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Air pollution has long been a significant environmental health issue. Previous 
studies have employed diverse methodologies to investigate the impacts of air 
pollution on public health, yet few have thoroughly examined its spatiotemporal 
heterogeneity. Based on this, this study investigated the spatiotemporal 
heterogeneity of the impacts of air pollution on public health in 31 provinces in 
China from 2013 to 2020 based on the theoretical framework of multifactorial 
health decision-making and combined with the spatial durbin model and 
the geographically and temporally weighted regression model. The findings 
indicate that: (1) Air pollution and public health as measured by the incidence of 
respiratory diseases (IRD) in China exhibit significant spatial positive correlation 
and local spatial aggregation. (2) Air pollution demonstrates noteworthy 
spatial spillover effects. After controlling for economic development and living 
environment factors, including disposable income, population density, and 
urbanization rate, the direct and indirect spatial impacts of air pollution on IRD 
are measured at 3.552 and 2.848, correspondingly. (3) China’s IRD is primarily 
influenced by various factors such as air pollution, economic development, 
living conditions, and healthcare, and the degree of its influence demonstrates 
an uneven spatiotemporal distribution trend. The findings of this study hold 
considerable practical significance for mitigating air pollution and safeguarding 
public health.
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1 Introduction

Human health has long been considered paramount for personal development and social 
progress (1). Globally, air pollution is acknowledged as the fourth leading threat to human 
health, resulting in inevitable health repercussions and substantial economic burdens (2). Data 
indicate that 4.47 and 5.05% of daily hospital emergency room visits in China are attributable 
to PM1 (particles with a diameter less than 1 micron) and PM2.5 pollution, respectively (3). 
Additionally, estimates from the Global Burden of Disease Study suggest that air pollution 
caused 1.85 million deaths in China, with 1.42 million attributed to particulate matter (PM) 
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pollution (4). Clearly, air pollution has emerged as a significant factor 
jeopardizing public health in China. Therefore, it is imperative at this 
stage to conduct specific and accurate empirical studies on the 
relationship between air pollution and public health to mitigate its 
detrimental effects.

Researchers in the fields of epidemiology and environmental 
toxicology have conclusively established that air pollution not only 
poses a substantial threat to public physical health but also 
detrimentally impacts mental well-being (5, 6). Specifically, air 
pollution significantly influences the onset of various diseases, 
including cardiovascular diseases, cancer, pneumonia, and 
neurocognitive impairments (7–12). However, these studies have 
predominantly focused on the individual-level pathogenesis of air 
pollution on public health, neglecting the influence of other crucial 
determinants, such as economic development, living environment, 
and healthcare (13). Additionally, air pollution demonstrates 
significant negative externalities and regional correlations. Thus, it is 
imperative to adequately consider the spatial relationship between a 
region and its neighbors when studying the impacts of air pollution 
on public health outcomes (14–17). Recently, some scholars have 
highlighted a strong spatial correlation between air pollution and 
public health outcomes in China (18). However, further empirical 
evidence is required to substantiate the spatial impacts of air pollution 
on public health outcomes in China. Furthermore, researchers in 
socio-economic and other fields have conducted numerous studies on 
the relationship between air pollution and public health (19–24). 
Notably, these studies are commonly analyzed using empirical 
methods such as ordinary least squares, poisson regression, and 
generalized linear regression (25–28). While these methods can assess 
the impacts of air pollution on public health, they tend to rely on the 
assumption of fixed parameters. The estimation of model parameters 
is typically confined to either temporal or spatial dimensions 
individually. This limitation prevents the simultaneous consideration 
of parameter heterogeneity in both temporal and spatial dimensions, 
resulting in inaccurate estimates (29). To summarize, after fully 
considering China’s current reality and existing research gaps, the 
research motivation of this study is mainly reflected in the following 
three research questions: (1) How do factors such as air pollution, 
economic development, and the living environment influence public 
health in China? (2) What are the spatial impacts of air pollution on 
public health in China over a long time series at the interprovincial 
scale? (3) Are there spatiotemporal heterogeneities in the impacts of 
air pollution on public health from the perspective of regional 
differences in China?

Based on these considerations, the objectives of this study are 
multifaceted. First, on the basis of the theoretical framework of 
multifactorial health decision-making, this study comprehensively 
and systematically examines the role and influence of air pollution, 
economic development, and other factors on public health. Second, 
the spatial impacts of air pollution and related control variables on 
public health are examined thoroughly by constructing a spatial 
econometric model. Finally, geographically and temporally weighted 
regression (GTWR) models were employed to further analyze the 
spatiotemporal heterogeneity of the effects of air pollution and related 
control variables on public health. In summary, the potential 
contributions of this study include the following two main aspects: 
First, this study reexamines environmental health issues from a 
socioeconomic perspective and comprehensively analyzes the spatial 

impacts of air pollution and related control variables on public health, 
thus enriching the study of air pollution and public health. Secondly, 
considering the spatiotemporal heterogeneity of the variables used, 
this study constructs the GTWR model based on spatiotemporal 
relationships to study the spatiotemporal evolution characteristics of 
the influencing factors, especially in analyzing the spatiotemporal 
heterogeneity of interregional public health, which not only illustrates 
the reality of imbalances of regional economic and resource 
distributions in China, but also provides a useful supplement to 
previous related studies.

The remainder of the paper is structured as follows. Firstly, the 
paper reviews the pertinent literature. Subsequently, it describes the 
study area, research methodology, variable selection, and data sources. 
Following this, the study results, including the primary findings, are 
presented and discussed. Finally, the main conclusions and policy 
recommendations of the paper are summarized.

