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Objective: The effect of environmental pollution on sleep has been widely 
studied, yet the relationship between exposure to volatile organic compounds 
(VOCs) and sleep health requires further exploration. We aimed to investigate 
the single and mixed effect of urinary VOC metabolites on sleep health and 
identify potential mediators.

Methods: Data for this cross-sectional study was collected from the National 
Health and Nutrition Examination Surveys (NHANES) (2005–2006, 2011–2014). 
A weighted multivariate logistic regression was established to explore the 
associations of 16 VOCs with four sleep outcomes. Following the selection of 
important VOCs through the least absolute shrinkage and selection operator 
(LASSO) regression, principal component analyses (PCA), weight quantile sum 
(WQS), and Bayesian kernel machine regression (BKMR) analyses were conducted 
to explore the associations between exposure to single and mixed VOCs and 
sleep outcomes, as well as identify the most contributing components. A 
mediation analysis was performed to explore the potential effect of depression 
scores.

Results: Of the 3,473 participants included in the study, a total of 618 were 
diagnosed with poor sleep patterns. In logistic regression analyses, 7, 10, 1, and 5 
VOCs were significantly positively correlated with poor sleep patterns, abnormal 
sleep duration, trouble sleeping, and sleep disorders, respectively. The PCA 
analysis showed that PC1 was substantially linked to a higher risk of poor sleep 
patterns and its components. The WQS model revealed a positive association 
between VOC mixture of increased concentrations and poor sleep patterns [OR 
(95% CI): 1.285 (1.107, 1.493)], abnormal sleep duration [OR (95% CI): 1.154 (1.030, 
1.295)], trouble sleeping [OR (95% CI): 1.236 (1.090, 1.403)] and sleep disorders 
[OR (95% CI): 1.378 (1.118, 1.705)]. The BKMR model found positive associations 
of the overall VOC exposure with poor sleep patterns, trouble sleeping, and 
sleep disorders. PCA, WQS, and BKMR models all confirmed the significant role 
of N-acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC) in poor sleep patterns 
and its components. The depression score was a mediator between the positive 
VOC mixture index and the four sleep outcomes.

Conclusion: Exposure to single and mixed VOCs negatively affected the sleep 
health of American population, with AMCC playing a significant role. The 
depression score was shown to mediate the associations of VOC mixtures with 
poor sleep patterns and its components.
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1 Introduction

Sleep is a series of physiological processes regulated by 
neurobiology, which accounts for one-third of human life duration (1, 
2). Sleep plays a crucial role in promoting health by affecting many 
physiological processes such as endocrine and neurological systems 
(3, 4). Based on an assessment of the World Health Organization, 
around one-third of people worldwide suffer from sleep disturbances 
(5). Poor sleep health is manifested by sleep disorders as well as 
insufficient, delayed or fragmented sleep, which is inherently sensitive 
to external environments such as ambient sounds, light, air quality, 
and environmental features around the sleep space (6). Many studies 
have observed an overall negative association between environmental 
exposures and sleep health, including heavy metals, secondhand 
smoke, and air pollutants, etc. (7). A cross-sectional study based on 
National Health and Nutrition Examination Surveys (NHANES) 
found that exposure to polycyclic aromatic hydrocarbons (PAHs) 
might be  associated with poor sleep patterns (8). Previous meta-
analyses have shown that self-reported exposure to secondhand 
smoke is positively correlated to short sleep lengths, poor sleep quality, 
and daytime sleepiness (9). Liu et  al. (10) found that continuous 
exposure to air pollutants (including PM10, PM2.5, PM1, and NO2) 
increased the occurrence of sleep disorders while decreased sleep 
duration of the Chinese population. Taken together, these results 
suggested a possible connections between environmental exposures 
and sleep issues.

Volatile organic compounds (VOCs) are a combination of 
low-molecular-weight substances (11), including a variety of organic 
chemicals such as benzene and toluene, etc. (12). Both natural sources 
and human activities are important sources of VOCs. These 
compounds primarily enter the human body through inhalation or 
skin contact, which may affect a variety of physiological and metabolic 
functions of the body, such as serum lipids (13), sex hormones (14), 
and liver function (15), etc. One recent study found a positive 
correlation of co-exposure to VOCs with short sleep duration and 
trouble sleeping among the United States general population (16). A 
previous study on sewage treatment workers in the United  States 
found that workers exposed to benzene, toluene, and other organic 
solvents had increased sleep requirements consistent with solvent 
exposure (17). A study on rats suggested that toluene exposure 
disrupted the sleep–wake cycle by affecting monoaminergic responses 
in sleep-related brain regions (18). Nowadays, cumulated evidence has 
indicated a close association between depression and sleep disorders, 
with various neurotransmitters in the central nervous system (CNS) 
jointly involved in emotional and sleep regulation (19). Furthermore, 
air pollutants are believed to affect the onset and progression of 
depression through inflammation and oxidative-stress-related 
pathways (20). Epidemiological studies have confirmed an increased 
risk of depression associated with VOCs (21). All these studies 
suggested a possible link between VOCs and sleep health, with 
depression potentially playing a significant role in such connections. 

However, current research has been mainly focused on specific 
occupational exposure groups limited to a few types of VOCs, with 
the assessment of sleep health confined to a single dimension and a 
lack of an exploration of its underlying mechanisms. Considering the 
complex interactions among VOCs and the importance of 
incorporating various sleep components in the analyses (22), further 
investigation into the combined effects of VOCs on sleep and their 
potential mechanisms appears essential.

