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Introduction: The growing demand for real-time, affordable, and accessible 
healthcare has underscored the need for advanced technologies that can 
provide timely health monitoring. One such area is predicting arterial blood 
pressure (BP) using non-invasive methods, which is crucial for managing 
cardiovascular diseases. This research aims to address the limitations of current 
healthcare systems, particularly in remote areas, by leveraging deep learning 
techniques in Smart Health Monitoring (SHM).

Methods: This paper introduces a novel neural network architecture, ResNet-
LSTM, to predict BP from physiological signals such as electrocardiogram (ECG) 
and photoplethysmogram (PPG). The combination of ResNet’s feature extraction 
capabilities and LSTM’s sequential data processing offers improved prediction 
accuracy. Comprehensive error analysis was conducted, and the model was 
validated using Leave-One-Out (LOO) cross-validation and an additional dataset.

Results: The ResNet-LSTM model showed superior performance, particularly with 
PPG data, achieving a mean absolute error (MAE) of 6.2 mmHg and a root mean 
square error (RMSE) of 8.9 mmHg for BP prediction. Despite the higher computational 
cost (~4,375 FLOPs), the improved accuracy and generalization across datasets 
demonstrate the model’s robustness and suitability for continuous BP monitoring.

Discussion: The results confirm the potential of integrating ResNet-LSTM into 
SHM for accurate and non-invasive BP prediction. This approach also highlights 
the need for accurate anomaly detection in continuous monitoring systems, 
especially for wearable devices. Future work will focus on enhancing cloud-
based infrastructures for real-time analysis and refining anomaly detection 
models to improve patient outcomes.

KEYWORDS

deep learning, machine learning, smart health monitoring, smart wearables, 
hypertension

1 Introduction

1.1 Smart health monitoring

One of the most significant developments in the healthcare industry in the current digital age 
is smart health care. Traditional medicine based on bioengineering has started to gradually 
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digitalize information due to scientific theory and technological 
advancements. The healthcare system continuously monitors a patient 
by examining a variety of data and extrapolating a positive outcome from 
previous instances of such continuous monitoring. In Intensive Care 
Units (ICUs), continuous monitoring of patients is standard practice, 
allowing healthcare providers to access critical information in real-time. 
This monitoring can be lifesaving for conditions such as diabetes, asthma 
attacks, heart failure, and hypertension. Smart medical devices can 
connect to smartphones, enabling the seamless transmission of 
important patient data to clinicians. These gadgets also record data on 
blood pressure, weight, blood sugar, and oxygen levels. Smart health care 
makes it possible for people from a variety of backgrounds (such as 
doctors, nurses, caregivers for older family members, and patients) to 
find suitable information and results, appropriate information, and 
solutions, reduce medical errors, improve care, and reduce expenses at 
the right time in the health-care department/facilities (1). Several 
methods are used in smart health care, together with the usage of devices 
such as mobiles, computers, and televisions, along with various networks, 
like wide area networks (WANs), local area networks (LANs), and body 
area networks (BANs). The parameters that are most frequently tracked 
include blood heat, heart rate, blood pressure, and motion detection.

This research focuses specifically on arterial blood pressure (BP) 
monitoring, which plays a critical role in managing conditions like 
hypertension and cardiovascular diseases. The continuous monitoring 
provided by smart devices enhances real-time assessments, especially 
in individuals who may lack awareness of their vital signs or have 
varying levels of clinical knowledge (2). Smart medical devices, such as 
wearables, help both patients and healthcare providers to access relevant 
information. These devices track important metrics like blood pressure, 
heart rate, and oxygen levels, thus offering more accessible and timely 
interventions, particularly for those in remote areas or with limited 
access to healthcare (3). SHM empowers diverse users, from patients to 
healthcare professionals, by reducing medical errors, improving patient 
care, and cutting healthcare costs by providing real-time, continuous 
data transmission through networks like LANs and BANs.

Table  1 presents a sample of commonly used wearable sensor 
technologies, focusing specifically on their applications related to 
arterial blood pressure (BP) monitoring and other cardiovascular 
assessments. While this table does not encompass the full breadth of 
wearable devices available, it highlights technologies particularly 
relevant to BP prediction and management, as well as related clinical 
applications such as arrhythmia detection and heart failure management.

1.2 Hypertension: conditions for detecting 
hypertension

Hypertension is a significant global health concern, affecting 
millions and contributing to a higher risk of cardiovascular diseases. 
Blood pressure (BP) is a dynamic physiological measure that fluctuates 
minute by minute, influenced by various environmental and 

physiological factors (4). Continuous monitoring of BP helps detect 
trends that might indicate early signs of hypertension or cardiovascular 
strain. Home BP monitoring is gaining prominence as it offers valuable 
insights into BP fluctuations throughout the day and night, potentially 
unveiling conditions like “white coat” hypertension or irregularities 
linked to stress. This monitoring in diverse contexts allows for more 
informed decisions in treatment and management, reducing risks such 
as heart disease or hypertension-induced mortality. Effective BP 
control is especially crucial for reducing cardiovascular risks, 
particularly in older adults. While BP measurement has been shown to 
be an effective predictor of outcomes in cardiovascular disease, a better 
understanding of BP levels and variability could enhance risk 
stratification. It may facilitate the detection of “white coat” hypertension 
and assess excessive BP responses to various stresses. Variations in BP 
levels between day and night can also provide important information 
regarding the cardiovascular system (5). Furthermore, the comorbidity 
of mental illnesses and hypertension is linked to a higher cardiovascular 
mortality than hypertension alone, as hypertensive patients are more 
prone to experience anxiety. Effective BP control can decrease the risk 
of cardiovascular disease (CVD) and mortality in older individuals. BP 
varies over both short and long periods, including days, months, 
quarters, or years (6). Home BP monitoring, highly advised as a 
supplement to standard BP measurement in recent hypertension 
guidelines, plays a major role in the management of hypertension.

1.3 What are medical anomalies and why 
are they different?

Medical anomalies refer to deviations from typical physiological 
patterns, which may indicate underlying conditions or pathologies. 
These deviations can be congenital (present at birth) or acquired over 
time. For instance, variations in blood pressure (BP) could point to 
cardiovascular disorders, while other anomalies might suggest 
arrhythmias or metabolic imbalances.