2 Literature review

2.1 The impact of air pollution on public 
health

Researchers have extensively focused on the impact of air 
pollution on public health. Scholars in medicine and public health 
have conducted numerous studies on this relationship. de Prado Bert 
et al. (30) conducted an epidemiological study confirming that air 
pollution adversely affects cognitive behavior and psychomotor 
activity in children due to exposure to air pollution. Based on Lee et al. 
(31) air pollution significantly exacerbates respiratory symptoms such 
as asthma and chronic obstructive pulmonary disease. Fu et al. (32) 
performed a comprehensive exploration of the effects of air pollutants 
such as particulate matter, ozone, and sulfur oxides on the nervous 
system, demonstrating that these pollutants can directly or indirectly 
damage it. Liang et al. (33) used a meta-analysis showing a significant 
increase in the risk of gestational diabetes due to air pollution. Shi 
et al. (34) demonstrated that chronic exposure to PM2.5 is significantly 
associated with an increased incidence of dementia in a cohort study. 
Requia et al. (35) investigated the relationship between daily PM2.5, 
NO2, and O3 levels and the number of hospitalizations for circulatory 
and respiratory diseases, showing a significant association between air 
pollution and hospital admissions for cardiopulmonary diseases. 
Demoury et al. (36) assessed the association between natural mortality 
and short-term exposure to air pollutants (PM2.5, PM10, NO2, and O3), 
finding that increased air pollution led to an increase in overall natural 
mortality. In China, Zhenyu et al. (37) discovered that fine particulate 
matter (PM2.5) significantly increased the risk of lung cancer based on 
incidence rates and annual concentrations of PM2.5. Liu et al. (38) 
estimated the association between air pollution and asthma mortality, 
highlighting that PM1 pollution had a more significant impact on 
asthma mortality compared to PM2.5 and PM10. Zhang et  al. (39) 
evaluated the effect of air pollutant exposure on hospital admissions 
for congenital heart disease, concluding that exposure during 
pregnancy significantly increased the risk of congenital heart disease 
in perinatal infants. Li et al. (40) established a significant positive 
correlation between the increased risk of stroke hospitalization and 
short-term elevations of air pollutants such as SO2, NO2, and PM10. In 
summary, time-series or case-crossover studies detect associations 
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between daily mortality (or morbidity) and changes in air pollution to 
capture its acute impacts, while cohort and cross-sectional studies 
reveal the increased risk of health hazards from long-term exposure.

2.2 The spatiotemporal impact of air 
pollution on public health

Notably, as the effects of air pollution frequently extend to 
adjacent regions, suggesting that air pollution leads to both direct and 
indirect geographical spillover effects (41). Mohammadi et al. (42) 
conducted a spatial analysis to explore the relationship between air 
pollution and mortality, revealing a positive spatial effect of pollutants 
like O3 and NO2 on mortality. Kim et al. (43) examined the bivariate 
correlation between air pollutants and the prevalence of allergic 
diseases in controlled environments, demonstrating the presence of 
significant spatial clustering and the need to consider the instability of 
local relationships when studying the effects of air pollution on 
disease. Aturinde et  al. (44) performed a nationwide study 
investigating the spatial associations between various air pollutants 
and the prevalence of cardiovascular disease (CVD), highlighting 
significant spatial variations in the relationship between ambient air 
pollution and CVD hospital admissions across Sweden. Yim et al. (45) 
investigated the impact of PM10 particulate matter on the risk of 
pneumonia, revealing a significant spatial correlation between air 
pollution and the occurrence of pneumonia. Sarrias and Molina-Varas 
(46) quantified the spillover effect of PM2.5 pollution on emergency 
room visits for respiratory illnesses, demonstrating a significant spatial 
effect influence on the increase in overall visits. In China, Cao et al. 
(47) investigated the correlation between air quality and mortality due 
to respiratory diseases, showing a significant spatial correlation 
between PM2.5 pollution and respiratory disease mortality across all 
provinces in China. Zhang et al. (48) examined the interactive impacts 
of air pollution on public health. The study findings revealed that the 
escalation of air pollution significantly threatened the health of 
residents in both local and neighboring areas. Qin et al. (49) further 
investigated the spatial impacts of urban air pollution on public 
health, indicating a significant spillover effect of air pollution in urban 
areas. Additionally, other researchers have studied the diverse impacts 
of air pollution on public health, particularly in elucidating the spatial 
variability of influencing factors (50). Specifically, Cardoso et al. (51) 
assessed the spatial relationship between PM10 emissions and lung 
cancer mortality in the Portuguese region using a geographically 
weighted regression model. They confirmed that the effect of PM10 
emissions on lung cancer mortality was higher in the northwestern 
part of the continent, while it was relatively small in the southern part. 
Chen et al. (52) explored the spatiotemporal relationship between air 
pollution and influenza using spatiotemporal weighted regression 
model. They found that the coefficients of air pollution on the intensity 
of influenza epidemics were opposite in the eastern and western parts 
of Fuzhou City in China. Yan et al. (53) assessed the potential spatial 
relationship between PM2.5 pollution and health inequality in China 
using the multi-scale geographically weighted regression model. They 
showed that the health inequality caused by PM2.5 pollution exhibited 
a spatial distribution trend of decreasing from east to west. Boakye 
et  al. (54) conducted the multi-scale geographically weighted 
wegression model analysis of the social and spatial factors of cancer 
and non-cancer hazards due to air pollution. Their analysis 

demonstrated that there are spatial differences in exposure to air 
pollution-induced cancer and non-cancer risk outcomes for various 
racial and ethnic groups in the United States. Wang and Wang (55) 
analyzed the spatial variability of factors influencing PM2.5 pollution 
in the Yangtze River Delta region of China using a geographically 
weighted regression model. The study results indicated spatial 
heterogeneity in the influence of factors such as population density 
and the proportion of industries on PM2.5 pollution. Li and Managi 
(56) examined the relationship between subjective well-being and 
three air pollutants (SO2, NOx, and PM2.5), as well as their spatial 
variability in Japan using the random-effects-based geographically 
weighted regression model. They found that these air pollutants were 
negatively associated with human well-being, and that their negative 
impacts varied spatially.

