
Frontiers in Public Health 01 frontiersin.org

Nordic environmental resilience: 
balancing air quality and energy 
efficiency by applying artificial 
neural network
Abul Ala Noman 1,2, Faheem Ur Rehman 3, Irfanullah Khan 4 and 
Mehran Ullah 5*
1 Faculty of Management and Economics, Ruhr University Bochum, Bochum, Germany, 2 MEU 
Research Unit, Middle East University, Amman, Jordan, 3 Interdisciplinary Research Centre for Digital 
Economy and Finance, Business School, King Fahd University of Petroleum and Minerals, Dhahran, 
Saudi Arabia, 4 Interdisciplinary Research Centre for Smart Mobility and Logistics, King Fahd University 
of Petroleum and Minerals, Dhahran, Saudi Arabia, 5 School of Business and Creative Industries, 
University of the West of Scotland, Paisley, United Kingdom

Maintaining public health and environmental safety in the Nordic nations calls for 
a strict plan to define exact benchmarks on air quality and energy efficiency. This 
study investigates the complicated interaction of decentralized energy production 
(DEP) with energy efficiency, and air quality index in the Nordic nations from 1990 
to 2022 using System GMM and Artificial Neural Network (ANN) approach. Our 
research explored positive role of decentralized energy production and technological 
advancement to propel notable increases in energy efficiency, hence lowering 
pollution expressed as PM2.5 level. Our research indicates, however, that although 
international trade, GDP and urbanization assist to enhance energy efficiency, 
they also contribute to pollution by raising PM2.5 Level by higher energy usage. 
Furthermore damaging to environmental quality is the persistent link shown 
by economic disparity and the energy price index with increased degrees of 
pollution and less energy efficiency. Policy frameworks must devised sustainable 
development policy (decentralized energy production) to significantly improve 
energy efficiency and lower the amount of pollution. This calls for proper urban 
planning and a close observation of the possible drawbacks of growing GDP, 
trade, economic disparity, and energy expenses.
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1 Introduction

The concerns of air pollution, energy security, and environmental sustainability require 
urgent and thorough policy responses (1, 2). Within this particular setting, the shift toward 
decentralized energy production offers a hopeful pathway for effectively tackling these 
complex difficulties. Decentralized energy systems, which consist of a wide range of renewable 
sources like wind, solar, and hydropower, have significant potential to not only increase energy 
efficiency but also enhance air quality (3). The objective of this study is to elucidate the intricate 
correlation between decentralized energy production and its impact on both energy efficiency 
and air quality in the Nordic countries, namely Norway, Sweden, Denmark, and Finland.

The deliberate choice to carry out this empirical research in the Nordic nations is 
purposeful for multiple reasons. Initially, these countries have established significant goals for 
decreasing greenhouse gas emissions and shifting toward sustainable energy systems (4, 5). 
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Using decentralized energy sources like wind, solar, and hydropower 
is in line with these objectives and offers the possibility of reducing 
carbon emissions (5). Norway exemplifies exemplary leadership in the 
field of renewable energy. Due to its enormous hydropower resources, 
the country is able to produce a substantial amount of its electricity 
from renewable sources. This not only decreases carbon emissions but 
also strengthens energy security and independence (6, 7). Sweden and 
Denmark have both established varied energy portfolios that 
encompass renewable sources, fossil fuels, and nuclear energy. The 
presence of diverse energy sources provides a compelling opportunity 
to examine the effects of decentralized energy generation on both 
energy efficiency and air quality (8). The region’s focus on energy 
efficiency is remarkable in both residential and industrial domains. 
Sweden has implemented comprehensive energy-efficiency initiatives 
aimed at enhancing energy efficiency in buildings and enterprises. The 
European Parliament and the Council have just released Directive 
(EU) 2024/1275, which aims to enhance the energy efficiency in the 
European Union in order to attain climate neutrality by 2050 (9, 10).

Furthermore, air quality in the Nordic countries is often acceptable. 
However, there are specific periods when PM2.5 levels may rise, 
particularly in urban regions. Recently, there has been more focus on 
addressing this issue, and Sweden has been particularly noteworthy for 
its endeavors to decrease air pollution in urban areas (11–13). The 
current body of research on decentralized energy systems, energy 
efficiency, and air quality highlights the potential benefits and obstacles 
involved in shifting toward sustainable, decentralized energy sources. 
Multiple studies emphasize the capacity of decentralized renewable 
energy to improve energy efficiency and decrease greenhouse gas 
emissions (14, 15). Nevertheless, it is imperative to carefully examine the 
practical consequences of these assertions. An examination of this 
literature highlights that the success of decentralized energy solutions in 
enhancing energy efficiency is contingent upon several factors, such as 
the regulatory framework, technological advancement, energy costs, 
and trade competitiveness (16–18). Furthermore, although the idea of 
transitioning to decentralized renewable energy production is often 
presented as a solution for lowering air pollution, the existing body of 
research emphasizes the many complexities involved. Several studies 
have indicated that the production, installation, and preservation of 
renewable energy infrastructure, such as wind turbines and solar panels, 
can cause certain environmental effects in the surrounding areas (19, 
20). These crucial insights emphasize the necessity for a detailed analysis 
of the environmental compromises linked to decentralized energy 
systems. When evaluating renewable technology, policymakers and 
academics should take into account the comprehensive environmental 
impact, recognizing that sustainability encompasses more than just 
carbon emission reduction.

