (right-

truncation) of epidemic curves for symptom onset dates close

to the date of reporting, and data relative to these dates will

consolidate only in successive updates of the surveillance system.

This eventually limits the ability of public health officers to

promptly assess the current situation or the effectiveness of recently

implemented interventions.

If information on data consolidation delays is available, it

can be exploited to “nowcast” epidemic curves, i.e. to adjust

for right-truncation. The first methods were proposed in the

wake of the AIDS pandemic (8–12), and further approaches

were proposed in later years (13–22). The COVID-19 pandemic

provided further momentum to this research topic (23–26) which

also found application during the 2022 mpox epidemic (27,

28). Even though nowcasting may partially compensate the lack

of knowledge on recent “occurred but not reported events”

(13), in practical terms the right-truncation of incidence curves

makes the following two questions of critical importance for

real-time monitoring purposes: (i) until what date in the past

can the epidemic curve (and therefore R estimates) be trusted,

and (ii) how the incompleteness in recent data affects the

accuracy of R estimates. In this study, we retrospectively assess

the application of a simple nowcasting algorithm from a point

of view of the improvement in situational awareness during

an actual health emergency, using extensive surveillance data

from the COVID-19 epidemic in Italy collected over more than

18 months.

Abbreviations: COVID-19, Corona virus disease of 2019; IQR, interquartile

range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Methods

Nowcasting algorithm

The nowcasting algorithm implemented here is a variant of the

simple non-parametric method proposed by Lawless (13) and was

independently developed for surveillance purposes during the early

stages of the COVID-19 pandemic. If CD (t) is the epidemic curve

as reported in the surveillance database at a given reporting date D,

and C∗ (t) is the consolidated epidemic curve that will be reported

at the end of the outbreak, the following relationship holds:

CD (t = D− z) = πD (z) ·C∗ (t = D− z)

where πD(z) is a “consolidation distribution” representing the

degree of completeness in reported cases within z days from

symptom onset estimated at time D. Equivalently, πD(z) can

be interpreted as the cumulated probability distribution of a

symptomatic case to be reported z days after symptom onset at

time D. From this relationship, an estimate of the consolidated

epidemic curve can be obtained from the reported epidemic curve

if πD (z) is known. An approximation of πD(z) can be obtained

by comparing successive updates of epidemic curves (13) over a

window of recent epidemic curves with respect to D; in particular,

we propose to approximate πD(z) with the average over observed

consolidation distributions relative to N symptom onset dates

closest to D and that can be considered consolidated at D (see

Supplementary material for a formal and full description of the

method). From πD(z) we can also define a “consolidation lag”

TD,F as the minimum number of days that will elapse before

the completeness in reported cases exceeds a given fraction F of

the final count. Note that πD(z) and TD,F are continuously re-

updated at every reporting date D, thereby implicitly keeping track

of possible temporal changes in consolidation delays due to changes

in the surveillance system or in the epidemiology of the pathogen

under scrutiny.

We applied the algorithm to data on confirmed symptomatic

SARS-CoV-2 infections collected by regional health authorities

in Italy and collated by the Istituto Superiore di Sanità (Italian

National Institute of Health) within the Italian COVID-19

integrated surveillance system (29) (a description of the system

is reported in the Supplementary material). Here, we used the

national-level epidemic curves by date of symptom onset as

reported daily between May 1, 2020, and December 31, 2021.

Epidemic curves between May 1, 2020 and June 28, 2020 were used

to obtain the first stable estimates of the consolidation distribution;

therefore, the algorithm was applied to n = 551 epidemic curves

reported dates between June 29, 2020 and December 31, 2021.

For each of the n reporting dates D, we estimated the mean

values of the time-varying reproduction number computed

from non-adjusted epidemic curves [RD(t), or “net reproduction

number”], and from nowcasted ones [R̂D(t), or “nowcasted

reproduction number”], evaluated at dates D − TD,F (with F

ranging between 10 and 90% at intervals of 10%). The two

estimates were then compared with corresponding estimates

obtained from a consolidated epidemic curve reported

several months after the end of the study period [R∗(t), or
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“reference reproduction number”], evaluated at the same date.

For each level of completeness F, we denote with RF , R̂F

and R
∗
F , respectively the vectors of estimates RD(D − TD,F),

R̂D(D − TD,F) and R∗D(D − TD,F), obtained for different values

of D.