Therefore, we conducted a cross-sectional study based on 3 cycles 
of the NHANES database using logistic regression, least absolute 
shrinkage and selection operator (LASSO) regression, principal 
component analysis (PCA), weight quantile sum (WQS), Bayesian 
kernel machine regression (BKMR) and mediated effects analyses to 
fully explore the associations between single and mixed exposures to 
VOCs and sleep health (including poor sleep patterns, abnormal sleep 
duration, trouble sleeping, and sleep disorders) among the American 
general population, as well as to explore the mediating effect of the 
depression score.

2 Methods

2.1 Study design and population

This cross-sectional study utilized data from the NHANES 
conducted during 2005–2006, 2011–2012, and 2013–2014. NHANES, 
an ongoing project led by the National Center for Health Statistics 
(NCHS), is a nationally-representative survey conducted in the U.S., 
which involves continuous data collection through interviews, 
physical examinations, and laboratory tests on the general population 
of the United States. For more detailed information, please visit the 
Website NHANES  - National Health and Nutrition Examination 
Survey Homepage (cdc.gov).

In this study, a total of 30,279 participants were recruited from 3 
NHANES cycles, of whom 16,308 were aged 20 years or above. After 
excluding 11,212 participants with missing urinary VOC data, 5,096 
were collected. Of these participants, 19 with missing sleep data were 
excluded. To obtain more reliable results, we  excluded 1,604 
participants with missing covariates [ratio of family income to poverty 
(PIR), diabetes, hypertension, marital status, education level, body 
mass index (BMI), drinking status, serum cotinine]. Ultimately, 3,473 
study participants were included in the analyses 
(Supplementary Figure S1).

2.2 Measurement of urinary VOCs

The quantification of urinary metabolites of VOCs was performed 
utilizing ultra-performance liquid chromatography-electrospray tandem 
mass spectrometry (UPLC-ESI/MSMS) (23). An Acquity UPLC® HSS 
T3 column (Part no. 186003540, 1.8 μm x 2.1 mm x 150 mm, Waters Inc.) 
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was utilized for chromatographic separation. More detailed methods and 
information can be accessed on the NHANES website. In cases where 
analytes yielded results below the lower limit of detection (LLOD), a fill 
value was inserted in the analyte result field, calculated as LLOD/ 2.

In our research, we included a total of 16 urinary VOC metabolites 
for analyses, each with a detection rate exceeding 70%. These 
metabolites were: N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA), 
2-aminothiazoline-4-carboxylic acid (ATCA), N-acetyl-S-(N-
methylcarbamoyl)-l-cysteine (AMCC), N-acetyl-S-(benzyl)-l-
cysteine (BMA), N-acetyl-S-(n-propyl)-l-cysteine (BPMA), N-acetyl-
S-(2-cyanoethyl)-l-cysteine (CYMA), N-acetyl-S-(2-carboxyethyl)-
l-cysteine (CEMA), N-acetyl-S-(3,4-dihidroxybutyl)-l-cysteine 
(DHBMA), N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine 
(MHBMA3), Mandelic acid (MA), Phenylglyoxylic acid (PGA), 
N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (HPMMA), 
2-methylhippuric acid (2MHA), N-acetyl-S-(2-hydroxypropyl)-l-
cysteine (2HPMA), 3-methylhippuric acid & 4-methylhippuric acid 
(3MHA + 4MHA) and N-acetyl-S-(3-hydroxypropyl)-l-cysteine 
(3HPMA). Details regarding the parent compounds, detection rates, 
LLOD, and distributions of these 16 urinary VOC metabolites can 
be found in Supplementary Table S1.

2.3 Poor sleep patterns, and its component 
assessment

The participants’ nighttime sleep length was determined by asking 
them, “How much sleep do you usually get at night on weekdays or 
workdays?,” and was categorized as normal (7–9 h/night) and 
abnormal (<7 h/night or >9 h/night). Based on answers to the question 
“Have you  ever told a doctor or other health professionals that 
you  have trouble sleeping?,” the presence of self-reported trouble 
sleeping was evaluated. To determine whether a sleep disorder was 
present, the question “Have you ever been told by a doctor or other 
health professionals that you have a sleep disorder?” was asked. When 
two or more of the following occur, it is considered a “poor sleep 
pattern”: an abnormal sleep duration (<7 h or >9 h), trouble sleeping, 
and sleep disorders (8, 24).

2.4 Measurement of the depression score

The depression score was obtained through the Patient Health 
Questionnaire-9 (PHQ-9), a face-to-face interview-based depression 
screening tool. The PHQ-9 consisted of nine questions, each of which 
was assigned a score of 0–3, and all item scores were ultimately 
summed to obtain a depression score ranging from 0 to 27 (25). The 
depression score reflected the frequency of participants’ depressive 
symptoms in the past 2 weeks, which was positively correlated with 
the severity of their depression symptoms. The sensitivity and 
specificity of diagnosing major depression with a PHQ-9 score ≥ 10 
were 88% (26).