A critical distinction must be  made between anomalies and 
artifacts in medical data. Anomalies reflect genuine physiological 
irregularities that could suggest disease or abnormal conditions. In 
contrast, artifacts are errors or distortions in the data—often resulting 
from sensor misreading or environmental factors—that do not 
represent real physiological conditions. For example, sudden 
fluctuations in BP readings could be caused by movement or sensor 
misalignment rather than an actual BP variation. The machine 
learning (ML) system presented in this paper focuses primarily on 
detecting anomalies—deviations in physiological signals such as BP 
that may indicate an abnormal health state. However, distinguishing 
between true anomalies and artifacts is also essential to ensure 
accuracy in diagnoses. This research integrates signal processing 
techniques within deep learning models to filter out artifacts and 
enhance the detection of clinically relevant anomalies. To handle 
medical imaging tasks like classification and segmentation, anomaly 
detection is one potential methodology that can make use of semi-
supervised and unsupervised methods.

Figure 1 illustrates the essential phases of processing medical data 
using machine learning for anomaly detection. The figure outlines a 
step-by-step flow from data acquisition to prediction and diagnosis, 
highlighting how each phase is related to anomaly detection:

Abbreviations: BP, Blood Pressure; SHM, Smart health monitoring; PPG, 

Photoplethysmograms; ECG, Electrocardiograms; LSTM, Long Short-Term 

Memory; MAE, Mean absolute error; RMSE, Root Mean Squared Error; MoN, Model 

of normality; FLOPS, Floating-point operations per second.
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 a Prediction: Machine learning algorithms predict the future state 
of physiological signals such as BP, helping clinicians anticipate 
adverse events or trends (e.g., a gradual increase in BP).

 b Diagnosis: By analyzing physiological signals, machine learning 
models can help identify pathological symptoms (e.g., 
hypertensive crises or arrhythmias).

These two tasks—prediction and diagnosis—are closely linked to 
anomaly detection since they enable identification of abnormal patterns 
in the data. The model extracts distinct features from the data, thereby 
improving diagnostic accuracy and delivering insights into patient health.

Key challenges in medical anomaly detection include:

 a Test sensitivity: High sensitivity is required to detect subtle 
deviations accurately, ensuring that no abnormality is 
overlooked during diagnosis.

 b Patient-specific factors: An effective model must account for 
individual differences in physiological baselines, ensuring that 
anomalies are detected based on personalized norms rather 
than generalized data.

Given these challenges, medical anomaly detection typically falls 
under supervised learning, where models are trained on labelled data 
(normal vs. abnormal) to identify anomalies. This contrasts with other 
domains, where anomaly detection is often an unsupervised task due 
to the absence of predefined labels (7).

1.4 Why use deep learning for medical 
anomalies?

Deep learning (DL) has emerged as a potent instrument in 
biomedical research because of its capacity to handle the intricate 
problems related to the identification of medical anomalies (8). The 
key advantages of deep learning, particularly in this context, include:

TABLE 1 Summary of wearable sensor technologies and clinical applications.

Sensor technology Device type Measurements Clinical applications

PPG Smartwatch or Band

Heart Rate Variability (HRV), Heart Rate (HR), 

Blood pressure (BP) without a cuff, oxygen 

saturation (SaO2), Heart Rate, Sleep Stages, 

Pulse-based Rhythm Detection, and Stroke 

Volume

Prediction of arterial blood pressure; Evaluation of risk in 

both healthy and cardiovascularly ill individuals; screening 

for and treatment of hypertension; identification and 

diagnosis of arrhythmias; tracking of sleep; Management of 

heart failure

ECG Smart Ring

both single- and multiple-lead ECGs, ongoing or 

only when necessary observation, interval 

assessments (such as QTc), detection of 

arrhythmias, Changes in electrolyte 

abnormalities

Prediction of arterial blood pressure; Evaluation of risk in 

both healthy and CVD individuals; screening for and 

treatment of hypertension; identification and diagnosis of 

arrhythmias; diagnosis of acute coronary syndrome; extended 

QTc diagnosis Management of heart failure

Accelerometer Chest Strap
Steps taken, force of impact, speed, amount of 

idle time, and exercise

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

Barometer Wristband Stair count

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

GPS Smart Clothing Travel distance and burned calories

Monitoring physical activity; Assessing risk in both healthy 

and CVD-afflicted individuals; Cardiopulmonary 

telerehabilitation; management of heart failure

Biometric Sensors Smart Earbuds

Constant Monitoring of Electrolytes and Blood 

Glucose monitoring blood sugar levels continuously; managing heart 

failureNon-invasive electrolyte levels in saliva and sweat 

and state of hydration

Biomechanical Smart Shoes
Ballistocardiograms, Seismocardiograms, 

Dielectric sensors

Weight, body vibrations, lung fluid volume, stroke volume, 

and cardiac output

FIGURE 1

Key phases of processing medical data and their connection to 
anomaly detection.
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 a Non-linearity modeling: Medical data is often non-linear, 
with complex relationships between variables. Deep 
learning models, such as the ResNet-LSTM, are capable of 
capturing these non-linear relationships, making it 
easier  to distinguish between normal and abnormal 
physiological states.

 b Handling data discrepancies: Medical data often contains 
inconsistencies or noise, whether due to artifacts or natural 
variability in patient signals. Deep learning models can manage 
these discrepancies by learning patterns from large datasets, 
thereby filtering out irrelevant variations and focusing on 
clinically significant changes.

In this paper, we leverage a ResNet-LSTM architecture for its 
ability to model both spatial and temporal features. This enables 
the model to uncover long-term dependencies in physiological 
data without the need for explicit feature engineering. 
Specifically, this approach helps identify BP anomalies by 
analyzing patterns in photoplethysmogram (PPG) and 
electrocardiogram (ECG) signals over time. The ResNet 
component effectively extracts spatial features from the data, 
while the LSTM component captures temporal relationships, 
enhancing the model’s predictive power in detecting deviations. 
By applying this deep learning framework, the model is able to 
provide continuous, real-time monitoring of physiological 
signals, making it a robust tool for identifying true anomalies 
while minimizing the influence of artifacts. Figure 2 provides a 
hierarchical taxonomy of current deep learning techniques used 
in anomaly detection, illustrating how different models 
(including ResNet-LSTM) fit within the broader landscape of 
anomaly detection approaches.

1.5 Objective of paper

This paper’s main objective is to use DL and ML techniques to 
investigate the transformative potential of SHM. It focuses specifically 
on the application of neural network architectures, ResNet-LSTM in 
particular, for the prediction of arterial blood pressure. The aim of this 
paper is to assess the efficacy of SHM in providing reliable, affordable, 
and timely health monitoring services, especially in remote areas. The 
study aims to contribute to the paradigm shift in health data assessment 
and anomaly detection by integrating intelligent sensors that can 
monitor health in real-time. It emphasizes the significance of continuous 
monitoring through wearables.