A practical example

Figure 1 reports a practical example of the proposed method

for a specific reporting date 1 = April 1, 2021, of the COVID-

19 dataset. After estimating the consolidation distribution π1(z)

relative to the date of reporting 1 (Figure 1A), we compute

the corresponding consolidation lags T1, F for different levels

of completeness F, the nowcasted epidemic curve (Figure 1B),

and the estimates of the reproduction numbers R1(t), R̂1(t),

R∗(t) (Figure 1C). This example shows that the net reproduction

number significantly underestimated the reference value when the

completeness value was below 90%. Thus, in this example the

most recent reliable estimate obtainable on 1 = April 1, 2021

without nowcasting is relative to March 16, 2021, corresponding

to a consolidation lag of T1, 90 = 16 days before the date

of reporting, whereas the nowcasted estimate would be reliable

even for the day before (March 31, 2021). In the rest of the

manuscript, this qualitative assessment is done quantitatively and

for all reporting dates in the study period, with the aim of

assessing the added value of applying nowcasting for situational

awareness.

Performance metrics

For each value of completeness F and each considered

reporting date D, we calculated: the absolute error of the

net and nowcasted estimates of the reproduction number

against the corresponding reference value; the proportion of

all reporting dates in which each estimate underestimated the

reference value; and the proportion of all reporting dates

for which either estimate was closer than the other to the

reference value.

Additionally, we defined an “epidemic period” as a sustained

period of time during which the reproduction number remains

above the epidemic threshold of 1. Specifically, we defined the start

of an epidemic period as the first of at least three consecutive

reporting days where the estimate of the reproduction number was

above 1; and the end of an epidemic period as the day before the

first of at least seven consecutive reporting days where the estimate

of the reproduction number was below 1. We compared the lags

with which the net and nowcasted reproduction numbers were able

to identify epidemic periods of duration longer than 15 days, as

defined by the reference reproduction number.

Results

During the study period, the Italian COVID-19 integrated

surveillance system took about 6 days (median over the study

period; 95% quantile: 5–8 days) from symptom onset to record at

least 50% of all cases, and about 13 days (95% quantile: 7–17 days)

to record at least 90% (Figure 2).

Overall, the net reproduction number was a good

approximation of the reference reproduction number R∗ when

evaluated at the date of 90% completeness, with a median absolute

error for R90 over the entire study period of 0.042 (interquartile

range, IQR: 0.025–0.066, Figure 3). The corresponding nowcasted

estimate R̂90 had a median absolute error of 0.017 (IQR: 0.007–

0.036, significantly smaller than the error for R90: p-value of paired

t-test between the errors of the net and nowcasted estimates

≪ 0.001).

When accepting lower thresholds for data completeness, the

accuracy of the net reproduction number degraded rapidly, but not

the one for nowcasted estimates. For example, with a completeness

of 70% (corresponding to a median lag of 8 days), the median

error was 0.116 (IQR: 0.078–0.171) for R70 but 0.032 (IQR: 0.016–

0.068) for R̂70, i.e., still significantly smaller than the error for R90
(paired t-test p-value ≪ 0.001). The median error for R̂10 (0.115;

IQR: 0.057–0.191), corresponding to a median lag of 3 days, was

comparable to the median error for R70 (paired t-test p-value:

0.42). The net estimate systematically underestimated the reference

value, while the nowcasted did so in about half of the reporting

dates; the latter result was roughly independent on the considered

completeness (Figure 3B). Furthermore, the nowcasted estimates

were closer to the reference value, compared to net estimates

obtained with the same completeness. This occurred for more than

90% of reporting dates when completeness values of 80% or lower

were considered (Figure 3C).

We identified five epidemic periods where the reference

reproduction number was above the epidemic threshold for more

than 15 days between June 29, 2020, and December 31, 2021

(Figure 4 and Table 1). The net estimate at 90% completeness

detected the epidemic periods with a lag that ranged between

13 and 30 days (Table 1). The net estimate at 70% completeness

reduced by 2–3 days the detection lag for epidemic periods 4–5 but

increased the lag by 8 days for period 1 and missed the detection

of period 2. The net estimate at 50% completeness missed the

detection of three periods out of 5. The nowcasted estimate allowed

anticipating the detection by 1–15 days (lags range: 12–20 days) at

90% completeness, and by 6–23 days (lags range: 7–17 days) at 70%

completeness, compared to the net estimate at 90% completeness.

In the case of 50% completeness, the nowcasted estimate performed

worse than the net estimate at 90% completeness during period

1 (lag of 27 days vs. 23) but reduced the detection lag by 8 days

for periods 4 and 5; for periods 2 and 3, the estimate provided

an early warning 6 and 4 days compared to the actual start of

the periods; however, it also falsely flagged an additional epidemic

period between July 2 and August 13, 2020.