2.5 Covariates

Based on previous studies, potential covariates that might 
influence the association between VOCs and sleep health were 

included in this study (8, 27). Categorical covariates included gender 
(female and male), race (Mexican American, other Hispanic, 
non-Hispanic White, non-Hispanic Black, others), education level 
(less than grade 9, grade 9–11, high school graduate/GED or 
equivalent, some college or AA degree, college graduate or above), 
marital status (married, widowed, divorced, separated, never married, 
living with partner), PIR (<5, ≥5), BMI (<18.5, 18.5–24.9, 25.0–29.9, 
and ≥30), drinking status (no, moderate, and heavy), serum cotinine 
(low and high), diabetes (no, borderline, yes) and hypertension (no 
and yes). Continuous covariates included age. Non-drinkers were 
defined as individuals who had not consumed alcohol in the past year. 
In addition, women who drank an average of <4 drinks per day and 
men who drank an average of <5 drinks per day in the past year were 
defined as moderate drinkers, and the rest were defined as heavy 
drinkers. Environmental tobacco exposure was assessed using serum 
cotinine concentrations, categorized as low (≤0.015 ng/mL) and high 
(>0.015 ng/mL) using a cut-off of 0.015 ng/mL. Hypertension and 
diabetes mellitus were diagnosed through index measurements, 
medication use, and self-reports.

2.6 Statistical analysis

Given the complexity of the NHANES design, and following the 
NHANES survey reporting guidelines, we used subsample weights 
from 2-year VOCs divided by 3 as 6-year subsample weights for a 
better generalization of the results to the entire American population. 
We first conducted normality tests on continuous variables in the 
baseline characteristics analysis. Continuous variables following a 
normal distribution were expressed as weighted means (standard 
deviation, SD), with t-tests for between-group comparisons, and 
unweighted values (weighted proportions) for categorical variables, 
with χ2 tests for between-group comparisons. We standardized the 
urinary VOC concentrations for urinary creatinine, and further 
performed a logarithmic transformation for creatinine-corrected 
VOCs to conform to a normal distribution considering the right-
skewed distribution of urinary VOCs. The correlation between the 
natural logarithm (ln)-transformed VOC concentrations under 
creatinine adjustment was computed using Pearson’s 
correlation coefficient.

We used survey-weighted multivariate logistic regression models 
to explore the relationship between single exposure to 16 VOCs and 
sleep health. Pearson correlation analyses suggested high correlations 
and collinearity among multiple VOCs, so we  used multivariate-
adjusted LASSO regression to screen out key variates associated with 
sleep health outcomes and construct optimal models (28). A 10-fold 
cross-validation was used to select the optimal lambda. Significant 
VOCs screened through LASSO regression were included in the 
subsequent PCA, WQS, BKMR, and mediation analyses.

We used PCA to transform our original correlated VOC variables 
into a series of uncorrelated principal components that captured 
important sources of variations, which could explain most variations 
in the original variables, realizing the downscaling of the screened 
important VOCs. Principal components with eigenvalues exceeding 
1 were chosen (29) and integrated into the logistic regression model 
as continuous independent variables to investigate the associations 
between principal component scores and poor sleep patterns, along 
with their components.
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To explore the mixed effect of VOCs on multiple sleep health 
outcomes, we fitted the screened important VOCs into WQS and 
BKMR models for analyses. Based on the characteristics of the WQS 
model, we assumed positive and negative directions, respectively, to 
explore the associations of the WQS index of VOCs with poor sleep 
patterns and its components, as well as the contribution of each 
VOC. The samples were pre-randomized into training and 
validation sets at a ratio of 4: 6, and bootstrap sampling with 
N = 1,000 was employed to generate robust estimates. In the BKMR 
model, we  performed 20,000 iterations for all analyses using a 
Markov chain Monte Carlo method. First of all, we calculated the 
values of posterior inclusion probabilities (PIPs) for selected VOCs 
to identify those important for poor sleep patterns and its 
components using a threshold of 0.5. Secondly, the joint effect of 
VOCs was assessed by comparing VOC mixtures in different 
percentiles with the median mixture of VOCs. In addition, we fixed 
the remaining VOCs at the median to explore the dose–response 
relationship of a single VOC with poor sleep patterns and 
its components.

Finally, we conducted mediation analyses using the R package 
“mediation” to test the mediating role of depression scores in the VOC 
mixture index, poor sleep patterns and its components. The bootstrap 
method was used and simulations were repeated 5,000 times to 
estimate the mediation effect and confidence intervals (CIs), with all 
covariates corrected.

The analyses in this study were realized using R software (4.3.1) 
through the “survey,” “glmnet,” “factoextra,” “gWQS,” “bkmr,” and 
“mediation” packages. Statistical significance was defined as a 
two-tailed p-value of less than 0.05.

3 Results

3.1 Participant characteristics

Of the 3,473 participants, a total of 618 were diagnosed with poor 
sleep patterns. Participants’ survey-weighted baseline characteristics 
according to sleep patterns are shown in Table 1. Participants with 
poor sleep patterns were more likely to be older, widowed/divorced, 
who had higher levels of BMI and serum cotinine, whereas those 
without poor sleep patterns were more likely to be  in a moderate 
drinking status, while those with diabetes and hypertension were 
more likely to have poor sleep patterns. To better illustrate the 
characteristics of the study population, we  further compared the 
baseline characteristics of included and excluded subjects 
(Supplementary Table S2).

The parent compounds, detection rates, LLOD, and 
distributions of VOC concentrations are shown in 
Supplementary Table S1. The detection rates of the 16 VOCs 
included in this study were > 70%, among which urinary DHBMA 
had the highest median concentration (304.0 ng/mL), and urinary 
CYMA had the lowest (2.1 ng/mL). The Pearson’s coefficients of the 
16 ln-transformed VOCs showed high correlations between 
HPMMA and MHBMA3 (r = 0.85), 2MHA and 3MHA + 4MHA 
(r = 0.84), CYMA and MHBMA3 (r = 0.81), 3HPMA and 
MHBMA3 (r = 0.81), as well as HPMMA and 3HPMA (r = 0.81), 
while other correlations were relatively weak. 
(Supplementary Figure S2).