Generally, the research methods discussed above can be utilized 
to assess the impacts of air pollution and related factors on public 
health. However, they often overlook the spatiotemporal heterogeneity 
of influencing factors, highlighting a necessity to enhance the 
precision of these methodologies. Specifically, the fundamental 
assumption of global regression models such as spatial lag model 
(SLM), spatial error model (SEM), spatial durbin model (SDM), and 
ordinary least squares (OLS) is that the relationship between the 
independent and dependent variables remains spatially consistent and 
does not vary across different spatial locations (57). This class of 
models offers a global perspective applicable to all spatial entities. 
However, significant spatial heterogeneity in air pollution, public 
health, and related influences may exist in the real world. Therefore, 
global regression models may yield inaccurate estimates (58). In 
contrast, geographically weighted regression (GWR) model serves as 
a localized regression method for exploring the spatial heterogeneity 
of air pollution, public health, and related influences (59). Specifically, 
the GWR model offers a novel approach to assessing spatial 
heterogeneity among spatial entities by computing multiple regression 
statistics for each entity (60). However, the GWR model inadequately 
addresses the influence of time series on public health, air pollution, 
and related factors. One approach to surmounting these challenges is 
the geographically and temporally weighted regression (GTWR) 
model proposed by Huang et al. (61). In contrast to the GWR model, 
this approach enhances estimation accuracy through the incorporation 
of temporal and non-stationary spatial weighting matrices (62). Based 
on this, Zhang et al. (63) examined the spatial and temporal correlation 
between chronic disease co-morbidities and the air pollutant PM2.5 
among middle-aged and older adults in China from 2011 to 2018 
using the GTWR model. Their empirical findings demonstrated the 
GTWR model superiority over traditional correlation algorithms. 
Furthermore, PM2.5 emerges as the primary risk factor for chronic 
disease co-morbidity prevalence among middle-aged and older adults. 
Its impact spans from the southeast coast to the inland regions, though 
diminishing from the coast towards inland areas. Wang et al. (64) 
employed the GTWR model to quantitatively assess the relationship 
between acute myocardial infarction (AMI) mortality and influential 
factors in China, from 2014 to 2016. Their study revealed that 
environmental factors, including air pollution, exerted a significant 
negative impact on AMI mortality, with variations observed across 
different locations and over time. Yu et  al. (65) investigated the 
temporal and spatial heterogeneity of the relationship between 
provincial tuberculosis (TB) incidence rates and environmental and 
economic factors in China from 2004 to 2021 using the GTWR model. 
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Their findings demonstrated that the GTWR model provided a better 
fit than both ordinary least squares (OLS) and geographically weighted 
regression (GWR) models. Moreover, TB incidence in China is 
predominantly influenced by macroeconomic and environmental 
factors, with varying degrees of impact observed across different times 
and regions. Overall, the feasibility of employing the GTWR model to 
evaluate the public health impacts of air pollution and related factors 
remains a challenge.

2.3 The impact of socio-economic and 
other factors on public health

In fact, the effects of air pollution on public health are influenced 
by a confluence of factors including economic development, 
healthcare, and living conditions (66). Consequently, scholars in 
socio-economic and related disciplines have extensively investigated 
the repercussions of air pollution on public health. Fischer and Heutel 
(67) substantiated the presence of a mechanism linking air pollution, 
economic fluctuations, and mortality by comparing air pollutant 
indices, unemployment rates, and economic shifts. Greenstone and 
Hanna (68) examined data regarding air pollution and health in 
developing countries, revealing a greater impact of air pollution on 
population health in certain developing nations in contrast to 
developed ones. Natalie et  al. (69) assessed the influence of air 
pollution on public health using self-reported health data from 
German residents, showing a notable impact on residents’ self-
reported health, particularly exacerbated amidst heightened socio-
economic insecurity, unemployment, and residence in deprived areas. 
Deryugina et  al. (70) further demonstrated that the impact of air 
pollution on mortality in the United States is influenced by healthcare 
utilization and healthcare costs. In China, Zhang et al. (71) assessed 
the correlation between outdoor air pollution and older adults’ 
cognitive function, discovering that the detrimental effects of air 
pollution to older adults’ cognitive function is influenced by seasonal 
variation, age, and education. Azimi et  al. (72) shared a similar 
perspective, contending that regional disparities in economic, social, 
environmental, and healthcare factors result in notable geographical 
variations in the public health consequences of air pollution across 
different regions. Wu et al. (73) examined the relationship between 
household income growth and health risks related to air pollution, 
demonstrating that increased household income notably mitigates 
health risks from air pollution, particularly for gaseous pollutants (SO2 
and NOx). Geng et al. (74) meanwhile, quantified the influence of 
various factors on PM 2.5-related fatalities in China, affirming that 
alterations in energy and climate policies, as well as economic 
structure, notably impact the number of deaths linked to PM 2.5. Pang 
et al. (75) investigated the influence of green space on the incidence of 
lung cancer associated with air pollution, revealing that areas with 
higher green space exhibit attenuated adverse effects of air pollution 
on lung cancer incidence.