Although there has been extensive research conducted worldwide 
on the effects of decentralized energy production (DEP) on energy 
efficiency and environmental quality, there is a lack of empirical 
studies specifically examining the trade-off between DEP, energy 
efficiency (EE), and air quality (PM2.5 Level) in a distinct context. 
Moreover, the Nordic countries have not received adequate attention 
in recent literature. This empirical study seeks to address this gap by 
providing a detailed examination of the impact of decentralized 
energy production on energy efficiency and air quality in the Nordic 
region. This research is relevant and important, particularly 
considering the ongoing progress in renewable energy technology and 
changing environmental issues (4, 21). Nevertheless, it is crucial to 

recognize the extent and constraints of this study. The energy-
environment nexus is a complicated system that encompasses multiple 
factors and relationships. While this study attempts to address certain 
important areas, it may not fully encompass all the dynamics involved. 
Moreover, the empirical results may depend on the particular time 
period and methodological decisions. The relevance of this research 
is emphasized by the growing international attention toward 
renewable energy, sustainability, and efforts to mitigate climate 
change. The Nordic countries, through their successful implementation 
of renewable energy integration and energy efficiency measures, have 
the ability to provide vital insights to the global community.

This paper aims to investigate the impact of decentralized energy 
production (DEP) on energy efficiency (EE) and PM2.5 pollution 
levels. The study also incorporate the impact of other economic factors 
such as Gross Domestic Product (GDPit), urbanization (URBit), 
technology (TECHit), trade volume (TRADEit), income inequality 
(INEQit), and the energy price index. The study uses a panel of Nordic 
countries from 1990 to 2022 and System GMM technique to account 
for heterogeneity, non-stationarity, and potential endogeneity among 
the variables and sample units. The study’s findings indicated that 
decentralized energy production (DEP), urbanization (URB), and 
technological innovation (TECH) have a substantial positive impact on 
energy efficiency (EE) and lead to a significant reduction in PM2.5 
levels. The findings reveal that gross domestic product (GDP) and trade 
exert a substantial positive influence on energy efficiency, but they also 
contribute to the degradation of air quality by increasing PM2.5 
pollution as a result of excessive energy consumption. Both income 
inequality and the energy price index have a detrimental and 
noteworthy effect on energy efficiency, while also leading to a rise in 
PM2.5 pollution. In addition to the findings of the System GMM 
technique, an Artificial Neural Network (ANN) was used to examine 
the effects of decentralized energy production (DEP) on energy 
efficiency (EE) and PM2.5 pollution levels in a panel of Nordic 
countries. Artificial Neural Networks (ANN) are a specific category of 
machine learning models that draw inspiration from the intricate 
structure and operation of the human brain. Artificial Neural Networks 
(ANN) are frequently employed in computer vision for tasks such as 
Natural Language Processing, picture recognition, speech recognition, 
and pattern identification (22, 23). ANN has become a commonly 
utilized machine learning algorithm due to its ability to excel in 
learning complex and nonlinear mappings.

Overall, the vast body of research on decentralized energy systems, 
energy efficiency, and air quality provides significant knowledge 
regarding the possibilities and obstacles associated with shifting toward 
sustainable energy sources. Nevertheless, a thorough analysis of existing 
body of literature highlights the necessity of adopting a comprehensive 
and situation-specific strategy in order to fully exploit the benefits of 
decentralized energy solutions. To advance the decentralized energy 
transition, it is crucial to tackle regulatory obstacles, fully comprehend 
the environmental effects of renewable energy sources, and carefully 
analyze the complexities of policy implementation.

2 Review of literature: the theoretical 
framework

The current body of literature extensively examines the correlation 
between decentralized energy production, energy efficiency, and 
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environmental quality. This part will examine the accomplishments of 
the Nordic nations in the field of decentralized energy systems, 
emphasize the unique elements of our study, and explore the existing 
knowledge regarding the correlation between these factors.

The implementation of decentralized energy systems has been 
shown to have beneficial effects on energy efficiency through the 
reduction of energy losses and the promotion of renewable energy 
utilization. Nevertheless, the influence on environmental quality can 
vary depending on the individual circumstances (24, 25). Although 
decentralized systems are typically linked to decreased emissions, 
there may still be localized environmental effects. The implications 
mentioned could arise from the production and installation of 
renewable energy infrastructure, as well as the energy-intensive 
processes involved. Hence, it is crucial to adopt a sophisticated 
perspective in comprehending the wider consequences of 
decentralized energy systems on air quality (26, 27).

The Nordic countries, namely Norway, Sweden, Denmark, and 
Finland, have gained international recognition over the past twenty 
years for their aggressive initiatives in developing sustainable energy 
systems, prioritizing environmental quality, and emphasizing 
decentralized energy generation. The aforementioned countries have 
demonstrated exemplary utilization of decentralized energy sources, 
such as solar, wind, and hydropower, to enhance energy efficiency and 
mitigate greenhouse gas emissions (28, 29).

Previous research has shown that these nations, which are often 
known for their natural resources, have embraced renewable energy 
technologies to diversify their energy portfolios. Norway’s extensive 
use of hydropower and Denmark’s leadership in wind energy are well-
documented cases. The literature highlights how these countries have 
used sources to become prominent in the global transition to 
renewable energy (16). Sweden, Denmark, and Norway consistently 
rank high in the Energy Efficiency Index (4). Research has shown that 
these countries have achieved energy efficiency by adopting 
sustainable building standards, promoting public transportation, and 
implementing strict emission control measures. This dedication to 
energy efficiency is rooted in their shared commitment to sustainable 

development and adherence to the United Nations’ Sustainable 
Development Goals.