3.2 Relationship of single VOCs with poor 
sleep patterns and its components

Table 2 demonstrates the correlation of single VOCs with poor 
sleep patterns and its components under survey-weighted logistic 
regression analysis after adjusting all covariates. Poor sleep patterns 
were positively connected with AAMA, AMCC, CEMA, DHBMA, 
3HPMA, MHBMA3, and PGA. Additionally, a positive correlation was 
found between AAMA, AMCC, CEMA, CYMA, DHBMA, 3HPMA, 
MA, MHBMA3, PGA, HPMMA and abnormal sleep duration, while a 
negative correlation was discovered between BPMA and abnormal sleep 
duration. Only CEMA was positively correlated with trouble sleeping. 
Significant positive correlations were found between AAMA, CEMA, 
DHBMA, MA, MHBMA3 and sleep disorders (all P-FDR <0.05).

3.3 Lasso regression to identify VOCs 
associated with poor sleep patterns and its 
components

Considering the high correlation among multiple VOCs, 
we used LASSO regression to screen out the VOCs that were more 
important for poor sleep patterns and its components. Based on 
the logarithm of λ, we plotted partial likelihood deviance (binomial 
deviance) curves and determined the optimal λ values for poor 
sleep patterns, abnormal sleep duration, trouble sleeping as well as 
sleep disorders to be  0.004236 [log(λ) = −5.464], 0.005043 
[log(λ) = −5.290], 0.003715 [log(λ) = −5.595] and 0.004153 
[log(λ) = −5.484] respectively (Supplementary Figure S3). The 
contraction coefficient curves were further plotted to select VOCs 
that were more correlated with the dependent variables. For poor 
sleep patterns, a total of 10 VOCs (AAMA, AMCC, BMA, BPMA, 
CEMA, CYMA, 2HPMA, MHBMA3, PGA, HPMMA) were 
included in the analyses; 3MHA + 4MHA, AMCC, ATCA, BPMA, 
CEMA, CYMA, 2HPMA, PGA, and HPMMA were more associated 
with abnormal sleep duration; for trouble sleeping, AMCC, BMA, 
BPMA, CEMA, CYMA, DHBMA, and 2HPMA were included; 
while AMCC, ATCA, DHBMA, MA, and PGA were considered 
more relevant to sleep disorders (Supplementary Figure S4).

3.4 Principal component analysis (PCA) on 
VOC mixtures

We identified 2, 2, 2, 1 PCs for poor sleep patterns, abnormal sleep 
duration, trouble sleeping, and sleep disorders using eigenvalues 
through PCA analyses, which, respectively, explained 59.59, 57.37, 
59.34, and 49.49% of the total variance in the VOC exposure 
(Supplementary Table S3). Supplementary Figure S5 depicts the 
loadings of each selected VOC on the principal components. For poor 
sleep patterns, the first PC exhibited similar moderate variable 
loadings for AAMA, AMCC, CEMA, CYMA, MHBMA3, and 
HPMMA in the same direction. PC2 showed a high positive load 
fraction of BPMA, while negative loadings for CYMA, AMCC, 
MHBMA3, AAMA, and HPMMA. Notably, AMCC had high positive 
loadings in all the four sleep outcomes of PC1.

In the principal component analysis adjusting all covariates, PC1 
was significantly positively associated with poor sleep patterns [OR 
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TABLE 1 Survey-weighted participant characteristics in NHANES (2005–2006, 2011–2014).

Characteristics Overall Poor sleep patterns p-valuea

No Yes

N 3,473 2,855 618

Gender 0.33

  Male 1919 (53.13) 1,603 (53.71) 316 (50.44)

  Female 1,554 (46.87) 1,252 (46.29) 302 (49.56)

Age 46.50 (16.36) 46.02 (16.64) 48.71 (14.82) <0.01

Race 0.6

  Mexican American 496 (7.27) 426 (7.58) 70 (5.85)

  Other Hispanic 235 (4.90) 189 (4.96) 46 (4.60)

  Non-Hispanic White 1,664 (72.27) 1,353 (71.99) 311 (73.55)

  Non-Hispanic Black 774 (9.96) 625 (9.81) 149 (10.65)

  Other Race 304 (5.60) 262 (5.66) 42 (5.35)

Education 0.14

  Less than 9th grade 306 (4.49) 256 (4.38) 50 (5.01)

  9-11th grade 458 (9.33) 368 (9.09) 90 (10.47)

  High school graduate/GED or equivalent 765 (21.84) 622 (22.05) 143 (20.88)

  Some college or AA degree 1,035 (31.24) 824 (30.40) 211 (35.11)

  College graduate or above 909 (33.10) 785 (34.09) 124 (28.53)

Marital status <0.01

  Married 1795 (55.17) 1,510 (56.65) 285 (48.33)

  Widowed 233 (4.52) 180 (4.35) 53 (5.32)

  Divorced 385 (10.54) 276 (8.89) 109 (18.15)

  Separated 99 (2.12) 77 (2.17) 22 (1.90)

  Never married 673 (19.25) 575 (19.63) 98 (17.49)

  Living with partner 288 (8.41) 237 (8.32) 51 (8.81)