2.4 Literature summary

The existing literature has thoroughly investigated the impacts of 
air pollution on public health, establishing a robust foundation for this 
study. Nonetheless, several pertinent studies in epidemiology and 

environmental toxicology have been conducted using non-randomized 
samples of individuals or specific regions. Simultaneously, these 
studies typically concentrate solely on the pathomechanisms of air 
pollution’s effects on public health, neglecting other influential factors 
like economic development and population density (76). Secondly, the 
existing literature often assumes independence among all public 
health domains, disregarding the spatial correlation of air pollution. 
This oversight results in estimation errors regarding the impact of air 
pollution on public health (77). Finally, in investigating the spatial 
impacts of air pollution on public health, most prior studies have 
relied on spatial panel modeling for empirical analysis, overlooking 
both spatial and temporal variations in influencing factors (78). 
Although some scholars in China have recently employed the GWR 
model to examine spatial variations in influencing factors, their failure 
to explore the temporal evolution of these factors has hindered a 
comprehensive explanation of their impacts.

Consequently, to address the limitations of prior studies and 
mitigate potential estimation bias and inconsistency, we  enhance 
several aspects as follows. Firstly, based on the theoretical framework 
of multifactorial health decision-making, we constructed a spatial 
econometric model for influencing public health. Through this model, 
we can comprehensively assess the impacts of air pollution, economic 
development, and other factors on public health, and delve into the 
spatial correlation between air pollution and public health, thereby 
effectively mitigating estimation bias arising from endogeneity and 
overlooking spatial effects. Secondly, on a long-term interprovincial 
scale, this study provides a more rigorous interpretation of both direct 
and indirect spatial effects of air pollution, thereby enhancing the 
analysis of spatial impacts on public health and ensuring the scientific 
validity of the conclusions. Finally, this paper introduces the GTWR 
model to compare and analyze temporal changes in influencing 
factors across an eight-year time series, carefully considering local 
spatial heterogeneity. This approach aims to provide a more detailed 
and comprehensive understanding of the relationship between air 
pollution and public health across temporal and spatial scales.

3 Theoretical framework

In fact, scholars in socio-economics and related fields have 
demonstrated that many factors affect public health, especially the 
economy, environment, education, and healthcare (79). Therefore, 
we  used Neidell’s theoretical framework of multifactorial health 
decision-making as a basis for describing the mechanisms by which 
air pollution, social, economic, and educational factors affect public 
health (80). Fundamentally, the framework asserts that health is not 
merely the result of biological factors or self-selection but is strongly 
influenced by a wide range of factors, including economic, social, 
environmental, and educational factors, as well as air pollution. These 
influences dynamically interact, resulting in a complex network that 
affects public health (81).

Specifically, economic factors are important determinants in the 
framework, including income levels, employment status, socio-
economic status, and access to resources. Economic stability allows 
individuals to afford quality healthcare, nutritious food, and safe 
housing, all of which are necessary to maintain good health (82). In 
contrast, economic hardship can lead to poor living conditions and 
limited access to healthcare, each of which negatively impacts public 
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health (83). For example, people of lower socio-economic status 
often face barriers to accessing healthcare services and promoting 
personal health, leading to delays in treatment, ineffective 
management of chronic diseases, and deterioration of health 
status (84).

Social factors play an essential role in shaping health outcomes, 
which including social support networks, community participation, 
cultural practices and social norms (85). On the one hand, strong 
social support networks can provide emotional support, reduce stress 
and encourage healthy behaviors in the general public (86). 
Additionally, the enhancement of public community participation 
fosters an individual’s sense of social belonging and purpose, which in 
turn promotes his or her mental and emotional health (87). On the 
other hand, cultural practices and social norms can promote or hinder 
the emergence of healthy behaviors in citizens (88). For instance, 
social norms that ignore mental health problems may exacerbate the 
emergence of mental health problems by preventing individuals from 
seeking help (89).

Environmental factors, like the quality of air and water and access 
to green spaces, which are crucial factors affecting public health. Poor 
environmental conditions such as severe air pollution may contribute 
to the development of respiratory diseases, cardiovascular problems 
and other health problems (90). On the contrary, having access to 
clean air, clean drinking water and green space for physical activity 
promotes public health and social well-being (91). In addition, 
scholars in the fields of epidemiology and environmental toxicology 
have noted that exposure to air pollutants can produce a range of 
health problems, from asthma and allergies to more serious diseases 
such as lung cancer and heart disease (92). Thus, the framework 
specifically emphasizes air pollution as an important environmental 
factor affecting public health.

Educational factors mainly include educational attainment, health 
literacy and the opportunity to receive health education. In general, 
higher levels of education are usually positively associated with better 
health outcomes. The reason for this is that higher levels of education 
usually equip individuals with relevant health knowledge and skills, 
which in turn promotes the development of healthy behaviors (93). 
Simultaneously, health literacy is also particularly important. This is 
because it enables individuals to attend to their own health 
information and engage in preventive health behaviors (94). 
Furthermore, increased access to health education can empower 
individuals to take control of their health, leading to better health 
outcomes (95).

The framework underscores the pivotal role of healthcare services 
in influencing public health. The healthcare system delivers essential 
services, including prevention, diagnosis, and treatment of diseases. 
Thus, access to quality and efficient healthcare is crucial for individuals 
to manage their health conditions and prevent complications (96). 
Simultaneously, an effective healthcare system not only treats diseases 
but also supports public health through integrated care that addresses 
physical, mental, and social needs (97). Additionally, the interaction 
between healthcare services and diseases is a central element of the 
framework. Specifically, disease conditions affect the healthcare needs 
of the public, while the availability and quality of healthcare services 
determine how efficiently these needs are met (98). Thus, the 
framework posits that mitigating the negative impact of diseases on 
an individual’s health functioning and health status can be achieved 
by improving the accessibility and quality of healthcare (99).