The manufacturing and installation of renewable energy 
infrastructure, as well as the energy-intensive processes involved, can 
have significant environmental implications. As such, it is crucial to 
take a nuanced approach when studying the broader impacts of 
decentralized energy systems on air quality, as previous research has 
shown (30, 31).

Moreover, policy and governance exert a substantial influence 
on the results of decentralized energy systems. Existing research 
(16) have observed that the implementation of supportive policies 
and incentives can effectively promote the adoption of renewable 
energy technology. Nevertheless, the lack of regulatory flexibility 
and reluctance to adopt new methods can impede the process of 
decentralizing energy production. Decentralized energy systems 
(DES) are now recognized as a crucial approach for tackling the 
issues of energy security, climate change, and sustainable 
development. Nevertheless, there is a scarcity of research on DES 
in the Nordic environment. Across order to fill this void, our 
research aims to conduct a detailed examination of the distinct 
dynamics of Distributed Energy Systems (DES) and their 
consequences for energy efficiency and environmental 
sustainability across the Nordic nations.

The foundation of our work is rooted in the current body of 
research that emphasizes the significance of decentralized energy 
generation in achieving sustainable development (32, 33). Our work 
adds to the existing body of research by specifically examining the 
Nordic region, where the implementation of renewable energy and 
energy efficiency are fundamental aspects of sustainability efforts.

Furthermore, our study investigates the complex correlation 
among DES, energy efficiency, and environmental quality, with a 
particular focus on the influence on PM2.5 levels (refer to Figure 1). 
Although prior research has addressed the overall impact of DES on 
air quality, it frequently lacks in-depth analysis of the underlying 
mechanisms and localized environmental consequences. Our work 
addresses this deficiency by closely examining the complex 

FIGURE 1

Theoretical framework.
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interrelationships between energy generation and air quality, taking 
into account the distinct features of the Nordic region.

Finally, our research seeks to reveal the influence of control 
variables, such as GDP, urbanization, technology, trade volume, 
income inequality, and the energy price index, on the connection 
between DES and our dependent variables, energy efficiency, and 
PM2.5 levels. These control variables are crucial for comprehending 
the wider context in which DES function and their impact on energy 
and environmental parameters. Furthermore, previous studies 
emphasize the importance of policy and governance in influencing the 
results of decentralized energy systems (34, 35). Supportive policies 
and incentives are essential for promoting the widespread use of 
renewable energy technology. The lack of regulatory flexibility and 
reluctance to change can hinder the process of decentralizing energy 
production (36, 37). This study specifically examines the dynamics of 
decentralized energy systems in the Nordic countries, an area 
renowned for its expertise in sustainable energy solutions.

The theoretical framework offers a full comprehension of the 
interaction between DEP and a set of control factors, and their impact 
on energy efficiency and environmental quality. The framework aims 
to clarify the intricate connections between these factors and provides 
a basis for empirical research.

Energy efficiency is a crucial factor in this framework, indicating 
the level of efficacy in using and conserving energy in the Nordic 
countries. The concept includes enhancements in energy consumption 
patterns, technical progress, and the production of sustainable energy 
(38). High energy efficiency refers to the process of maximizing the 
utilization of energy resources while minimizing wastage. Another 
dependent variable is environmental quality, specifically assessed 
through PM2.5 levels, which refers to the concentration of tiny 
particulate matter. It functions as a gauge of air quality, which has a 
direct correlation with human health and the general state of the 
ecosystem. The fundamental independent variable in this approach is 
the decentralized energy production (DEP) which is anticipated to have 
a beneficial impact on energy efficiency and environmental quality by 
decreasing greenhouse gas emissions, promoting the use of renewable 
energy sources, and improving energy distribution systems.

One possible explanation is that DEP promotes energy efficiency by 
encouraging the use of renewable energy sources. Renewable energy 
technologies including wind turbines, solar panels, and hydropower 
systems are frequently used in decentralized energy production. They 
provide a more sustainable and efficient way to generate electricity (17, 
39). These technologies are frequently distinguished by their superior 
conversion efficiencies and reduced energy losses in comparison to 
conventional power generation methods that rely on fossil fuels. 
Integrating renewable energy sources into decentralized systems can 
result in decreased energy wastage, heightened energy productivity, and 
ultimately improved energy efficiency.

Decentralized energy generation reduces the release of harmful 
pollutants, specifically PM2.5 particles, which positively impacts 
environmental quality. Adopting cleaner and renewable energy 
sources like wind and solar power in decentralized systems reduces 
the release of particulate matter and other harmful pollutants, which 
contribute to higher levels of PM2.5 in the atmosphere. Moreover, the 
implementation of distributed energy solutions, derived from 
decentralized energy generation, can greatly diminish local pollution. 
The decrease in pollution not only reduces the health hazards linked 
to air pollution but also enhances the overall environmental condition 

(40, 41). Introducing emission control methods in decentralized 
systems can greatly reduce PM2.5 levels, hence enhancing 
environmental quality. From this theoretical framework, two 
hypotheses may be formulated for empirical examination:

First, the study hypothesize (H1) that decentralized energy 
production (DEP) has a significant positive effect on energy efficiency 
(EE). Second, the study hypothesize (H2) that decentralized energy 
production (DEP) has a significant negative effect on PM2.5 levels, 
indicating that DEP is beneficial to environmental quality in 
Nordic countries.

The collection of control variables comprises GDP, urbanization, 
technology, trade volume, income inequality, and the energy price 
index (EPI).

The study also hypothesizes (H3) that there is a positive 
correlation between GDP and environmental quality (PM2.5) as well 
as energy efficiency (EE). An elevated GDP level would result in 
augmented financial resources for investments in environmentally 
sustainable and energy-efficient technology.