The first section of the paper introduces the problems that the 
genesis and transmission of diseases present to the healthcare sector, 
highlighting the need for creative solutions. The concept of SHM and 
its potential to transform the assessment of health data is then 
explored in depth. In the research methodology section, it is explained 
how physiological signals like PPG and ECG are used to predict 
arterial blood pressure using deep learning, specifically ResNet-
LSTM. A thorough analysis of the ResNet-LSTM network’s 
performance, including MAE and RMSE values, is provided in the 
results section. The network’s accuracy across all BP prediction 
scenarios is demonstrated by numerical values. Interpreting the 
results, the discussion highlights the importance of accurate anomaly 
detection and wearables for continuous monitoring. Throughout, the 
research emphasizes the practical implications of the research in 
addressing current healthcare challenges and promoting personalized, 
effective health monitoring solutions.

Table 2 summarizes the types of anomaly detection techniques 
used in your paper, including deep learning, machine learning, 
statistical methods, and hybrid approaches. The precise method used, 

FIGURE 2

A hierarchical taxonomy of current deep anomaly detection techniques.

TABLE 2 Summary of anomaly detection techniques.

Technique Type Data analysis Online/
Offline

Reciprocity Adaptability Data 
processing

ResNet-LSTM Deep Learning Physiological Signals (ECG, PPG) Online Temporal Non-adjustable Central

WaveNet+LSTM Machine Learning Physiological Signals (ECG, PPG) Offline Temporal Non-adjustable Central

Clustering Algorithm Statistical Method Physiological Signals (ECG, PPG) Offline Spatial Non-adjustable Distributed

Transfer Learning Hybrid Image Features Offline - Adjustable Central
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the kind of data analysis, reciprocity, online/offline nature, flexibility, 
and data processing strategy are given for each technique.

The current methods for detecting anomalies and sensor faults are 
briefly explained in the following section. The suggested method for 
detecting sensor anomalies is presented in Section 3. In Section 4, 
experiments and findings are covered along with a comparison of the 
suggested strategy with related approaches. Conclusion and potential 
future work are presented in Sections 5 and 6, respectively.

2 Literature survey

Many important factors, such as data processing algorithms, 
communication networks, sensor selection, contact-based versus 
contactless techniques, and other design considerations, must 
be carefully considered to create a dependable remote monitoring 
system. Numerous review papers offer perceptive evaluations of smart 
technology by examining it from multiple perspectives.

While Ohta et al. (37) focused on developing a health monitoring 
system especially for senior citizens who live alone to ease their 
anxieties and encourage independent living, while Tamura et al. (38) 
investigated the development of a home health monitoring system that 
did not forbid activities like bathing, sleeping, or urinating. These 
studies paved the way for the creation of intelligent wearables for 
health detection that add new features on a regular basis. Deep 
learning techniques are utilized by researchers for medical 
anomaly identification.

Clifford et  al. (4) showcased the potential of computational 
methods in cardiology through their work on the categorization of 
heart sound recordings as normal or abnormal. In automated 
rehabilitation, Wang et al. (9) used deep back propagation–LSTM 
networks for upper-limbs EMG signal categorization. In the context 
of infectious diseases, Singh et  al. (10) created a multi-objective 
differential evolution-based convolutional neural network for 
COVID-19 patient classification from chest CT images. Chang et al. 
(3) demonstrated the precise classification of genetic alterations in 
gliomas using deep-learning convolutional neural networks for 
applications other than healthcare.

Using image, audio, and inspection robot sensors, Hea et al. (39) 
investigated the connection between technology and infrastructure 
maintenance and developed a non-invasive method for fault diagnosis 
and detection in water distribution systems. Motwani et  al. (1) 
provided a comprehensive analysis of machine learning-based 
ubiquitous and intelligent healthcare monitoring frameworks and 
provided insights into novel and developing treatments for patients 
with chronic illnesses. Several review articles covering a range of fields 
discussed anomaly detection. García-Macías and Ubertini (Springer) 
integrated SHM systems, focusing on data fusion and unsupervised 
learning to identify damage. Aliyu et al.’s paper, “Anomaly Detection 
in Wearable Location Trackers for Child Safety,” focused on 
microprocessors and microsystems. Churová et  al. proposed an 
anomaly detection method for real-world data (11).

The study carried out by Hamieh et al. (12) sheds light on a 
noteworthy and demanding application of remote monitoring: 
mental health. They highlight the value of using unsupervised 
learning to spot relapses in individuals with psychotic disorders, 
demonstrating the potential benefits of objective, non-intrusive 
monitoring for early intervention and improved patient outcomes. 

Further research into AI-powered mental health monitoring 
systems that safeguard user privacy and provide carers and 
clinicians with useful information is made possible by this study. 
Jahan et al. (13) introduce us to a new field by using smartwatch 
technology for activity recognition within the context of religious 
rites like salat. This study shows how adaptable remote monitoring 
can be, going beyond traditional applications in fitness and health 
to satisfy cultural and religious demands. Think about the benefits 
that come from tailoring activity detection algorithms to various 
practices so that individuals can meaningfully monitor their 
participation and adherence.

The application of remote monitoring in human behavior analysis 
is elaborated upon by Bozdog et al. (14). Their research demonstrates 
how anomalies can be  detected and intricate human behavior 
patterns can be  deciphered using wearable sensors and machine 
learning. This opens the door to applications like risk prediction, 
personalized coaching, and even environmental adaptation based on 
real-time behavioral data. Our primary concerns as we use these 
technologies to understand human behavior should be ethics and 
user privacy. The resource Kalpana et  al. (40) was helpful as it 
gathered an extensive overview of deep learning methods for anomaly 
identification in human activity recognition, which helped in 
formulating the proposed model and understand the scope and need 
for this research work. This provides a comprehensive summary of 
current research trends and identifies areas that warrant additional 
research. By highlighting the benefits and drawbacks of various 
algorithms, this paper lays the foundation for researchers to build on 
current understanding and push the boundaries of human activity 
detection accuracy and interpretability. By adding to the body of 
knowledge, these combined efforts promote the development of 
remote monitoring systems and increase their efficacy in a range of 
applications. All the existing works have been summarized for a 
better understanding in Table 3.