PIR 0.73

  <5 2,703 (71.52) 2,210 (71.35) 493 (72.29)

  ≥5 770 (28.48) 645 (28.65) 125 (27.71)

BMI <0.01

  <18.5 50 (1.33) 46 (1.43) 4 (0.86)

  18.5–24.9 1,001 (29.71) 870 (31.27) 131 (22.54)

  25.0–29.9 1,158 (33.48) 982 (34.48) 176 (28.88)

  ≥30 1,264 (35.48) 957 (32.82) 307 (47.71)

Drinking status 0.04

  No 724 (16.19) 562 (15.36) 162 (20.04)

  Moderate 2,276 (69.08) 1903 (70.27) 373 (63.60)

  Heavy 473 (14.73) 390 (14.38) 83 (16.35)

  Serum cotinine (ng/mL) 63.46 (134.84) 57.61 (124.47) 90.36 (172.36) <0.01

Diabetes <0.01

  No 2,637 (79.35) 2,225 (81.33) 412 (70.24)

  Borderline 271 (7.79) 223 (7.60) 48 (8.67)

  Yes 565 (12.86) 407 (11.07) 158 (21.09)

Hypertension <0.01

  No 2060 (63.67) 1772 (65.78) 288 (53.96)

  Yes 1,413 (36.33) 1,083 (34.22) 330 (46.04)

PIR, poverty-to-income ratio; BMI, body mass index. aStudent’s t-test for continuous variables and Chi-square test for categorical variables. Continuous variables are expressed as weighted 
means (standard deviation) and categorical variables are expressed as unweighted numbers (weighted percentages).
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(95% CI): 1.114 (1.044, 1.188), p = 0.002], while PC2 showed no 
significant association [OR (95% CI): 0.929 (0.800, 1.078), p = 0.315]. 
In the principal component analysis on abnormal sleep duration, 
both PC1 and PC2 were significantly and positively associated with 
the risk of abnormal sleep duration [OR (95% CI): 1.095 (1.053, 
1.139), p < 0.001 and 1.127 (1.040, 1.221), p = 0.006 respectively]. 
Principal component analysis on trouble sleeping showed that PC1 
was positively associated with the risk of trouble sleeping [OR (95% 
CI): 1.169 (1.052, 1.298), p = 0.006], whereas PC2 was not significantly 
associated with it [OR (95% CI): 1.030 (0.862, 1.231), p = 0.734]. In 
terms of sleep disorders, PC1 had a significant positive association 
with sleep disorders [OR (95% CI): 1.246 (1.113, 1.394), p < 0.001] 
(Table 3).

3.5 WQS analysis of single and mixed VOCs 
with poor sleep patterns, and its 
components

We constructed WQS regression models to explore the 
relationship between important VOCs screened based on LASSO and 
sleep health. As shown in Supplementary Table S4, the WQS index of 
urinary VOC mixture showed a significant positive correlation with 
poor sleep patterns [OR (95% CI): 1.285(1.107, 1.493)], abnormal 
sleep duration [OR (95% CI): 1.154(1.030, 1.295)], trouble sleeping 
[OR (95% CI): 1.236(1.090, 1.403)] and sleep disorders [OR (95% CI): 
1.378(1.118, 1.705)]. Figure 1 shows that AMCC, CEMA, MHBMA3, 
and AAMA are major contributors to poor sleep patterns, PGA, 
AMCC, and CEMA are significant for abnormal sleep duration, 
AMCC and CYMA are key for trouble sleeping, while AMCC and 
DHBMA are primary contributors to sleep disorders. In addition, 

we also investigated the negative associations of the mixture of VOCs 
with sleep health while did not find a substantial negative association 
between the combined VOC WQS index and poor sleep patterns, or 
its components (Supplementary Table S5 and Supplementary Figure S6).

3.6 BKMR analysis of single and mixed 
VOCs with poor sleep patterns, and its 
components

The screened key VOCs were incorporated into the BKMR model 
to further validate the mixture effect of VOCs on sleep health. 
Supplementary Table S6 shows the PIP values of selected VOCs, among 
which AMCC had the highest PIP value in terms of poor sleep patterns, 
trouble sleeping, and sleep disorders. AMCC, BPMA, CYMA, 2HPMA, 
and PGA made great contributions to abnormal sleep duration. 
Figure 2 shows the overall effect of VOC mixtures and their estimated 
changes in the risk of poor sleep patterns as well as its components, 
compared to those when all VOCs are fixed at the median. We found 
that the overall effect of urinary VOCs was significantly and positively 
associated with poor sleep patterns, trouble sleeping, and sleep 
disorders when all VOCs were above the 55th percentile. Further, 
exposure-response relationships between single VOCs and sleep health 
indicators were analyzed when fixing the remaining VOCs at the 50th 
percentile level. We found that AMCC was significantly nonlinearly 
and positively correlated with poor sleep patterns, trouble sleeping, and 
sleep disorders. BPMA and 2HPMA were non-linearly and negatively 
correlated, while CYMA and PGA were nonlinearly and positively 
correlated with abnormal sleep duration. In addition, we also observed 
a nonlinear association between AMCC and abnormal sleep duration 
(Supplementary Figure S7).

TABLE 2 Multivariable logistic regression analysis between single urinary VOC metabolites, poor sleep patterns, and its components.