Urbanization serves as a significant measure of urban growth, 
with the potential to enhance energy efficiency initiatives while also 
increasing the likelihood of greater energy usage and environmental 
challenges. Our proposal suggests that the influence of urbanization 
(URB) on environmental quality (PM2.5) and energy efficiency 
(EE) is not consistent and may be  influenced by the specific 
context (H4).

Technology innovation is a direct reflection of the significant 
progress and creation in the field of technology. According to Wang 
et al. (42), there is a projected positive correlation between enhanced 
energy efficiency and improvements in technology. The interaction 
between these components may be influenced by advancements in 
energy-efficient appliances, renewable energy technology, and 
industrial activities. The hypothesis (H5) posits that technology 
enhances energy efficiency (EE) and environmental quality (PM2.5).

Trade volume is a quantitative indicator that measures the 
magnitude of international commerce. Energy efficiency may 
be influenced by both exposure to global sustainable energy practices 
and the commercial exchange of goods and services that need 
significant amounts of energy (14). Based on our concept, the trading 
volume (trading) has the capacity to enhance energy consumption 
while simultaneously promoting the implementation of energy-
efficient technologies. This might have contrasting effects on energy 
efficiency (EE) and environmental quality (PM2.5).

Income inequality pertains to the allocation of income within 
a country. The increasing disparity in income levels may lead to an 
uneven allocation of renewable energy resources and energy-
efficient technologies. This imbalance has the potential to impact 
both environmental conditions and overall energy efficiency (35). 
Our hypothesis posits that the increase in income inequality 
(INEQ) might negatively affect the quality of the environment 
(PM2.5) and the efficiency of energy use (EE) as a result of 
discrepancies in access and benefits (H7).

Fluctuations in energy costs may have a significant impact on the 
long-term financial viability of decentralized energy systems, as well 
as their use patterns. The energy price index is a dependable measure 
of energy expenses, and changes in energy prices may impact both of 
these parameters. According to, an increase in the energy price index 
might decrease the probability of buying energy-efficient gear, leading 
to negative consequences for the environment. This aligns with the 
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findings of the previously stated studies. Based on our hypothesis, 
which states that this situation is true, the energy price index (EPI) 
negatively affects both the environmental quality (PM2.5) and the 
energy usage efficiency (EE) (H8).

3 Econometric methodology

3.1 The data

We must measure decentralized energy generation (DEP), a 
fundamental feature of sustainable energy systems, to assess 
advancements in this area. This paper expresses DEP as a percentage 
of the total energy production from distributed renewable sources 
such as wind, solar, and hydropower. The Norwegian Water Resources 
and Energy Directorate (NVE), the Swedish Energy Agency, and the 
Danish Energy Agency (43) are among the data sources for distributed 
energy generation among the Nordic nations.

Air quality is another crucial element that influences human well-
being and health. Since PM2.5 is one of the main pollutants tracked 
and stated as the air quality index (AQI), in this research its 
concentration serves as an indicator of air quality. PM2.5 refers to fine 
particulate matter with a diameter of 2.5 micrometers or less, which 
can penetrate deeply into the respiratory system and potentially lead 
to negative health consequences. PM2.5 readings between 0 and 50 
indicate a green region, meaning good air quality with minimal or no 
danger. While the range of 101–150 and 151–200 reflect poor and 
somewhat unhealthy quality correspondingly, the range of 51 to 100 
reflects moderate and acceptable quality.

While GDP is computed in inflation-adjusted prices, energy 
efficiency is a fundamental quality of sustainable energy systems 
and is expressed as the GDP per unit of energy usage. 
Urbanization (URB) is yet another important factor affecting the 
energy consumption patterns of a country. Data is compiled from 
Usman et  al. (15) using a measure based on a nation’s urban 
population share. Patent awards measuring technology (TECH) 
allows us to grasp its degree of influence on economic growth and 
environmental sustainability. The data come from the European 
Patent Office (EPO). Trade volume (TRADE) is a key economic 
indicator of Nordic country regional economic activity. The 
World Trade Organization offers the data source; it is stated as 
the total value of imports and exports, as a percentage of 
GDP. Income inequality (INEQ) is a significant socioeconomic 
indicator indicating the income distribution within a country. 
World Bank supplies the data for this study, which makes use of 
the Gini coefficient as indicator. The Energy Price Index (EPI) 
and the International Monetary Fund (IMF) provide the statistics 
on relative price changes of energy commodities over time against 
a base year or period.

3.2 The cross-sectional dependence (CD) 
test

Examining the dynamic interaction across Nordic economies 
reveals the diverse character of the variables, so selecting the suitable 

estimator becomes crucial. Examining the possible cross-correlation 
effects among the chosen indicators—including decentralized energy 
production (DEPit), GDP (GDPit), urbanization (URBit), technology 
(TECHit), trade volume (TRADEit), income inequality (INEQit), and 
the energy price index (EPIit)—due of the interconnections among 
these economies is absolutely vital. Using a cross-sectional dependence 
(CD) test, proposed addressing this problem. This test allows us to 
investigate, across higher and lower middle-income nations, the null 
hypothesis (H0) of cross-sectional independence against cross-
sectional dependence.
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This study depends on the pair-wise correlation and the cross-
sectional residual term resulting from the Augmented Dickey-Fuller 
(ADF) test regression. The Equation (1) combines the cross-sectional 
dimensions shown as “n” with the dimensionality of time, 
written as “T.”