3 Proposed methodologies

The algorithmic strategies for detecting medical anomalies are:
 a Unsupervised anomaly detection: It does not involve any 

supervision signal that would indicate whether a sample is 
normal or not during the learning process. Unsupervised 
methods are therefore intriguing to the machine learning field 
since they do not require labelled datasets. The following 
subsections introduce two popular unsupervised deep anomaly 
architectures: Autoencoders (AEs) and Generative Adversarial 
Networks (GANs). AEs have been extensively used for 
automatic feature learning ever since they were first introduced 
as a pre-training method for deep neural networks. The model 
is trained to reconstruct the input using a learnt compressed 
representation that is stored at the core of the architecture 
because the AEs are symmetrical. Assume that the current 
input (I) is a dataset made up of samples, and that the encoder 
and decoder networks are denoted, respectively. Next, the 
compressed form is provided as follows: Formally, let us 
assume that the encoder and decoder networks are denoted, 
that the dataset comprises samples, and that the current input 
is p. Next, it is decided what the compressed representation 
using Equation 1.
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 ( )l h i=  (1)

and the reconstruction is performed using Equation 2.

 ( ).y g l=  (2)

To minimize the reconstruction loss, ( )( )K,pKandL(x,g h x this 
model has been trained.

 b Supervised anomaly detection: Due to its high demand in 
diagnostic application because of its high sensitivity and 
durability supervised learning is being applied widely for 
medical anomaly detection. It also has proven to be  better 
performing than unsupervised methods. In This approach, a 
supervised signal is presented which indicates whether the 
samples are from the normal category or abnormal. Thus, 
making the job to behave as a binary classifier, and training the 
models using binary cross-entropy loss. Multi-task learning 
(MTL) which is a subtype of supervised learning, helps to 
transfer pertinent knowledge collected from various linked 
tasks, among them. For example, the difficulties brought on by 
subject-specific differences can be solved using a secondary 
subject identification task. As a result, the model develops the 
ability to classify anomalies while also learning to recognize 
similarities and differences among participants. The deep 
learning architectures that have been explored thus far are 

feedforward designs, meaning that data moves from input to 
output in a single direction. Their capacity to model temporal 
signals is hence constrained. Recurrent Neural Networks are 
used to overcome this restriction.

 c Recurrent neural networks (RNNs): Recurrence is a crucial 
characteristic for tasks like time-series modeling since it 
essentially means that the output of the current time step is 
once more used as an input to the subsequent time step. The 
modeling of sequential medical data, such as EEG and 
phonocardiographic data, is also essential for obtaining the 
temporal evolution of the signal. For modeling long-term 
dependencies, simple RNN architectures are ineffective due to 
BPTT-caused disappearing gradients. Several variations of 
RNN models have been created to mitigate this issue. However, 
because RNNs have a lot of vanishing gradients, they cannot 
accurately represent long-term dependencies; for this reason, 
LSTM networks are developed.

3.1 How do smart watches analyze heart 
rate?

The heart rate monitor of the smartwatch uses an easy and 
economic optical method PPG. It is employed to find changes in 
blood volume in the tissue’s microvascular network. This technique 
uses a combination of green LED and infrared light along with 
photosensitive diodes to illuminate the skin and measure the 
absorption of the green light accordingly (15) as depicted in Figure 3. 

TABLE 3 Summary and insights obtained from existing literature.

Reference Methods Techniques Results Problems identified

García-Macías and Ubertini 

(Springer)

Structural health monitoring 

(SHM) systems

Data fusion, unsupervised 

learning for damage identification

Incorporation of SHM systems, 

emphasis on data fusion and 

unsupervised learning

Customization of activity 

detection algorithms

Aliyu et al.
Wearable location trackers: 

detecting anomalies
Microprocessors, microsystems

Centered on wearable location 

trackers’ anomaly detection for 

kid safety

Privacy concerns

Churová et al. (2020) (11)
Real-world data anomaly 

detection technique
Not specified

Proposed real-world data 

anomaly detection technique
Privacy concerns

Hamieh et al. (2023) (12)
Unsupervised learning for 

mental health monitoring
Not specified

Identification of relapses in 

people with psychotic 

disorders, potential for early 

intervention

Privacy concerns in mental 

health monitoring

Jahan et al. (2023) (13)

Smartwatch technology for 

activity recognition in 

religious rites

Not specified

Flexible remote monitoring 

beyond health and fitness, 

meeting cultural and religious 

requirements

Customization of activity 

detection algorithms

Bozdog et al. (2021) (14)
Remote monitoring in human 

behavior analysis

Wearable sensors, machine 

learning

Potential for understanding 

intricate patterns in human 

behavior, applications in risk 

prediction and coaching

Ethical and privacy concerns 

in human behavior analysis

Kalpana et al. (2022)

Deep learning methods for 

anomaly identification in 

human activity recognition

Not specified

Overview of current research 

trends, advantages, and 

disadvantages of various 

algorithms

Areas that show promise for 

further investigation
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Here, this combination of infrared light and green LED is taken 
because the Red Blood Cells (RBCs) reflect the red light and absorb 
the green light. This helps the sensors compute the amount of blood 
flowing through the wrist at any given time. The green LED is 
generally used when the user is performing any exercise. Normally, 
the watch uses infrared light to calculate the heart rate every 10 min. 
Furthermore, if the watch is loosely worn or the skin is perfused the 
LED increases its brightness and sampling rate to measure the exact 
heart rate. When the watch measures the heart rate every 10 min, it 
switches to the green LED in case the infrared light fails to provide an 
adequate reading (16). These lights flash hundreds of times per minute 
to get a hold of the blood flow which helps the device calculate the 
heart rate precisely.

3.2 Architecture of the anomaly detection 
model and its role in data processing of the 
MIMIC database

The MIMIC database (17), which contains a variety of data 
gathered from ICU patients, is used to calculate the relationship 
between PPG and ABP and assess how the model responds to abrupt 
variations in blood pressure. In this application, LSTM and CNN are 
combined. Since CNN can extract deep features and LSTM can learn 
from past experiences, these models are ideal for anomaly detection. 
Due to fully connected layers and connectionless nodes processing a 
single input between layers, the 2D CNN and LSTM model offers a 
superior classification (18). A temporal sequence is used as the input 
for an LSTM and is connected to the nodes from a directed graph 
along with a typical order.