VOCs Poor sleep pattern Abnormal sleep 
duration

Trouble sleeping Sleep disorders

OR (95%CI) FDR OR (95%CI) FDR OR (95%CI) FDR OR (95%CI) FDR

2MHA 1.096(0.946, 1.269) 0.305 1.094(0.988, 1.212) 0.108 1.074(0.943,1.224) 0.387 1.167(0.967,1.408) 0.137

3MHA + 4MHA 1.071(0.936, 1.225) 0.401 1.070(0.967,1.183) 0.220 1.056(0.931,1.198) 0.464 1.150(0.946,1.399) 0.187

AAMA 1.282(1.118, 1.471) 0.009 1.151(1.031,1.284) 0.026 1.147(1.011,1.301) 0.092 1.419(1.123,1.793) 0.028

AMCC 1.333(1.102, 1.613) 0.020 1.284(1.151,1.432) 0.001 1.224(1.059,1.416) 0.068 1.366(1.067, 1.749) 0.051

ATCA 1.034(0.935, 1.144) 0.565 1.024(0.949,1.105) 0.557 0.995(0.896,1.105) 0.929 0.983(0.817,1.181) 0.845

BMA 0.987(0.834, 1.169) 0.876 1.048(0.936, 1.173) 0.458 0.983(0.867, 1.114) 0.884 1.200(0.997,1.446) 0.096

BPMA 0.982(0.900, 1.071) 0.713 0.933(0.876,0.994) 0.048 0.989(0.914,1.071) 0.830 1.021(0.907,1.150) 0.820

CEMA 1.343(1.178, 1.532) 0.002 1.166(1.057,1.286) 0.010 1.219(1.095,1.357) 0.016 1.411(1.148,1.733) 0.018

CYMA 1.088(1.004, 1.179) 0.073 1.077(1.031,1.124) 0.008 1.095(1.018,1.179) 0.071 1.096(0.991,1.212) 0.105

DHBMA 1.344(1.084, 1.665) 0.030 1.259(1.060,1.497) 0.023 1.233(1.032,1.473) 0.075 1.633(1.097,2.431) 0.048

2HPMA 1.053(0.925, 1.199) 0.517 0.985(0.891,1.089) 0.759 1.053(0.955,1.161) 0.375 0.971(0.788,1.196) 0.825

3HPMA 1.207(1.050, 1.388) 0.029 1.155(1.044, 1.278) 0.017 1.140(1.032,1.258) 0.065 1.212(0.996,1.475) 0.088

MA 1.217(0.985, 1.504) 0.107 1.171(1.033, 1.326) 0.025 1.172(0.996,1.379) 0.098 1.511(1.229,1.858) 0.007

MHBMA3 1.169(1.023, 1.335) 0.048 1.128(1.047, 1.216) 0.010 1.115(1.003,1.238) 0.101 1.226(1.036,1.451) 0.046

PGA 1.237(1.084, 1.411) 0.016 1.188(1.102,1.280) 0.001 1.081(0.964,1.211) 0.275 1.348(1.064,1.707) 0.063

HPMMA 1.212(1.029,1.426) 0.053 1.220(1.133, 1.313) <0.001 1.141(1.003,1.298) 0.090 1.201(1.007,1.433) 0.085

Models were adjusted for age, sex, race, body mass index, serum cotinine, drinking status, marital status, education level, the ratio of family income to poverty, diabetes, and hypertension. The 
bold number indicates the FDR < 0.05. FDR, false discovery rate; VOCs, volatile organic compounds; OR, odds ratios; CI, confidence interval.
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3.7 Mediation analysis of the relationship 
between VOCs mixture index and poor 
sleep patterns, and its components

Next, we explored whether VOCs indirectly affected sleep health 
through depression scores. Depression scores mediated 21.4, 24.0, 
30.1, and 16.4% of the associations of VOC mixture index with poor 
sleep patterns, abnormal sleep duration, trouble sleeping, and sleep 
disorders, respectively, (all p < 0.05) (Figure 3).

4 Discussion

For the first time, our study provided the systematic and 
comprehensive confirmation of the relationship between VOCs and 
various sleep outcomes. According to single and mixed models, 
AMCC was consistently positively correlated with poor sleep patterns, 
abnormal sleep duration, trouble sleeping, and sleep disorders. In 
mixed analyses, PCA, WQS, and BKMR models supported that 
co-exposure to VOCs was significantly and positively associated with 
poor sleep patterns, trouble sleeping, and sleep disorders. In addition, 
depression scores mediated the associations of co-exposure to VOCs 
with poor sleep patterns and its components.

Limited studies have investigated the effect of exposure to VOCs 
on sleep health. A survey on the general population of the 
United States revealed that with increasing co-exposure to VOCs, the 
risks of short sleep duration and trouble sleeping significantly elevated 
(16). Thetkathuek et al. (30) found that workers exposed to xylene and 
toluene were more likely to experience drowsiness compared to those 
not exposed to solvents, with the lack of personal protective equipment 
being a major factor affecting sleep disorders. Several studies on rats 
suggested that central monoaminergic mechanisms were associated 
with toluene-induced partial insomnia and sleep–wake cycle 
disruption (18, 31). A cross-sectional study showed a higher 
prevalence of sleep disturbances among tunnel workers previously 
exposed to acrylamide and N-methylolacrylamide (32). In addition, 

considering that tobacco smoke is a major source of VOC exposure, 
the relationship between secondhand smoke exposure and sleep 
health is partly suggestive of the impact of VOCs on sleep. A large 
number of cross-sectional and cohort studies have shown that 
exposure to secondhand smoke is significantly associated with poor 
sleep health such as poor sleep quality, sleep maintenance disorders, 
and short sleep duration (33, 34), which supports our speculation. 
However, current relevant studies are limited to certain single VOC 
exposures, which lack a comprehensive assessment of sleep outcomes, 
making it difficult to generalize the results.