3.3 Panel unit-root test

Cross-sectional dependence (CD) of variables necessitates careful 
study of the sequence of integration to avoid erroneous conclusions in 
regression analysis. Within the framework of a large dataset, the 
Cross-Sectional Im, Pesaran, Shin (CIPS) second-generation unit-root 
test is particularly appropriate for identifying cross-sectional 
dependence or common correlation effects.
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∑∆ , respectively. εit  means the error mechanism.

3.4 The system generalized method of 
moments (SYS-GMM)

In this paper, panel data is estimated using the System 
Generalized Method of Moments (SYS-GMM). Particularly suitable 
for tackling unobserved heterogeneity and endogeneity in panel 
datasets, SYS-GMM is an expansion of the conventional 
Generalized Method of Moments (GMM) (44). Many elements 
contribute to the main cause of unobserved variability in the 
sample: population, technology, and resource levels among others. 
Either removing the mean value from certain variables or using a 
first-difference technique will help to address this unobserved 
variability. Subtracting the mean value, especially in a situation with 
many cross-sections (N) and limited time series (T) (N > T), might 
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therefore result in the development of regressors that are not 
independently distributable from the error term (45) put forth a 
revolutionary solution—the first-difference approach—to address 
this problem. This method uses one or more lagged dependent 
variables as regressors to account for the partial adjustment 
mechanism and estimators especially designed for modeling 
dynamic panel data. For the energy efficienty and PM2.5 Level, the 
equation for System-GMM at level and at first difference is thus 
as follows.

3.5 Artificial neural network

ANN is a type of machine learning model inspired by the 
structure and functioning of the human brain. ANN is commonly 
used in computer vision for Natural language processing, image 
recognition, speech recognition, and pattern recognition. Due to 
the excel in learning complex and nonlinear mapping ANN 
emerged as widely used machine learning algorithms. In recent 
years, the contribution of ANN technique in forecasting and 
predicting macroeconomics data is significantly increased due its 
accuracy and computational speed (46). ANN is defined by “a 
massively parallel distributed processor made up of simple 
processing units, which have a neural propensity for storing 
experimental knowledge and making it available for use.” ANN are 
computational models that are based on connected neurons 
following some architecture. Communication among neurons is 
performed via signals. The neurons perform calculation based on 
the provided training.

In ANN the data is passed through the input layer and this data 
is further processed to the hidden layer and the first hidden layer 
performs some operation on the input layer and sends the information 
to the second layer. The second layer in ANN captures non-linearity 
and expressiveness. In each layer the non-linear activation function 
is applied to the linear function inputs, which incorporates the 
non-linearity in the model. The function of non-linear activation is 
to learn and approximate complex, relation of non-linear mapping 
between input and output of the model. In ANN the neurons receive 

the knowledge by learning process by using synaptic weights which 
are stored in interneuron connection. The hidden neurons quantity 
has an influence on the prediction accuracy and training speed, the 
rules-of-thumb suggesting a balance (47). The more hidden layer 
increases the capacity of neural nets to model intricate relationships 
in the data by which the networks learn and remove the noisy 
information and focus on the important features. Finally, the results 
are passed from the final layer to the output node.

In this model we have used ANN with seven input features and 
two hidden layers each with seven nodes (see Figure  2). A 
sequential neural network model is built using Keras with three 
layers: 64 neurons in the first hidden layer, 32 neurons in the 
second hidden layer, and 1 neuron in the output layer. Rectified 
Linear Unit (RELU) is used which captures non-linear features 
important for modeling intricate relationships. In this paper 
we use the Adam optimizer (48) which is widely used in ANN, it 
converges quickly while saving computational cost. The RELU 
function is used as an activation function. To enhance the training 
effectiveness normalization was performed. To enhance the 
effectiveness of training and to provide shorter training time, a 
standard scalar is applied on the dataset. The dataset is split into 
two parts training dataset and test datasets. Eighty percent of the 
data was used for network training and 20 % was used for testing, 
i.e., to calculate the prediction accuracy of the model. The training 
and testing accuracy is calculated. The prediction of ANN 
accuracy is calculated using the Mean square error, Root Mean 
square error, Absolute Mean square error, and R square.

The mathematical model of ANN consists of feed-forward pass 
through the network, which involves the neuron activation and the 
final output calculation. The mathematical model of ANN with two 
hidden layers is expressed below. Let x x xn1 2, , ,…( ) be the 
input features.

 z w x w x w x bn n1
1

11
1

1 21
1

2 1
1

1
1= + +…+ +

 
a z1

1
1
1= ( )ReLU

FIGURE 2

ANN model network graph.
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2
1
2= ( )ReLU

 
z w a w a w a bq q1 11 1

3
21 2

3
1

3
1

output output output output output= + +…+ +

 y z = 1
output

Here wij
k( )  represents the weight associated with the connection 

between the i th neuron in layer (k-1) and the j th neuron in layer 
(k). the bj

k  is the bias term for the j th neuron in layer (k) aj
k( )  is 

the output (activation) of the j th neuron in layer (k). ReLU •( )( )  is 
the Rectified Linear Unit activation function.

Furthermore, we  have used Adam optimizer which combines 
ideas from RMsprop and Momentum. The update rule for the 
parameter θ  in the adam optimizer is following.

 1. Initialize the optimizer m0 0= , v0 0= . Here, m is the first 
moment estimate (mean) and v is the second moment estimate 
which we can called as uncertain variance.