Furthermore, the framework further emphasizes the 
interconnectedness of various influences on health. This means 
that economic, social, environmental, and educational factors 
affecting public health do not exist in isolation but rather interact 
to influence health outcomes (100). For example, economic 
stability can increase citizen access to education, which in turn 
improves their health literacy and promotes the occurrence of 
healthy behaviors (101). Social support networks can promote 
physical and mental health by providing emotional support, 
alleviating the negative effects of economic hardship and 
environmental stress (102). Improving environmental quality and 
reducing air pollution can create a fairer and healthier 
environment, particularly for vulnerable groups affected by poor 
environmental conditions (103). From above, the multifactorial 
health decision-making theoretical framework is shown in 
Figure 1.

4 Materials and methods

4.1 Variable selection

According to the theoretical framework of multifactorial health 
decision-making, public health is influenced by healthcare, 
environmental factors, and economic development level. Based on 
this, the selected indicators are as follows.

4.1.1 Public health variables
Health is a concept with complex intrinsic mechanisms, which 

makes it challenging to quantify health. Previous research has mainly 
selected indicators such as population mortality rate, mean life 
expectancy, and disability-adjusted life expectancy (DALY) to evaluate 
public health (104–106). However, it is not appropriate to use 
population mortality rate to assess the impact of air pollution on public 
health. This is because the health effects of air pollution are relatively 
slow and the causes of population mortality are usually complex. In 
addition, the absence of provincial-level data on mean life expectancy 
and DALY in China makes it challenging to perform effective spatial 
econometric analyzes. Thus, we used a surrogate indicator, the incidence 
of respiratory diseases (IRD). Previous studies have shown that the 
indicators most associated with air pollution are respiratory ailments 
(107). Heightened air pollution exacerbates the likelihood of respiratory 
and circulatory ailments within the populace (108, 109). Consequently, 
we chose IRD to assess the level of public health so as to accurately 
identify the causal relationship between air pollution and public health.

4.1.2 Air pollution variables
Scholars have employed various evaluation indicators, including 

PM2.5 concentration, soot emissions, and sulfur dioxide emissions, to 
assess air pollution (110–112). However, a single pollutant index may 
inadequately capture the comprehensive nature of air pollution, thereby 
neglecting the cumulative impact of multiple pollutants on public 
health. Consequently, the air pollution index (API) was employed in this 
study to evaluate air pollution in China (113). The API is a non-linear 
dimensionless index derived from a comprehensive calculation of the 
concentrations of various air pollutants (including PM2.5, Soot, SO2, and 
NOx) by the entropy method. A higher API value indicates greater air 
pollution severity and poses increased risks to public health.
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4.1.3 Control variables
Previous research has shown that various factors such as economic 

development, living environment, and healthcare also influence public 
health (114–118). Thus, we  selected specific indicators as control 
variables: economic development, represented by resident disposable 
income (RDI); aspects of the living environment, including population 
density (PD), greening coverage (GRE), and urbanization rate (URB); 
and healthcare, denoted by the number of occupational physicians per 
1,000 people (OCP) and household medical expenditure (HME).

4.1.4 Data sources
The study’s data encompasses 31 provinces and municipalities in 

China (including autonomous regions and municipalities directly 
under the central government), excluding Hong Kong, Macao, and 
Taiwan. These are omitted because the majority of the data is missing. 
Meanwhile, according to China’s administrative regions, the study 
areas encompass Northeast, East, Central, North, South, Southwest, 
and Northwest, as illustrated in Figure 2.

Furthermore, the primary data sources for the study were the 
China Statistical Yearbook, hyperlink to datasets source,1 China Health 
and Sanitation Statistical Yearbook, hyperlink to datasets source,2 
China Environmental Statistical Yearbook, and China Ecological and 
Environmental Condition Bulletin, hyperlink to datasets source.3 
Meanwhile, natural logarithms were applied to all variables to mitigate 
the impact of heteroscedasticity on the regression outcomes. Table 1 
presents the details of each variable along with their descriptive statistics.

4.2 Methods

4.2.1 Spatial econometric analysis
Air pollution is often characterized by spatial spillover and 

dispersion, where air pollutants flow from one province to neighboring 

1 https://www.stats.gov.cn/sj/ndsj/

2 http://www.nhc.gov.cn/wjw/index.shtml

3 https://www.mee.gov.cn/hjzl/sthjzk/

provinces, creating public health hazards of varying degrees in these 
areas (119). Therefore, this study investigates the macro-level spatial 
effects of air pollution on public health utilizing a spatial 
econometric model.

4.2.1.1 Spatial autocorrelation
Spatial autocorrelation refers to the phenomenon wherein a 

specific economic phenomenon or attribute within an economic 
region exhibits correlation with similar phenomena or attribute values 
in neighboring economic regions, including both global and local 
spatial autocorrelation (120). Among these, global spatial 
autocorrelation is evaluated using Moran’s I, which is calculated as:
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In Eq. 1, I represents the overall extent of correlation between 
regions; n represents the number of study regions; xi and x j represent 
the data points in regions i and j , respectively; x  represents the mean 
of the data points; 
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the sample; and Wi j,  represents the spatial weighting matrix. 
Additionally, considering that the effects of air pollution on public 
health can be  experienced across regions, this paper adopts the 
geographical neighborhood weight matrix to calculate Moran’s I. The 
assignment criterion of the geographical neighborhood weight matrix 
is as follows: 1 indicates that regions i and j  are neighbors spatially, 
and 0 indicates that region i and region j  are not neighbors spatially. 
The formula is as follows:
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In addition, the range of Moran’s I is [−1, 1], if the index value 
approaches 1, it indicates stronger spatial positive correlation; if the 

FIGURE 1

The theoretical framework of multifactorial health decision-making (80).

https://doi.org/10.3389/fpubh.2024.1422505
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.stats.gov.cn/sj/ndsj/
http://www.nhc.gov.cn/wjw/index.shtml
https://www.mee.gov.cn/hjzl/sthjzk/


Ye et al. 10.3389/fpubh.2024.1422505

Frontiers in Public Health 07 frontiersin.org

index value approaches −1, it indicates stronger spatial negative 
correlation; if the index value equals 0, it indicates spatially 
random distribution.