3.2.1 Convolutional neural network (CNN)
CNN is used in many different applications, such as image 

classification, object recognition, and medical image analysis. CNN is 
mainly used to extract local characteristics from higher-level inputs. 
These characteristics are then forwarded to lower layers for help with 
more complex features. Its three layers are pooling, fully connected 
(FC), and convolutional (FC) (1).

 A Convolutional layer:
A collection of kernels for generating a tensor of feature mappings 

is present in the convolutional layer of the CNN layer. The kernels use 
the striding process to entwine the entire input to produce the output 
volume’s dimensions as integers, while the convolutional layer reduces 

the dimensions of the input volume. To retain the size of the input 
volume using low-level characteristics while padding an input volume 
of zeros, the striding procedure is required. The convolutional layer’s 
function is described as in Equation 3.

 ( ) ( )( ) ( ) ( ), , , ,G x y M N i j M x i y j N i j= ∗ = ∑∑ + +  (3)

where G is the result of a 2D feature map, N is a 2D filter of size 
i × j, and M is the input matrix.

 B Rectified linear unit (ReLU) layer:
The convolutional layer’s operation is indicated by M*N. Feature 

maps can be made more nonlinear by using the ReLU layer. ReLU uses 
a threshold input of zero to calculate activation. The mathematical 
expression for it is as follows as given in Equation 4.

 ( ) ( )f x max 0,x=  (4)

 C Pooling layer:
The pooling layer performs a down sample of the specified input 

scale to minimize the number of factors. Max pooling is the most 
popular technique since it yields the highest result for a certain input 
region. Using the characteristics gathered from the previous two layers, 
the FC layer computes the judgments made by CNN. It serves as a 
classifier, the FC layer.

 • Why use ResNet?
Res Nets help in preserving a low error rate in the deeper 

layers of the network hence, making them one of the most efficient 
Neural Network Architectures. It employs a method known as 
skip connections (12). The salient characteristic of this technique 
is that regularization bypasses any layer that reduces or impedes 
the architecture’s performance. To form a residual block, this 
connection skips some layers between the activations of one layer 
and those of subsequent layers. These residual blocks are stacked 
together to create ResNets. leads to training the deep neural 
network without any vanishing or exploding gradient disruptions. 
This network fits the residual mapping by letting the network do 
the fitting. Hence, instead of saying G(x), initial mapping, let the 
network fit as defined by Equation 5.

 ( ) ( ) ( ) ( ): : iH i G i H i G x= − = +
 (5)

3.2.2 Long short – term memory (LSTM)
A particular kind of recurrent neural network called an LSTM 

solves disappearing and exploding gradient problems by using 
memory blocks rather than the standard RNN units. The LSTM’s 
cell state also stores the long-term states, enabling it to link data 
gathered in the past and present. Three distinct types of gates 
make up the internal structure of the LSTM, as shown in Figure 4:

px - denotes the current input;
pC  and 1pC −   – denote the new and previous cell states, 

respectively; and
ph  and 1ph −   - denote the current and previous outputs, 

respectively.

 ( )1. ,p i p p ii W h x bσ − = +   (6)

FIGURE 3

Photosensitive diodes (sensors), green LED and infrared lights on the 
base of a smartwatch.
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 ( )1tanh . ,p i p p iC W h x b− = + 


 (7)

 1p p p p pC f C i C−= + 

 (8)

 ( )1. ,p f p p ff W h x bσ − = +   (9)

Where, pC represents the current moment information and refers 
to a tan h output,

1pC − represents the long-term memory information,
iW denotes a sigmoid output and the weighted matrices of the 

input gate,
ib  represents the LSTM bias of the input gate,

fW represents the weight matrix,
fb represents the offset, and
σ  represents the sigmoid function.
Here, px  and 1ph −  are passed through a sigmoid layer using 

Equation 6. to determine which portion of the data needs to be added. 
Moreover, after px  and 1ph −  have passed through the tanh layer, 
Equation 7 is utilized to extract new information, and Equation 8 
integrates long-term memory and current memory into pC . The 
information from a previous cell that can be forgotten is determined 
using Equation 9.

 ( )1. ,p o p p oO W h x bσ − = +   (10)

 ( )tanhp p ph O C=  (11)

Where, oW  represents the weighted matrices of the output 
gate, and.

ob  represents the LSTM bias of the output gate.

Using Equations 10, 11, the output gate determines the states 
necessary for px  and 1ph −  inputs to continue. To obtain the final 
output, the state decision vectors that transfer new information, Ct, 
across the tanh layer are located and multiplied.

3.2.3 Combined CNN-LSTM network
This design uses the LSTM as a classifier and the CNN to extract 

complex features from images (19). The suggested network has a total 
of 20 layers, as seen in Figure 5. These layers consist of an FC layer, an 
LSTM layer, five pooling layers, twelve convolutional layers, and an 
output layer that applies the SoftMax function. Two or three 2D 
CNNs, a pooling layer, and a dropout layer with a 25% dropout rate 
connect each convolutional block. The 3×3 sized kernel convolutional 
layer is activated by the ReLU function and prepared for feature 
extraction. The max-pooling layer’s 2×2 size kernels are used to reduce 
the size of the input image. The LSTM layer uses the function map 
transferred in the last stage of the model to extract time information.

3.3 How the hybrid network identifies 
high-risk ABP conditions

There are two approaches to detect hypertension and monitor the 
blood pressure. The first method treats the model as though it were a 
regression task—that is, as though it produces continuous values. As 
a result, the systolic and diastolic values of blood pressure are 
calculated using the PPG and ECG signals (20). By using both signals 
or features computed from PPG and ECG (or, in some cases, only PPG 
signal is used) signals as input, various machine learning techniques, 
such as linear regression models and artificial neural networks (ANN) 
for regression tasks, are used to estimate BP values.

The second approach treats the model as if it generates discrete 
values or labels, i.e., like a classification task. In this method, the 
models try to compute the level of hypertension the patient belongs 
to, based on clinical and socio-demographic data (21). This approach 
differs from the first is that, the first approach utilizes raw signals or 
features extracted from the input data used in ML model, whereas the 
second approach makes use of continuous clinical data.

FIGURE 4

Architecture of LSTM input gate.
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 (a) Regression task (first approach)
Linear regression formula is defined in Equations 12, 13:

 y mx b= +  (12)

Where:

 • y is the predicted blood pressure value.
 • m is the slope.
 • x is the input signal.
 • b is the y-intercept.