 2. Update the parameters.

 
m m Jt t t= + −( )∇ ( )−β β θ1 1 11

 
v v Jt t t= + −( )∇ ( )−β β θ2 1 2

21

In the above equation ∇ ( )J tθ  is the objective function gradient 
with respect to the parameters β1 , β2 , and θ .

 3. Correction of Bias:

m m
t

t
t



=
−1 1β

 and v v
t

t
t



=
−1 2β

 this bias-corrected estimate is utilized 

to keep the moment estimates away from being biased 
approaching to zero, notably in early time steps.

 4. Finally, the parameters update

To find the predictive accuracy of the random model and measure 
its effectiveness following accuracy test are performed. We calculated 
the Root Mean Square Error (RMSE), the Mean Absolute Error 
(MEA), Mean Square Error (MSE), and finally R-Squared (R2, 
coefficient of determination). Following are the formulas of the 
test performed.

 
RMSE y y

ni

n
i i=
−

=
∑

1



 
MEA

n
y y

i

n

i i= −
=
∑1

1



 
MSE

n
y y

i

n

i i= −










=
∑1

1

2


 

R
y y

y y

i
n

i i

i
n

i i

2
1

1

1= −

−










−










=

=

∑

∑





3.6 The econometric models

 

EEit DEPit GDPit URBit
TECHit TRADEit INEQit
= + + +

+ + +
β β β

β β β
β

1 2 3
4 5 6
77 1EPIit i t it+ + + −−− −( )α τ  Model

Here, Energy Efficiency (EEit) is hypothesized to be influenced by 
decentralized energy production (DEPit), GDP (GDPit), urbanization 
(URBit), technology (TECHit), trade volume (TRADEit), income 
inequality (INEQit), and the energy price index (EPIit). While β1, 
β2… β7 are the parameters to be estimated. To capture the dynamics 
over time, we create first-difference equation:

 

∆ ∆ ∆ ∆ ∆
∆ ∆

EEit DEPit GDPit URBit TECHit
TRADEit I
= + + + +

+
β β β β

β β
1 2 3 4

5 6 NNEQit EPIit it+ + −−−− −( )β7 2∆ ∆ Model

 

PM it DEPit GDPit URBit TECHit
TRADEit INEQi

2 5 1 2 3 4
5 6

. = + + + +
+

δ δ δ δ
δ δ tt EPIit i t it+ + + + −−− −( )δ α τ ν7 3Model

PM2.5 level (PM2.5it) is also hypothesized to be influenced by 
DEPit, GDPit, URBit, TECHit, TRADEit, INEQit, and EPIit. While 
δ1, δ2… δ7 are the parameters to be  estimated. To capture the 
dynamics over time, we create first difference equation

 

∆ ∆ ∆ ∆ ∆
∆

PM it DEPit GDPit URBit TECHit
TRADEit
2 5 1 2 3 4

5
. = + + + +

+
δ δ δ δ

δ δ 66 7 4∆ ∆ ∆INEQit EPIit it+ + −−− −( )δ ν Model

We selected the instrument (Zit) for DEPit as the lagged level 
which is correlated with DEPit but not with the error term εi or 
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νi. The SYS-GMM estimator simultaneously estimates the 
equations in levels and differences and uses the instruments to 
account for endogeneity. It also includes country-specific fixed 
effects (α i) and time-specific fixed effects (τ t) to control for 
unobserved heterogeneity. The SYS-GMM estimator will produce 
coefficient estimates for β and δ, representing the relationships 
between the variables, while addressing endogeneity and 
unobserved heterogeneity. The standard errors should be robust 
and can account for heteroskedasticity and serial correlation in 
the data.

4 Results and discussion

It is crucial to carefully consider the order of integration of the 
variables included in this study before diving into an analysis of the 
long-term effects of decentralized energy generation on energy 
efficiency and environmental quality. It is imperative to take this 
preventive measure in order to avoid spurious regression from 
emerging. Many methods for panel unit root testing have been 
proposed in the literature; these include those by (49–51), among 
others. Because of their established track record of producing more 
dependable and consistent findings, we have chosen to use the unit 
root tests created Im et al. (CIPS) second-generation unit-root test is 
appropriate for identifying the order of integration in the 
selected variables.

The Unit Root Test findings are given in Appendix A. Every 
variable is integrated at order 1(1), according to the results of the 

second-generation unit-root test, and this includes a constant, 
intercept, and trend component. As a result, we have decided to use 
initial differences in a two-step system GMM estimator.

After the affirmation of the existence of CD (see Appendix 1) and 
the proper order of integration [deviated from I (2)] among the 
variables, utilization of the System GMM approach for estimation is 
supported by the econometric theory (31). Table 1 presents a thorough 
summary of the descriptive statistics related to the chosen variables, 
revealing information about their degrees of variability and primary 
trends. In the meanwhile, Table  2 shows these variables’ Pearson 
correlation coefficients. Interestingly, decentralized energy production 
shows an inverse link with PM2.5 levels but a strong positive 
correlation with energy efficiency. This finding implies that 
decentralized energy generation improves environmental quality and 
has a positive effect on energy efficiency. Moreover, it is important to 
note that none of the variables we have selected have multicollinearity 
as we continue with our regression study.

Our research has produced an interesting result with a positive 
coefficient for the influence of decentralized energy production (DEP) 
on energy efficiency and a negative coefficient for PM2.5 level 
(Table  3). This implies that the amount of money spent on 
decentralized renewable energy sources, including wind, solar, and 
hydropower, has a quantifiable correlation with PM2.5 pollution 
reduction and energy efficiency. This result accords with other studies 
on the benefits of renewable energy sources for the environment (13). 
This result is particularly critical given the Nordic countries, whose 
legislative actions have revolved around sustainability and 
renewable energy.