4.2.1.2 Local spatial autocorrelation analysis
Local spatial autocorrelation analysis is pivotal in understanding 

spatial patterns within datasets. Global spatial autocorrelation analysis 

FIGURE 2

Research areas and the division of northeast, east, central, north, south, southwest and northwest regions of China.

TABLE 1 Outline of the variables.

Index Specific description Unit Mean Standard deviation Minimum Maximum

Public health Incidence of respiratory diseases (IRD)
Persons per ten 

thousand persons
5.313 1.029 2.116 7.104

Air pollution Air pollution index (API) – 0.222 0.146 0.003 0.901

Socioeconomic 

variables
Resident disposable income (RDI) Yuan 10.05 0.379 9.184 11.19

Population density (PD) Person/km2 5.332 1.496 0.948 8.275

Life Environment 

variables
Urbanization rate (URB) % 4.061 0.217 3.175 4.495

Greening coverage (GRE) % 3.579 0.116 2.526 3.85

Healthcare 

variables

Number of occupational physicians per 

1,000 people (OCP)

Persons per 

thousand persons
0.701 0.258 0.03 1.705

Household medical expenditure (HME) Yuan 7.396 0.374 6.281 8.288
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solely indicates the presence of spatial correlation within an economic 
phenomenon or attribute, but lacks the capacity to delineate the spatial 
agglomeration characteristics. Therefore, Anselin conducted additional 
analysis to evaluate the significance of spatial clustering using the local 
spatial autocorrelation measure, Local Moran’s I (121). The formula for 
Local Moran’s I is presented below.
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In Eq. 3, the variables carry the same significance as those in Eq. 2. 
If Moran s Ii' > 0 , it indicates that the province shares similar 
attributes with its neighboring provinces; if 0iMoran's I ≤ , it 
indicates the absence of similar attributes with its neighboring 
provinces. Furthermore, we employ the LISA agglomeration map to 
depict spatial relationships between regional units and their neighbors. 
This allows us to categorize these relationships into four types of 
spatial correlations: high-high agglomeration (H-H), high-low 
agglomeration (H-L), low-high agglomeration (L-H), and low-low 
agglomeration (L-L).

4.2.1.3 Spatial measurement models
According to LESAGE et  al. and other researchers, spatial 

autoregressive (SAR), spatial error model (SEM), and spatial durbin 
model (SDM) are frequently employed in spatial econometric analysis 
(122). The SAR model examines spatial spillover effects of explanatory 
variables, incorporating a spatial lag term; whereas the SEM model 
investigates spatial dependence due to omitted variables, incorporating 
a spatial lag term in the error term. The SDM model integrates the 
benefits of both SAR and SEM by addressing spatial dependence of 
explanatory variables and accounting for spatial effects caused by 
random errors (123). Based on this, the expression for the 
aforementioned model is as follows:

Spatial autoregressive econometric modeling (SAR):
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Spatial error economics modeling (SEM):
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Spatial durbin economics modeling (SDM):
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In Eqs 4–7, Yit represents the observed value of the explanatory 
variable for each spatial cell i N� �� �1, ,  at time t T� �� �1, , , while Xit
represents the observed value of the explanatory variable for the same 
spatial cell i N� �� �1, ,  at time t T� �� �1, , . The symbol β  signifies the 
intercept term. i represents province i, j  represents province j ; t  
signifies the year; ρdenotes the spatial autoregressive coefficient, 
indicating the spatial correlation among sample observations; σ  
represents the spatial error coefficient, indicating the influence of 
residuals from neighboring regions on local residuals; Wijdenotes an 
entry in the geographic neighborhood weight matrix (124); µit  
signifies the temporal fixed effect of a spatial unit; λit  signifies the 
individual fixed effect of a spatial unit; εit  denotes the random 
disturbance term. Finally, φit represents the spatially correlated 
error term.

Furthermore, LeSage et al. (125) has highlighted that the presence 
of spatial correlation hinders the coefficients of the explanatory variables 
in the SDM from accurately reflecting the marginal effects. A more 
accurate interpretation of the model can only be  achieved by 
decomposing the marginal effects into direct, indirect, and total effects. 
Specifically, the direct effect reflects the impact of the explanatory 
variables in the region on the local explanatory variables, while the 
indirect effect signifies the influence of the explanatory variables in 
neighboring regions on the local explanatory variables. The combination 
of direct and indirect effects is termed as the total effect (126).

On the basis of the above analysis, we select the SDM to explore 
the impact of air pollution on public health. The specific formula is 
as follows:
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In Eq. 8, LnHit represents the explained variable denoting public 
health status in the ith province during period t ; LnXcontrol serves as 
a control variable encompassing factors like economic development 
and healthcare coverage; LnAPIit  represents the core explanatory 
variable signifying air pollution levels in the ith province during 
period t ; and the remaining variables, denoted by 
� � � � � � �, , , , , , ,k k it it it ijand W , carry the same interpretation as 
in Eq. 7.