 (b) Classification task (second approach)
SoftMax function:

 
( )iSoftMax

xi

xj
j

ex
e

=
∑  

(13)

where:

 • e is the base of the natural logarithm.
 • xi is the input value for class i.
 • The function outputs a probability distribution over 

multiple class.

The following subsection provides insights on how to use these 
methods along with transfer learning in the hybrid network.

3.4 How to integrate transfer learning in 
the hybrid network

Figure 6 illustrates the flowchart for anomaly detection, which 
feeds N anomaly-free images into the deep feature extractor of the 
transfer learning model. The MoN, which learns/extracts normality 
from the input images, is created using the learnt or extracted features. 
Consequently, a transfer learning model is used to extract the features 
for a given input image. A similarity measure is then used to compare 
the extracted features to the MoN, and the anomaly is identified if the 
resulting anomaly score is greater than the decision threshold.

 A Transfer learning model
We use EfficientNet, which was trained on the ImageNet dataset, 

for transfer learning. It employs a state-of-the-art scaling method that 
uniformly scales each dimension (depth, width, and resolution) using 
a compound scaling coefficient. The balanced scaling of the model 
leads to improved performance. The baseline network of EfficientNet, 
called “EfficientNet-B0,” maximizes FLOPS and precision (22). Next, 
the baseline network was scaled with different compound coefficients 
to create the “EfficientNet-B1 through B7” EfficientNet scaled 
versions. Using a multi-objective Neural Architecture Search (NAS) 

FIGURE 5

Proposed hybrid network.
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that improves accuracy and FLOPS, the core network of EfficientNet 
was built.

 B Model of normality (MoN)
The representations that do not fit its specification are marked as 

anomalies since MoN learns normality from the characteristics that 
are extracted. Therefore, all regular variants must be included in the 
MoN creation for the designated purposes. A MoN is constructed for 
each data class by averaging the learnt features taken from the N 
normal pictures, which are only used to create MoNs and are not 
included in the evaluation set.

 C Similarity measure
The MoN’s subjective similarity to an image can be expressed in 

terms of a distance measure specified on the learnt feature space, since 
each input image’s deep-learned features function as a unique 
identifier. In order to accomplish this, we use Euclidean distance to 

calculate the similarity between MoN and features taken from the 
test photos.

Euclidean distance formula is given in Equation 14:

 
( ) ( )2Distance MoN,Image i i

i
MoN Image= −∑

 
(14)

Since it directly impacts detection efficiency, the decision 
threshold is a critical component of distance-based anomaly detection 
algorithms. Figure 7 shows a flowchart that illustrates the threshold-
setting procedure. By adjusting this level appropriately, it is possible 
to significantly increase detection accuracy while reducing false 
positive rate. Here, based on the vectors Kmax and Kmean, we suggest a 
clear way for setting the working-point threshold in Table 4.

FIGURE 7

Working-point threshold setting process.

FIGURE 6

Anomaly detection.
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3.5 About dataset

The graph illustrated in Figure 8, shows the distribution of heart 
rate zones recorded during a specific date (2019-04-11) as part of 
SHM using wearable sensors, from the dataset (23). Each heart rate 
zone, categorized based on intensity levels such as “Out of Range,” “Fat 
Burn,” “Cardio,” and “Peak,” is represented by a bar in the graph. The 
height of each bar corresponds to the duration (in minutes) spent in 
the respective heart rate zone, while the color coding helps distinguish 
between different zones.

This graph is particularly relevant to our discussion on the 
use of physiological signals, such as ECG and PPG, in predicting 
arterial BP through neural network architectures (24, 25). In the 
context of ResNet-LSTM network’s superior performance in 
health monitoring, this graph provides valuable insights into the 
distribution of heart rate zones, which are indicative of the 
intensity levels of physical activity or exertion (26–28). 
Understanding these heart rate patterns can contribute to the 

accurate prediction of BP and overall health monitoring (29). 
Furthermore, the graph aligns with the significance of anomaly 
detection and the need for accurate monitoring through 
wearables. By analyzing heart rate data and identifying anomalies 
or irregularities in heart rate patterns, healthcare professionals 
can intervene in a timely manner to address potential health 
concerns (30, 31). Overall, this graph serves as a visual 
representation of the physiological data collected through SHM, 
supporting the discussion on leveraging innovative technologies 
for real-time health monitoring and prediction (32–34).

The MIMIC (Medical Information Mart for Intensive Care) 
dataset is a critical resource in this research, providing a diverse 
collection of real-world clinical signals that support the 
development and evaluation of the proposed blood pressure (BP) 
prediction models. MIMIC contains rich physiological data, 
including Electrocardiogram (ECG), Photoplethysmography 
(PPG), and Arterial Blood Pressure (ABP) measurements from a 
wide variety of patients with different medical conditions (35, 36). 
This diversity allows models like the ResNet-LSTM to generalize 
across various patient profiles and medical scenarios, improving 
the accuracy and reliability of BP anomaly detection. In the study, 
the dataset was used to train and validate machine learning 
models designed to predict systolic and diastolic BP. The results, 
displayed in Tables 5, 6, show that the ResNet-LSTM model 
outperforms other architectures in terms of Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE). This 
comprehensive dataset played a crucial role in the testing and 
validation of the proposed model, ensuring that the models were 
exposed to real-world complexities, thus enhancing their 
predictive power and applicability in clinical settings.

TABLE 4 Working-point threshold based on the vectors Kmax and Kmean.

Threshold (T) K1 - Kmax, K2 – Kmean

T1 max(K1)

T2 max(K1) - std.(K1)

T3 mean(K1) + std.(K1)

T4 max(K2)

T5 max(K2) - std.(K2)

T6 mean(K2) + std.(K2)

FIGURE 8

Distribution of heart rate zones as per our readings.
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TABLE 7 Comparison of complexity of various neural networks.

Neural network Cost estimation 
(FLOPs)

Complexity 
order

PPG + ECG PPG

Fully connected ∼2,500 ∼625 O(L × (Vdim)2)

Long Short-Term 

Memory
∼2,500 ∼625 O(L × (Vdim)2)

WaveNet ∼7,500 ∼1850 O(L × (Vdim)2 × ksize)

WaveNet + Long Short-

Term Memory
∼7,500 ∼1850 O(L × (Vdim)2 × ksize)

ResNet + Long Short-

Term Memory
∼17,500 ∼4,375 O(L × (Vdim)2 × ksize)

4 Results

The results of BP prediction achieved using the distinct settings 
and networks are summarized in Table 5. Performance was improved 
in each setup when PPG was used. The ResNet + LSTM network, 
which accurately predicted BP values, was the best one (Table 6). On 
the validation set, the network overall MAEs were considered. Since 
the networks are designed with the primary objective of generating BP 
values in mind, direct BP prediction appears to be the optimal strategy. 
But when networks need to infer the entire signal, they need to learn 
information that will not be used. Table 7 illustrates that the ResNet + 
LSTM is the optimal network in both scenarios and also illustrates the 
neural network’s complexity for anomaly detection.