Discussion

We performed a quantitative assessment of the use of

nowcasting to improve situational awareness during an epidemic

outbreak, based on extensive data from over 18 months of

the COVID-19 epidemics in Italy. Nowcasting systematically

outperformed the non-adjusted estimation of reproduction

numbers, improving both the accuracy and timeliness of the
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FIGURE 1

Example of application of the proposed nowcasting technique using data from the Italian COVID-19 integrated surveillance system for a selected

reporting date (1 = April 1, 2021). (A) Estimated consolidation distribution and corresponding consolidation lags. Dark red dots represent the

estimated consolidation distribution at 1. Horizontal lines define selected completeness thresholds (50, 70, and 90%) and vertical lines define the

corresponding consolidation lags. (B) Observed and nowcasted epidemic curves by date of symptom onset. The consolidated epidemic curve is

shown as dark gray triangles. Vertical dashed lines show the dates at which the observed number of cases is estimated to have reached a given

completeness value. Bars in the epidemic curve are reported in fading colors with a level of darkness proportional to the estimated completeness. (C)

Mean estimates of the net, nowcasted, and reference reproduction numbers over time. Vertical dashed lines show the dates at which the observed

number of cases is estimated to have reached a given completeness value. The level of darkness in line colors is proportional to the estimated

completeness.

FIGURE 2

Consolidation lags for the Italian COVID-19 integrated surveillance system. (A) Distribution of the consolidation lag across the estimation period

(June 29, 2020–December 31, 2021) for di�erent values of completeness. Boxplots show the median (horizontal line), interquartile range (rectangle)

and 95% quantiles (whiskers) over the n = 551 reporting dates. (B) Consolidation lags at di�erent reporting dates as estimated for three selected

values of completeness F.

estimates. In particular, the adopted nowcasting algorithm was able

to more than halve the mean absolute error compared to the net

estimate (i.e., from non-adjusted epidemic curves) when evaluated

at the same median lag of 13 days before the date of analysis.

Nowcasting maintained a better accuracy even for estimates

relative to a median of only 8 days before the date of analysis.

More importantly, the nowcasted estimates markedly reduced by

between 6 and 23 days the lag in detecting the beginning of epochs

of sustained epidemic circulation, a notoriously difficult task for

forecasting approaches (30).

In Italy, official estimates of the COVID-19 reproduction

number were based on net estimates with reference to 14 days

before the date of reporting, which we found to approximately

correspond to a data completeness of 90%. The analysis proposed

here retrospectively validates the choice of a 14-days lag, given

the remarkable worsening of accuracy that would be obtained

with shorter lags. Official estimates were made available to the

public through a weekly bulletin and used for decisions on

non-pharmaceutical interventions (31). Nowcasted estimates of

the reproduction number were additionally used by national
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FIGURE 3

Accuracy of the net and nowcasted reproduction numbers. (A) Distributions of the absolute error between the reference reproduction number and

the net and nowcasted reproduction numbers, computed at di�erent reporting dates (daily between June 29, 2020, and December 31, 2021), and

evaluated at the date corresponding to a specified level of completeness. Boxplots show the median (horizontal line), interquartile range (rectangle)

and 95% quantiles (whiskers). (B) Fraction of reporting dates for which the net and nowcasted estimates of the reproduction number underestimate

the reference value. (C) Fraction of reporting dates for which either estimate is the closest one to the reference value, for di�erent values of

completeness.

FIGURE 4

COVID-19 epidemic periods in Italy (2020–2021). (A) Reference reproduction number by date of symptom onset, as computed from consolidated

data reported on April 5, 2023 (solid black line). The gray shaded area around the reference reproduction number (visible only in the period

May–August 2020, due to the low number of cases contributing to R estimates) represents the 95% CI in its estimate. Dark gray bars above the graph

highlight the days where the reference reproduction number was above 1, and dark gray vertical dashed lines delimit epidemic periods (see Table 1),

labeled with a progressive number just above the x-axis. Blue and red bars identify the dates of reporting for which the net and nowcasted

reproduction numbers, respectively, estimated at the nearest date a�orded by a completeness of 90%, were above 1. (B) Dates where the reference

reproduction number was above 1 (dark gray), and dates of reporting for which the net and nowcasted reproduction numbers, estimated at the

nearest date a�orded by a completeness between 50 and 90%, were above 1 (red and blue).

and regional health authorities throughout the course of the

emergency to gather further insights during weekly situation

assessments, thus improving situational awareness. The analysis

proposed here represents a retrospective validation of this

additional estimate.

There are a few limitations that need to be considered

when interpreting our results. First, the estimates of the

reproduction numbers were obtained by assuming a fixed

distribution of the generation time throughout the study period,

corresponding to the one estimated for SARS-CoV-2 ancestral

lineages. This choice was taken for simplicity and based on

estimates for the Alpha (32), Delta (32) and Omicron variants

(33) suggesting limited changes in the distribution of the SARS-

CoV-2 generation time in Italy in the study period. Second,

our main analysis compared different reproduction numbers

only in terms of their mean estimate, without considering their

variability. However, results remained robust when considering

alternative error functions that considered the variability in
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TABLE 1 Characteristics of COVID-19 epidemic periods in Italy (2020–2021) and detection lags due to consolidation of epidemic curves.