4.2.2 Geographically and temporally weighted 
regression

The Geographically Weighted Regression model is a local 
regression technique used to assess the spatial non-stationarity of 
continuous parameter surfaces at a regional scale. Specifically, the 
GWR model generates unique regression equations for individual 
sample points, allowing for localized parameter estimation instead of 
global parameters (127). Consequently, the use of the GWR model can 
significantly enhance the accuracy of model estimation, which is 
particularly beneficial for studying China, a country with a complex 
spatial background (128). However, the GWR model can only be used 
for cross-sectional data and cannot adequately consider the temporal 
dynamics of the influencing factors (129). Thus, Huang et al. (61) 
proposed the Geographically and Temporally Weighted Regression 
(GTWR) model, integrating temporal effects, to address both 
temporal and spatial nonstationarities in the data. Based on this, 
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we employed the GTWR model to assess the influence of various 
factors on IRD across different regions and time periods. Notably, the 
shadow weights of other sample points on the regression sample 
points in the GTWR model are determined by constructing a 
spatiotemporal weight matrix. Thus, the spatio-temporal weight 
matrix formulated by the GTWR model using temporal and spatial 
distances is represented as follows.

 
Y t t Xi i i i
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In Eq. 9, Yi represents the explanatory variable, while iµ  and θi
correspond to the latitude and longitude of the ith observation, 
respectively. � �i i it, ,� �  symbolizes the time series of the ith 
observation. � � �0 i i it, ,� �  denotes the regression intercept; 
� � �k i i it, ,� � represents the regression coefficient associated with the 
k th explanatory variable at the ith observation; signifies the value of 
the k th explanatory variable at the ith data point; and εi represents the 
residual error term.

In addition, the main challenge in using the GTWR model is to 
provide parameter values of k ti i i� �, ,� �  for variables k  and i. To 
address this challenge, we use the following matrix k ti i i� �, ,� �  to 
compute the parameter values of:
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Eq. 10 involves the diagonal element � � � �i i i in1 2 3, , �� �. , which 
is a function of the spatiotemporal distance � �, ,t� �. Consequently, 
we  calculate the spatiotemporal distances between the regression 
points and the measured data in this study employing the ellipsoidal 
coordinate system, which considers variations in locations and times, 
as illustrated in Figure 3.

Considering the aforementioned information, if we  relate the 
temporal distance, denoted as distanceT , to the spatial distance, 
denoted as distanceS , then the spatiotemporal distance, denoted as 
distanceST , is defined as follows:

 distance distance distanceST T S� �  (11)

In Eq. 11, ⊗ denotes the disparity between operational symbols. 
Furthermore, the matrices distanceST  and the diagonal elements 
W ti i i� �, ,� � , utilized for the estimation of βij , are expressed in the 
subsequent equations.
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In Eq. 12, h  denotes the bandwidth, a parameter exceeding 0, 
whereas h hS T, , and hST  denote the temporal, spatial, and 
spatiotemporal bandwidths, respectively. Additionally, φ S and φT

represent spatial and temporal distances with scaling factors, 
respectively. During the computation process, we acquire the time, 
space, and spatiotemporal bandwidths automatically utilizing cross-
validation optimization techniques, and we rely on either the least 
squares method (Eq. 13) of the R^2 statistic or the modified Akaike 
information criterion.
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In Eq. 13, CVRSS h� �  denotes the sum of squared errors, while 
y hi � �  signifies the estimated value of yi within the GTWR model.

5 Results and discussion

5.1 Results of global autocorrelation 
analysis

We calculated the global Moran’s I index using Stata17 software to 
evaluate the spatial correlation between API and IRD, and the results 
are shown in Figure 4.

As shown in the figure, it illustrate consistently positive Moran’s 
I values for IRD, all statistically significant at the 5% level. It suggests 
a significant positive spatial correlation among IRD values, indicating 
spatial clustering or dependency among provinces with similar public 
health levels. Specifically, the Moran’s I  value for IRD rose from 

FIGURE 3

Schematic of the GTWR model spatiotemporal distance.
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0.204 in 2013 to 0.242 in 2020. On the other hand, the Moran’s I values 
for API are consistently positive and pass the significance test at the 
1% level, indicating a positive spatial correlation for API. The Moran’s 
I value for API declined from 0.418  in 2013 to 0.38  in 2020. It is 
noteworthy that the spatial positive correlation for API is stronger 
than that for IRD. Thus, when examining the impact of API on IRD, 
emphasis should be placed on spatial correlations between regions.

5.2 Results of local autocorrelation analysis

Although the Moran’s I index serves as a correlation metric for 
assessing overall spatial correlation, it does not elucidate the local 
spatial clustering characteristics between API and IRD. Consequently, 
LISA clustering maps for 2013, 2016, and 2020 were generated using 
the global Moran’s I index to depict the local spatial clustering traits 
of IRD and API. These findings are illustrated in Figures 5, 6.

As can be seen from the figure, the local clustering characteristics 
of IRD and API during the study period, exhibiting predominantly 
High-High and Low-Low clustering, which are distributed in adjacent 
regions. Regarding the API, High-High clustering provinces are 
mainly found in the central regions of Shanxi and Shaanxi, as well as 
Xinjiang and Inner Mongolia in the western region, while Low-Low 
clustering is primarily concentrated in Guangxi, Guangdong, and 
Fujian provinces. Regarding the IRD, High-High clustering provinces 
are distributed in Anhui, Zhejiang, and Hunan, as well as Jiangsu and 
Shanghai in the central and eastern coastal regions. Low-low clustering 
provinces are mainly concentrated in Tibet, Qinghai, and other 
western regions. In summary, a clear positive spatial correlation exists 
between IRD and API. Thus, the utilization of a spatial econometric 
model for empirical research is warranted.

5.3 Estimation and analysis of the spatial 
durbin model

Before conducting spatial econometric analysis, it is 
imperative to ascertain the appropriate spatial econometric 
model through LM test (77, 130). The results of the calculations 
are presented in Table 2.