In real life, people are commonly exposed to a variety of mixed 
VOCs, making a comprehensive assessment on the impact of VOCs 
on sleep of significant public health importance. In this study, to 
address the collinearity and correlation issues among multiple VOCs, 
we  conducted PCA, WQS, and BKMR analyses based on LASSO 
regression to better capture the combined toxic effects of VOC 
exposure on sleep health outcomes. These models also supplemented 
and corroborated the findings of logistic regression on individual 
VOCs and health outcomes, aiming to identify exposure components 
that contribute more significantly to the outcomes. In our study, all 
analytical models pointed to an elevated incidence of poor sleep 
patterns, as well as its components with increasing concentrations of 
AMCC. AMCC was considered a key triggering factor for poor sleep 
outcomes. As a major component of AMCC, dimethylformamide 
(DMF) is a widely-used drug solvent; however, the mechanism 
through which DMF induces poor sleep outcomes is unclear. Notably, 
in terms of the BKMR exposure-response function, we found that 
when the metabolites of other VOCs were fixed at the median level, 
AMCC showed a nonlinear relationship with poor sleep patterns and 
its components. Specifically, as the concentration of AMCC increased, 
the prevalence of poor sleep patterns and its components initially 
decreased and then increased, with this non-linear association being 
more pronounced in abnormal sleep duration. A plausible explanation 
for this is that DMF has a wide range of CNS depressant effect, which 
enhances a pentobarbitone-induced increase in sleep duration (35, 
36). A moderate increase in sleep duration promotes normal 
metabolism and homeostasis, while a continued accumulation of 
AMCC leading to excessive sleep duration results in poor sleep 
outcomes and harms the body (37).

Currently, it is unclear how exposure to VOCs influences sleep 
disturbances. Chronic exposure may affect sleep outcomes through 
CNS regulation and physiologic changes in the respiratory system. 
First of all, air pollutants may lead to an altered and dysregulated 
expression of neurochemicals through the CNS. Specifically, it has 
been demonstrated that air pollution lowers the serotonin level in the 
brain (38). Serotonin is one of the most important brain chemicals 
that regulate the sleep–wake cycle. A decrease in the serotonin level 
can result in drowsiness and lead to sleep disturbances (39). Several in 
vitro studies have shown that exposure to high levels of VOCs 
promotes oxidative stress in human lung epithelial cells, and the 
reactive oxygen species (ROS)-induced activation of pro-inflammatory 
genes and transcription factors triggers the production of 
inflammatory mediators (40), which leads to respiratory-related sleep 
disturbances and reduces sleep quality (7). Furthermore, inflammatory 
signals reach the CNS through active mechanisms and cellular 
pathways involved in direct neural innervation, the effect of humoral 
mediators, and blood–brain barrier transport, thereby influencing 
alterations in sleep patterns (41). Given the complex additive and 

TABLE 3 Association between VOCs, poor sleep patterns, and its 
components: principal component analysis results.

OR 95% CI p-value

Poor sleep patterns

  PC1 1.114 (1.044, 1.188) 0.002

  PC2 0.929 (0.800, 1.078) 0.315

Abnormal sleep 

duration

  PC1 1.095 (1.053, 1.139) <0.001

  PC2 1.127 (1.040, 1.221) 0.006

Trouble sleeping

  PC1 1.169 (1.052, 1.298) 0.006

  PC2 1.030 (0.862, 1.231) 0.734

Sleep disorders

  PC1 1.246 (1.113, 1.394) <0.001

Models were adjusted for age, sex, race, body mass index, serum cotinine, drinking status, 
marital status, education level, the ratio of family income to poverty, diabetes, and 
hypertension. CI, confidence interval; OR, odds ratios; PC, principal component; VOCs, 
volatile organic compounds.
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synergistic effects among various VOCs, more experimental and 
epidemiological studies will be needed in the future to elucidate the 
underlying mechanisms.

Previous studies have shown that urinary VOC concentrations 
are significantly positively correlated with depressive symptoms (21). 
A cross-sectional study based on NHANES 2007–2014 found a 
positive dose–response connection between clinically-relevant 
depression and sleep patterns (42). About 90% of depressed patients 
complain of sleep quality problems such as insomnia (43), while 
sleep quality problems or depression do not occur at the same time, 
whose emergence is dependent on many other factors (44). Based on 
the above studies, we  hypothesized that depression could be  a 
potential mechanism between VOC exposure and sleep health. 
Further mediation analyses also validated this speculation: 
depression scores mediated 21.4, 24.0, 30.1, and 16.4% of the 
associations of VOCs with poor sleep patterns, abnormal sleep 
duration, trouble sleeping, and sleep disorders, respectively. At the 
mechanistic level, VOCs promote the generation of 

oxidative-stress-mediated inflammatory mediators in the body, 
leading to a state of systemic chronic inflammatory stress and an 
increasing depression risk (21). Similar changes in neurotransmitter 
receptor systems and neuroendocrine responses between depression 
and sleep disturbances may play a significant role in their 
relationship. One hypothesis suggested that depression was caused 
by an imbalance between cholinergic and monoaminergic 
neurotransmitter production, which was closely related to the 
regulation of rapid eye movement (REM) sleep (19). Other studies 
have suggested that dysfunctions of the orexin system may be related 
to the pathophysiology of mood regulation and the sleep–wake cycle 
(45). In addition, depression inhibits melatonin secretion, interferes 
with circadian rhythms, and disrupts sleep (46). In conclusion, our 
findings provided evidence that improving depressive symptoms 
might reduce the negative effects of VOC exposure on sleep health. 
Based on the above research results, we advocate for the government 
to strengthen the management of VOC concentrations by enacting 
stricter regulations. Public awareness of VOCs should be raised in 