Epidemic period 1 2 3 4 5

Date of start Sep 07, 2020 Dec 22, 2020 Feb 03, 2021 Jul 01, 2021 Oct 15, 2021

Date of end Nov 12, 2020 Jan 06, 2021 Mar 16, 2021 Aug 22, 2021 After Dec 31, 2021

Duration (days) 67 16 42 53 >78

Date of detection

Net (90% completeness) Sep 30, 2020 Jan 07, 2021 Mar 05, 2021 Jul 15, 2021 Oct 28, 2021

Net (70% completeness) Oct 8, 2020 – Mar 01, 2021 Jul 12, 2021 Oct 26, 2021

Net (50% completeness) Oct 10, 2020 – – Jul 11, 2021 –

Nowcasted (90% completeness) Sep 27, 2020 Jan 05, 2021 Feb 17, 2021 Jul 14, 2021 Oct 27, 2021

Nowcasted (70% completeness) Sep 24, 2020 Dec 30, 2020 Feb 10, 2021 Jul 09, 2021 Oct 22, 2021

Nowcasted (50% completeness) Oct 4, 2020 Dec 16, 2020 Jan 30, 2021 Jul 07, 2021 Oct 20, 2021

Detection lag (days)

Net (90% completeness) 23 16 30 14 13

Net (70% completeness) 31 – 26 11 11

Net (50% completeness) 33 – – 10 –

Nowcasted (90% completeness) 20 14 14 13 12

Nowcasted (70% completeness) 17 8 7 8 7

Nowcasted (50% completeness)∗ 27 −6 −4 6 5

The dates of start and end of epidemic periods refer to dates in which the reference reproduction number (computed from consolidated data reported on April 5, 2023) was above 1 (see methods

for the algorithmic definition). The dates of detection correspond to the first date of analysis for which the reproduction number, estimated at the date of the given completeness, was above 1.
∗The nowcasted estimate at 50% completeness falsely flagged an additional epidemic period (July 2–August 13, 2020).

estimates (see Supplementary material). For what concerns the

definition of epidemic periods, we used a heuristic definition to

compare the potential in early warning of the net and nowcasted

estimates at different levels of completeness. This definition does

not distinguish situations of moderate (R slightly above 1) vs.

catastrophic (R much above 1) epidemic growth and therefore

does not necessarily correspond to the need for public health

decision makers to take urgent action. Still, the identified epidemic

periods corresponded to the main periods of expansion of the

COVID-19 epidemics in Italy during the study period (Figure 4A),

including the second wave in the fall of 2020 (period 1), the

short resurgence during Christmas holidays of 2020 (period 2),

the wave related to the expansion of the Alpha variant in spring

2021 (period 3), the increase of cases in summer 2021, partially

related to the celebrations for the Italian victory in Euro2020 soccer

championship (34) (period 4), and the wave due to Delta in the

fall of 2021, replaced by Omicron in the last week of the year (35)

(period 5). Although daily updates of epidemic curves for SARS-

CoV-2 were available until April 15, 2022 (after which updating

over the weekends has been suspended), we decided to stop the

benchmarking exercise on December 31, 2021, given the lower

severity of the pandemic in 2022 (36–38), the broad diffusion

of self-tests to be performed at home, and the progressive shift

toward hospital surveillance. Finally, we were not able to assess the

method on the first wave of the COVID-19 pandemic, due to the

lack of harmonization in data collection across different regional

health systems (especially in the earliest weeks after the first viral

detection) and to the rapid temporal variations in ascertainment

rates, organizational set-up in epidemiological investigations and

data collection.

Conclusions

The overall purpose of this study was to demonstrate and

quantitatively assess the usefulness of a simple non-parametric

nowcasting method from the perspective of situational awareness

in real-time during epidemic outbreaks. Nowcasting can empower

better informed public health responses through improved

accuracy and timeliness of the estimates of the reproduction

number and an earlier identification of periods of sustained

epidemic growth. We suggest that nowcasting should become

standard practice in surveillance activities, especially in situations

of public health emergencies. Several methods have been proposed

for nowcasting and some have been made publicly available as

packages for statistical software (39–42). A systematic comparison

of requirements, advantages and disadvantages, and performances

against standardized might support epidemiological data analysts

in choosing the most appropriate nowcasting tool for different

situations. Although an assessment of the reliability of nowcasting

in the early phase of the COVID-19 pandemic was not possible

in our study, we argue that pandemic preparedness toward

harmonized data collection can minimize the time until the

condition is met (i.e., a stable surveillance system providing regular

updates of observed epidemic curves) for a reliable application

of nowcasting.
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