TABLE 1 Descriptive statistics.

Variables Mean SD Min Max

EEit 300.0 35.98 240.0 470.0

DEPit 0.320 0.412 0.224 0.456

GDPit 442.5 34.76 15.22 688.2

URBit 48.00 3.123 43.00 59.93

TECHit 210.0 80.00 79.00 350.0

TRADEit 40.00 65.00 35.00 75.89

INEQit 29.99 11.34 22.34 35.45

EPIit 106.32 34.99 102.2 110.2

TABLE 2 Pearson correlation coefficients.

Variables EEit DEPit GDPit URBit TECHit TRADEit INEQit

EEit 1

DEPit 0.73 1

GDPit 0.51 0.35 1

URBit 0.58 0.48 0.44 1

TECHit 0.45 0.39 0.62 0.05 1

TRADEit 0.61 0.27 0.41 0.42 0.53 1

INEQit −0.39 −0.11 −0.34 0.25 0.10 0.13 1
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The theory that the deployment of dispersed decentralized 
renewable energy sources might lead to higher energy efficiency 
matches the shown positive correlation. These sources contribute 
to reduce PM2.5 pollution by means of decreased environmental 
effect and emissions. Given that renewable energy technologies 
provide a sustainable substitute for conventional fossil fuels, 
which are linked with more emissions and worse energy efficiency, 
this link appears reasonable. Studies supporting our conclusions 
include Ur Rehman et  al. (17), who claimed that lowering 
environmental pollutants align with investments in 
renewable energy.

In our study, country-specific and general fixed effects have 
statistically significant value. Time-fixed effects underline the 
importance of time-based elements influencing variables included in 

our study, which could have changed with time and influenced results. 
National fixed effects, however, show the unique dynamics and traits 
of the Nordic countries on the panel. It suggests that country 
characteristics rather than random oscillations explain differences 
among nations. Time and country fixed effects highlight how country-
specific and chronological factors influence environmental quality and 
energy economy. Knowing these effects will enable researchers in 
Nordic region regarding sustainable energy and to identify intricate 
connections between elements of interest over time within 
every nation.

According to the results of the study, urbanization and energy 
efficiency show a significant and positive link. Furthermore 
technological advancement has significant and positive impact on 
energy efficiency a negative impact on PM2.5 level. More precisely, 

TABLE 3 Result of system GMM.

Variables Energy efficiency PM2.5 Level

DEPit 1.07** −0.28**

.S E 0.431 0.101

GDPit 0.89** 0.375*

.S E 0.263 0.166

URBit 0.23*0 0.152*

.S E 0.011 0.070

TECHit 0.358* −0.261*

.S E 0.135 0.0887

TRADEit 0.43** 0.211*

.S E 0.11 0.099

INEQit −0.27* 0.002

.S E 0.125 0.87

EPIit −0.34* 0.220*

.S E 0.016 0.111

Constant 4.11* 5.55*

.S E 0.771 3.011

2R 65 0.64

( ).J stat p 0.40 0.50

.No Instruments 1 1

( )1AR P 0.25 0.136

( )2AR P 0.59 0.72

( ) Sargen Test P 0.69 0.73

Observations 100 100

*, **, *** shows the significance level at 1, 5, and 10%, respectively. S.E shows standard errors. All explanatory variables are lagged by one year.
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the findings imply that advances in energy efficiency and declines in 
PM2.5 concentrations are directly linked to raising the capital 
expenditure on research and development in the area of technology. 
For a good length of time, the dual effects of urbanization on 
environmental quality and energy efficiency have been acknowledged 
in the corpus of scholarly work. Urbanization might be a focus point 
for environmental issues and help to promote energy efficiency at 
the same time (52). Kennedy et  al. (53) highlight the complex 
interaction between urbanization and energy efficiency, therefore 
highlighting the importance of thorough urban planning and 
sustainability policies.

The positive correlation between energy efficiency and technology 
is primarily the development of more energy-efficient systems through 
technological innovation. The positive correlation between 
technological investment and energy efficiency emphasizes the need 
to invest in R&D and technological innovation (46). The potential 
increase in PM2.5 pollution due to urbanization emphasizes the 
importance of proper urban planning to create a friendly environment. 
Our analysis reveals a significant relationship between PM 2.5 levels 
and energy efficiency and trade volumes. There are two possible 
explanations for this. First, it emphasizes how trade between countries 
increases energy efficiency and how globalization helps to develop 
sustainable energy solutions. Second, it acknowledges that the 
increased commercial volume could potentially be due to emissions 
from transportation, leading to increased levels of PM 2.5 
pollution (17).

The result of the study also revealed that increase in high energy 
prices are negatively associated with energy efficiency and add to 
environmental deterioration by increasing the level of PM2.5 
pollutant. Islam and Miao (17) argued that the higher the level of 
energy price the lover will be the level of investment in energy efficient 
practices. Such increase on from one side decrease energy efficiency 
and on the other hand increase the level of pollution.

We conducted a thorough analysis of different model 
specifications using well-established econometric approaches, such as 
the Arellano-Bond and Blundell-Bond Generalized Method of 
Moments (GMM), in order to verify the validity of our study findings. 
The coefficient and standard error did not change significantly giving 
us confidence in the validity and dependability of our findings.