The errors in the total BP prediction for various setups using the 
MIMIC database (17) are displayed, as shown in Supplementary Figure S5. 
MAE and RMSE values are shown in the figure to illustrate how different 
configurations—Fully connected, LSTM, WaveNet, WaveNet+LSTM, 
and ResNet+LSTM—perform in terms of performance. As stated in the 
research of Paviglianiti et al. (5) titled “A Comparison of Deep Learning 
Techniques for Arterial Blood Pressure Prediction” published in 
Cognitive Computation, statistical comparisons with current models 
were conducted for more thorough examination. Using a custom dataset 
from the works of Paviglianiti et al. (5) and ECG, PPG, and ABP readings 
taken from the MIMIC database, our model is trained and tested. This 
collection of clinical signal data is a priceless resource that provides an 
accurate representation of physiological parameters observed in daily 
life. With the use of this vast and varied dataset, our models were able to 
learn and generalize across a broad range of medical conditions and 
patient profiles. We  ensured that our models were exposed to the 

nuances and complexities found in actual patient data by utilizing clinical 
signals from the MIMIC database, which increased their 
predictive power.

The MIMIC Database’s Leave-One-Out (LOO) results are shown 
in Supplementary Figure S6, with an emphasis on the optimal neural 
network architecture, ResNet-LSTM. The figure shows whole BP 
prediction scenarios as well as MAE and RMSE values for direct 
systolic/diastolic blood pressure (SBP/DBP) prediction using PPG and 
ECG signals.

In addition, we validated our models’ performance using the Pulse 
Transit Time PPG dataset. To ascertain whether our models could 
be used outside of the training set, this additional dataset was essential. 
Carefully comparing the results to this independent dataset 

TABLE 5 Errors on the total BP prediction using the MIMIC database.

Tested set MAE RMSE MAE RMSE

Dataset Photoplethysmography dataset Photoplethysmography 
+ Electroencephalogram Dataset

Fully connected 18.6 27.2 18.3 25.7

Long Short-Term Memory 8.6 13.3 5.9 9.3

WaveNet 12.3 18.3 11.3 17.5

WaveNet + Long Short-Term 

Memory
10.0 15.6 5.7 9.0

ResNet + Long Short-Term 

Memory
6.2 8.9 3.3 5.0

TABLE 6 LOO outcomes using ResNet-LSTM on the MIMIC database.

Tested set RMSE MAE MAE D MAE S RMSE D RMSE S

Direct SBP/DBP prediction

  Photoplethysmography (50 pat) - - 10.746 23.598 12.344 27.643

  Photoplethysmography (40 pat) - - 11.106 24.223 12.642 28.247

  Electrocardiogram (40 pat) - - 9.548 20.367 10.848 23.070

Entire BP prediction

  Photoplethysmography (50 pat) 19.155 15.342 10.684 21.467 12.349 25.383

  Photoplethysmography (40 pat) 19.560 15.679 10.818 22.409 12.411 26.246

  Electrocardiogram (40 pat) 18.018 14.609 10.105 22.099 11.529 24.587
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demonstrated the robustness and reliability of our models. 
Consequently, we were able to assess our models’ efficacy against state-
of-the-art techniques and gain a better understanding of how well they 
predicted arterial blood pressure.

A thorough comparison of neural network complexities is shown 
in Figure 9. The graph shows the cost estimation and complexity order 
(FLOPs) for several neural network architectures, such as 

ResNet+LSTM, WaveNet, WaveNet+LSTM, and Fully connected. 
Understanding each architecture’s computational efficiency is made 
easier with the help of this visual representation.

Figure 10’s-line plot illustrates the trend of MAE and RMSE in 
several configurations, such as Fully Connected, LSTM, WaveNet, 
WaveNet+LSTM, and ResNet+LSTM. The x-axis represents the 
different setups, and the y-axis shows the error values. Plot 

FIGURE 9

Neural network comparison.

FIGURE 10

Trend analysis of MAE and RMSE for different setups.
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performance for each setup in terms of error distribution and 
prediction accuracy is shown. The MAE and RMSE for direct Systolic 
Blood Pressure and Diastolic Blood Pressure predictions are compared 
in the bar chart shown in Figure 10 for several tested sets, such as PPG 
(50 pat), PPG (40 pat), and ECG (40 pat). The graphic aids in 
evaluating how well the neural network (ResNet+LSTM) predicts 
blood pressure based solely on physiological signals.

The stacked bar chart as depicted in Figures 11, 12, illustrates the 
MAE and RMSE for entire blood pressure prediction across different 
tested sets. The chart is divided into segments representing MAE and 
RMSE values for direct SBP and DBP predictions using the 
ResNet+LSTM neural network. It offers a visual comparison of the 
errors associated with different physiological signals and tested sets.

The heatmap depicted in Figure 13, provides a comprehensive 
overview of the computational complexity (Cost estimation in FLOPs) 
associated with different neural network architectures. Each cell in the 
heatmap corresponds to a specific neural network’s complexity for 
predicting arterial blood pressure using PPG signals. Darker shades 
represent higher computational costs.

4.1 Results from our readings

The line graph illustrated in Figure 14, depicts the variation in 
heart rate values over time, captured at regular intervals during a 
specific monitoring session. Each data point on the graph represents 

a recorded heart rate value at a particular timestamp, with the x-axis 
indicating time and the y-axis representing heart rate values.

The graph in Figure 14 is pertinent to the abstract’s exploration of 
SHM and the utilization of wearable sensors for real-time health 
monitoring. It reflects the continuous monitoring of physiological 
parameters, such as heart rate, which is crucial for assessing overall 
health status and detecting anomalies or irregularities. It provides 
insights into the temporal dynamics of heart rate, which is a key 
physiological signal used in BP prediction models. By analyzing trends 
and fluctuations in heart rate values over time, healthcare professionals 
can infer patterns of physical activity, stress, or other factors that may 
impact BP levels. Changes in heart rate patterns, as depicted by the 
line graph, can serve as indicators of potential health concerns or 
deviations from normal physiological states, prompting timely 
interventions or further investigation.