FIGURE 1

Positive weights of WQS index of screened urinary VOCs in poor sleep pattern (A), abnormal sleep duration (B), trouble sleeping (C), and sleep disorder 
(D). The dashed grey lines represent the cutoff to discriminate which element has a significant weight. Models were adjusted for age, sex, race, body 
mass index, serum cotinine, drinking status, marital status, education level, the ratio of family income to poverty, diabetes, and hypertension.
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FIGURE 2

Overall relationship between the mixture of VOCs and poor sleep pattern (A), abnormal sleep duration (B), trouble sleeping (C), and sleep disorder 
(D) estimated by Bayesian kernel machine regression (BKMR) model. Models were adjusted for age, sex, race, body mass index, serum cotinine, 
drinking status, marital status, education level, the ratio of family income to poverty, diabetes, and hypertension.

FIGURE 3

Estimated proportion of the association between VOCs mixture index and poor sleep pattern (A), abnormal sleep duration (B), trouble sleeping (C), and 
sleep disorder (D) mediated by depression score. Models were adjusted for age, sex, race, body mass index, serum cotinine, drinking status, marital 
status, education level, the ratio of family income to poverty, diabetes, and hypertension. *p  <  0.05; **p  <  0.01; ***p  <  0.001. VOCs, volatile organic 
compounds.
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the future, with attention to personal protection. Furthermore, the 
role of mental and emotional well-being in the impact of 
environmental pollution on physical health should be emphasized to 
achieve better health management.

There are several strengths of our study. Firstly, based on the 
NHANES database, we were able to explore our study on a large 
sample population. Secondly, we  utilized LASSO regression to 
select the most relevant VOCs associated with four sleep 
outcomes, addressing multicollinearity issues arising from highly-
correlated variables. Additionally, we employed various mixed-
effect models to complement each other, confirming the mixed 
negative effects of VOCs on poor sleep outcomes. Of note, 
we identified AMCC as a potential compound closely related to 
poor sleep patterns and its components, providing insights for 
further research into the mechanisms underlying adverse 
sleep outcomes.

Our study also has certain limitations. Firstly, since self-reporting 
was the basis for sleep health outcomes in this study, recall biases or 
inaccurate reporting could potentially skew the findings. It will 
be necessary in the future to classify sleep issues through objective 
tests such as actigraphy for a more refined assessment. Secondly, 
urinary VOC metabolites were assessed based on a single 
measurement without exposure timing information in NHANES. This 
measurement method can only represent current VOC levels and may 
lead to measurement errors. Thirdly, our study had inherent 
limitations as a cross-sectional study, which prevented us from 
establishing a causal relationship between VOC exposure and sleep 
outcomes. More cohort studies and randomized controlled trials are 
needed in the future to better reveal this association.

5 Conclusion

Single and combined VOC exposure increased the risk of poor 
sleep patterns, abnormal sleep duration, trouble sleeping, and sleep 
disorders, with AMCC being a significant contributor. Depression 
scores mediated the associations between VOC mixtures and sleep 
outcomes. Our study emphasizes the potential of controlling VOC 
exposure for improving sleep health, and advocates for the future 
formulation of health policies regarding VOC regulation to 
normalize VOC concentration management. In the future, additional 
prospective research will be required to validate and expand upon 
our findings.
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Glossary

2HPMA N-acetyl-S-(2-hydroxypropyl)-l-cysteine

2MHA 2-methylhippuric acid

3HPMA N-acetyl-S-(3-hydroxypropyl)-l-cysteine

3MHA + 4MHA 3-methylhippuric acid & 4-methylhippuric acid

AAMA N-acetyl-S-(2-carbamoylethyl)-l-cysteine

AMCC N-acetyl-S-(N-methylcarbamoyl)-l-cysteine

ATCA 2-aminothiazoline-4-carboxylic acid

BKMR Bayesian kernel machine regression

BMA N-acetyl-S-(benzyl)-l-cysteine

BMI Body mass index

BPMA N-acetyl-S-(n-propyl)-l-cysteine

CEMA N-acetyl-S-(2-carboxyethyl)-l-cysteine

CI Confidence interval

CNS Central nervous system

CYMA N-acetyl-S-(2-cyanoethyl)-l-cysteine

DHBMA N-acetyl-S-(3,4-dihidroxybutyl)-l-cysteine

DMF Dimethylformamide

FDR False discovery rate

HPMMA N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine

LASSO Least absolute shrinkage and selection operator

Ln Natural logarithm

LLOD Lower limit of detection

MA Mandelic acid

MHBMA3 N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine

NHANES National Health and Nutrition Examination Survey

OR Odds ratios

PAHs Polycyclic aromatic hydrocarbons

PCA Principal component analysis

PGA Phenylglyoxylic acid

PHQ-9 Patient Health Questionnaire-9

PIPs Posterior inclusion probabilities

PIR Ratio of family income to poverty

ROS Reactive oxygen species

SD Standard deviation

VOCs Volatile organic compounds

WQS Weighted quantile sum
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