4.1 Artificial neural network results

The multilayer ANN model was developed to test the PM2.5 and 
ENG predictability using the seven parameters. The data was split into 
test and train as described earlier. We tested each country separately 
with the following seven inputs and PM2.5 and EE as output. 
We predicted the PM2.5 for Denmark, Sweeden, Norway, and Finland 
and combining all the countries. In this model, two hidden layers are 
constructed, each with seven neurons. The reason for selecting the 
seven neurons is the number of input variables. The Neuron networks 
are plotted from Figures 3–7 in (a) PM2.5 is plotted for each country 
and in (b) EE is plotted for each country. Furthermore, we  have 
applied some statistical measures to predict the accuracy of the model, 
in Table 4, values associated with PM2.5 are shown and in Table 5, 
ENG are described. From these Tables it is very clear that we have 
achieved high accuracy. As discussed above we  have applied the 
following four methods Root Mean Square Error (RMSE), the Mean 
Absolute Error (MEA), Mean Square Error (MSE), and finally 
R-Squared (R2, coefficient of determination).

5 Conclusion

To understand the complex relationships between decentralized 
energy components and how they affect energy efficiency and 
environmental quality, we conducted an imperial study in the Nordic 
Region. We  found important information by examining and 
interpreting data carefully, in terms of urbanization, technology, GDP, 
trade volume and energy efficiency. These findings highlight the 
complex relationship between decentralized energy production, 
energy efficiency and environmental quality. As PM 2.5 says. Our 
study, based on a distinct sample of Nordic countries including 
Norway, Sweden, Denmark and Finland, allowed us to find 
appropriate geographical results. Since our panel data is dynamic and 
endogeneity issues are considered, the GMM and ANN systems have 
helped ensure our study power.

Our analysis found many connections that show the complexity 
of factors. A positive correlation between urbanization (URB) and 
energy efficiency suggests that a higher rate of urbanization 

FIGURE 3

ANN analysis Denmark. (A) PM2.5 ANN analysis, (B) Energy efficiency.
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FIGURE 4

ANN analysis Sweeden. (A) PM2.5 ANN analysis, (B) Energy efficiency.

FIGURE 6

ANN analysis Norway. (A) PM2.5 ANN analysis, (B) Energy efficiency.

FIGURE 5

ANN analysis Finland. (A) PM2.5 ANN analysis, (B) Energy efficiency.
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improves energy efficiency, but urban populations may increase PM 
2.5 levels due to pollution. Additionally, Energy efficiency is 
positively associated with increase in R&D costs as a percentage of 
GDP because technology (TECH) is a key factor in energy efficiency 
and environmental improvement. Energy efficiency has increased 
by GDP and shows that economic growth contributes to energy-
efficient methods and technologies. Trade volume (TV) has had a 
positive impact on energy efficiency and highlighted the role of 
global trade in the expansion of energy-efficient technologies and 
practices. On the other hand, large volumes of trade can lead to 
increased energy consumption and pollution, so environmental 
trade is very important. This research reveals many factors that 
affect Norway’s environmental quality and energy efficiency. 
Negative associations propose plans and investments in energy and 
pollution reduction. Complex results show the need for 
comprehensive solutions and mechanisms to solve the balance in 
environmental quality due to trade, economic expansion and 
urbanization. Finally, our studies emphasize the need for a 
comprehensive and situational energy and environmental control 

project program. We need to consider balances and combinations 
to develop methods that increase environmental quality and 
energy efficiency.

5.1 Policy implications

The policy implications of our work emphasize the need for 
conversion to renewable energy sources including air, sun, and water. 
Policymakers should provide tax structure regarding the purchase of 
energy efficient production process and support sustainable energy 
technology to minimize pollution and boost energy efficiency. 
Urbanization (URB) promotes sustainable urban development, so 
policies should support urban transit and infrastructure to decrease 
environmental issues. Encouragements are needed to boost 
technology and R&D in numerous fields to eliminate imbalances and 
promote environmentally friendly economic growth. Additionally, 
policies should be formulized for sustainable international trade and 
recognize transport pollution’s environmental effect.

TABLE 4 Results of PM2.5 using ANN.

Countries RMSE MEA MSE R-Squared

Sweeden 0.077 0.065 0.006 0.570

Denmark 0.061 0.053 0.004 0.270

Norway 0.044 0.035 0.002 0.046

Finland 0.324 0.301 0.105 0.233

Combined 0.121 0.070 0.015 0.932

TABLE 5 Results of energy efficiency using ANN.

Countries RMSE MEA MSE R-Squared

Sweeden 0.449 0.358 0.202 0.570

Denmark 0.386 0.297 0.149 0.196

Norway 0.485 0.406 0.236 0.448

Finland 0.833 0.743 0.694 0.840

Combined 0.335 0.269 0.112 0.902

FIGURE 7

Combined ANN analysis. (A) PM2.5 ANN analysis, (B) Energy efficiency.
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Additionally, Norwegian officials should address regional 
cooperation and the necessity for a comprehensive and unique local 
plan to enhance environmental quality and energy efficiency in the 
Northern Region given the link between energy and environmental 
challenges. Sustainable practices, technology and innovation, and 
regional collaboration may help these nations develop a greener, more 
energy-efficient future.
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Appendix 1

TABLE A1 Cross-sectional dependence and order of integration.

Variables CD-test CIPS

Level First difference

EEit 38.468*** −3.963** −11.844***

DEPit 17.620*** −2.677** −7.601***

GDPit 19.502** −1.035 8.330***

URBit 20.600*** −2.865*** −10.199***

TECHit 14.131*** −1.088 −11.084***

TRADEit 9.361*** −1.841 −9.801***

EEit 25.27*** −1.354** −10.129***

*, **, *** display significance level at 10, 5, and 1%, respectively.
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