The histogram depicted in Figure  15, provides a visual 
representation of the distribution of heart rate values, allowing us to 
identify the central tendency and spread of heart rate data. By 
observing the shape of the histogram and the location of its central 
peak, we can gain insights into the typical range of heart rate values 
recorded during the monitoring session. Additionally, the spread of 
the histogram can indicate the variability or dispersion of heart rate 
values around the central tendency. Overall, the histogram provides a 
summary of the overall heart rate distribution, aiding in the 
interpretation of physiological responses and patterns observed 
during the monitoring session.

FIGURE 11

Comparison of direct SBP/DBP prediction for different tested sets.
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FIGURE 12

Stacked bar chart for entire BP prediction based on MAE and RMSE.

FIGURE 13

Neural network complexity heatmap.
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FIGURE 15

Histogram of heart rate distribution from our readings.

The box plot depicted in Figure 16, provides a visual representation 
of the variability in heart rate values, allowing us to assess the spread and 
dispersion of the data. By observing the box plot, we can identify the 
median (central tendency) of the heart rate values, as well as the 
interquartile range (IQR) which represents the spread of the middle 
50% of the data. Additionally, any outliers or extreme values beyond the 
whiskers of the box plot can indicate potential anomalies or irregularities 
in the heart rate data. By visually inspecting the box plot, healthcare 
professionals can identify any outliers or extreme values that may 

require further investigation or intervention, supporting the overarching 
goal of continuous monitoring and early detection of health issues.

By analyzing the correlation matrix illustrated in Figure  17, 
healthcare professionals can identify any correlations or dependencies 
between different physiological signals, which are crucial for accurately 
predicting arterial blood pressure and overall health monitoring. 
Understanding the relationships between physiological signals can aid 
in the development of effective prediction models and personalized 
healthcare interventions.

FIGURE 14

Timestamp vs. heart rate line graph from our readings.
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5 Conclusion

An approach to evaluate personal healthcare is to continuously 
monitor physiological markers. Understanding the underlying 
causes of illness states can be greatly aided by identifying patterns 
that can be discovered by recognizing outliers or irregularities in 
heart rates and other characteristics. The vast amount of data 
collected by wearable device sensors contains irregularities, hence 
finding anomalies requires accurately automated algorithms. Across 
the globe, there is a gradual but continuous transition from hospital-
based care to patient-centric care. This will gradually pave the way 
for a data influx, along with the rise in popularity of wearable 
technology. Any illness status tracking requires continuous 
wearables-related data points, which are outside the purview of 
medical care. Such daily longitudinal data collection over extended 
times can lead to data buildup. The methods used to obtain and 
disseminate the data determine how the data will be  used 
analytically, as has been described throughout this current article. It 
is crucial to build wearables-related software for precise health 
monitoring as well as cutting-edge data collection, analysis, and 
visualization. Exact clarifications that can be linked to activity of the 
user and everyday involvement are necessary for both solo and 
hybrid systems for anomaly identification. The transparency of 
algorithms used to calculate step or sleep data is another crucial area 
that should be  supported. Enhancement of anomaly detection 
algorithms take place continuously. To increase the predictability 
huge datasets have also been made accessible simultaneously. Thus, 
there is a connection between wearable technology and data analysis 

and important sectors like the cloud and data security. A wearable 
device’s ability to communicate with hand-held devices like 
smartphones and the cloud is facilitated by the internet connection, 
particularly Wi-Fi.

6 Discussion

Numerous detection techniques have been suggested to identify 
anomalies due to their clinical importance and the effects they have 
on diagnosis and treatment. Wearable gadget clinical investigations 
are also becoming more common. Several essential conditions must 
be met to get therapeutically useful outputs from wearables-related 
data. To generate suggestions, users must make decisions and align 
their goals, which both could call for platforms in addition to mobile 
apps. It is important to test forth current recommendations regarding 
the correlation of different device-derived data. For instance, when 
exercise and sleep are connected, the underlying physiological 
imbalance can be hidden.

By building a dedicated cloud infrastructure for data analysis 
and storage, wearables can be used more effectively in healthcare. 
The security of these devices should also be considered. Device-
to-device connectivity and an online cloud infrastructure subject 
to strict regulations are prerequisites for the digital healthcare 
framework. Eventually, these components might help with the use 
of wearable big data and accurate anomaly detection in pathology 
research. Apart from these factors, the next improvements ought 
to concentrate on the cutting-edge cloud infrastructure designed 

FIGURE 16

Box plot of heart rate distribution from our readings.
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specifically for the analysis and archiving of health data generated 
by wearables. To ensure scalability, security, and smooth 
integration with healthcare systems, this infrastructure should 
effectively manage the substantial amount of data generated by 
wearables. Moreover, the creation of a networked wearable 
ecosystem may open new opportunities for health monitoring 
synergies, enabling the cooperative use of fitness trackers, 
smartwatches, and medical sensors to provide a thorough 
understanding of a person’s wellbeing.

Work on improving anomaly detection models should 
consider contextual integration of different wearable data 
streams. Comprehending the interplay among variables like 
ambient circumstances, user behavior, and physiological metrics 
can offer a more comprehensive perspective on a person’s health 
state. This strategy is in line with the development of user-centric 
decision support systems, which customize insights and 
suggestions based on data from wearables to personal objectives 
and health goals. To create a seamless data flow between 
wearables and healthcare providers, collaboration with current 

health platforms and electronic health records (EHRs) is essential. 
Ensuring compliance with interoperability standards promotes 
timely interventions based on anomaly detection results and 
comprehensive patient care. In addition, the incorporation of 
behavioral analytics into models for anomaly detection can 
provide a more profound comprehension of patterns concerning 
user behavior, way of life, and compliance with health advice. 
This can improve the accuracy of anomaly detection by 
accounting for individual behavioral differences.

Experiential validation studies should be  carried out as 
wearable technology in healthcare continues to advance to 
evaluate the practicality and user-friendliness of anomaly 
detection systems. Algorithm modifications based on user and 
healthcare professional feedback can enhance the technology’s 
overall usefulness. The responsible and efficient integration of 
wearable technology in healthcare will be  further aided by the 
creation of ethical frameworks, the adoption of explainable AI 
techniques, and the development of strategies for long-term health 
monitoring using wearables.

FIGURE 17

Correlation matrix of physiological signals from our readings.
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