From the table, it is evident that both the LM error and robust LM 
error tests passed the significance test at the 1% significance level, in 
comparison with the LM lag and robust LM lag tests, indicating the 
suitability of the SEM for this study. However, the LM test does not 
account for the applicability of the SDM. Thus, LR and Wald tests were 
conducted to assess whether the SDM can be  degraded to SAR or 
SEM. The corresponding statistical p-values of both LR and Wald tests, 
as shown in Table 2, are less than 0.01, significantly rejecting the original 
hypothesis that the SDM can be degraded to SAR and SEM. Additionally, 
the Hausman test for the SDM also significantly rejected the random 
effects hypothesis, leading to the selection of the SDM with fixed effects 
for analysis. Based on the regression results of different fixed-effects 
SDM presented in Table  2, Model 1 (Time-Fixed-Effects SDM) 
demonstrated optimal statistical properties (R2

0 616= . ). Therefore, 

FIGURE 5

Spatial agglomeration distribution of air pollution index (API) across the 31 provinces of China in 2013, 2016 and 2020. (A) Depicts the spatial 
agglomeration of the API in 2013; (B) reflects the spatial agglomeration of the API in 2016; (C) indicates the spatial agglomeration of the API in 2020.

FIGURE 4

Spatial correlation analysis of air pollution and incidence of 
respiratory diseases in China, 2013–2020. *, **, and *** distributions 
indicate 10, 5, and 1% significance levels.
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this paper employs the Time-Fixed-Effects SDM as the 
empirical benchmark.

On the basis of the above analysis, we utilized Stata 17 software to 
regress the spatial effects of air pollution on public health in 31 
Provinces in China from 2013 to 2020. The estimation results are 
shown in Table  2. As can be  seen from the table, the regression 
coefficients of API, RDI, and PD are significantly positive at 1 and 5% 
significance levels, with estimated coefficients of 3.195, 2.319, and 
0.565, respectively, while the regression coefficients of URB and OCP 
are significantly negative at 1 and 5% significance levels, with 
estimated coefficients of −1.032 and − 1.448, respectively. However, 
the HME regression coefficients did not meet the 10% significance test.

5.4 Decomposition analysis of spatial 
effects

It is worth noting that the SDM incorporates the influence of 
pertinent variables in adjacent areas; However, the coefficients of the 
spatial lag terms inadequately capture the true impact of these 
variables (131). Consequently, we calculated coefficients reflecting the 
direct, indirect, and total effects of API and other control variables on 
IRD using the estimated coefficients derived from the Time-Fixed-
Effects SDM (122). The calculation results are shown in Table 3.

The direct effect analysis revealed a significant regression 
coefficient of 3.552 for API, indicating that air pollution contributes 
to increased the IRD, thereby adversely affecting public health. This 
is attributed to the lack of fundamental changes in China’s coal-
based energy structure, leading to persistent soot-based pollution as 
the primary pollutant over an extended period. Meanwhile, the 
rising pollution from automobile exhaust has significantly 
heightened the risk of respiratory diseases among the population 
(132, 133). The results are consistent with previous studies Chen 
et al. (134).

Considering the control variables, the estimated coefficient of RDI 
for economic development is statistically significant at the 1% level, 

measuring 2.609. This could be related to the negative impact of air 
pollution on public health outweighing the positive influence of 
income growth among the population. Which is in line with the 
findings of Li et al. (135).

Regarding the living environment, the estimated coefficient of 
URB is statistically significant at the 1% level, with a value of −1.432. 
Recent studies have revealed positive trends in China’s urbanization 
process (136). Specifically, Chinese urbanization development policies 
now prioritize humanistic care and environmental protection. 
Moreover, Chinese urban industries are shifting from heavy pollution 
to green development, and urban energy consumption is becoming 
cleaner (137). Consequently, these developments have partially 
alleviated the detrimental impacts of air pollution on public health.

The estimated coefficient of PD was found to be  statistically 
significant at the 1% level with a value of 0.585. It is because that 
higher PD indicates a greater likelihood of respiratory diseases among 
a larger population exposed to prolonged heavy air pollution (138). 
This observation is consistent with Ren et  al. (139). The GRE 
demonstrated a statistically non-significant yet positive impact on 
public health, as evidenced by the regression coefficient of 0.488. It can 
be  attributed to the capacity of increased the GRE to efficiently 
diminish, absorb, and intercept airborne toxins, including fine 
particulate matter and nitrogen oxides. Thus, this action significantly 
alleviates the detrimental impact of air pollution on public health 
(140). These results corroborate the conclusions drawn by Sun 
et al. (141).

In terms of healthcare, the estimated coefficient of the OCP was 
statistically significant at the 1% level, at −1.405. The possible 
explanation is that the increase in OCP provides favorable conditions 
for patients to be seen and treated, effectively mitigating air pollution-
related health issues (142). The results are consistent with the findings 
of Yang et al. (143). In addition, HME has an insignificant positive 
effect on public health. The possible reason for this is that HME not 
only improves the physical fitness of individuals and enhances their 
resilience against health issues caused by air pollution but also ensures 
that residents have access to more adequate healthcare services, 

FIGURE 6

Spatial agglomeration distribution of the incidence of respiratory diseases (IRD) across the 31 provinces of China in 2013, 2016 and 2020. (A) Shows the 
spatial agglomeration of IRD in 2013; (B) presents the spatial agglomeration of IRD in 2016; (C) displays the spatial agglomeration of IRD diseases in 
2020.
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increasing the chances of addressing health issues caused by air 
pollution (144). The findings are similar to Zhang et al. (48).

According to the results of the indirect effect analysis, the API in 
the region exhibits a significant negative impact on the IRD in 
neighboring regions. This phenomenon likely occurs because an 

increase in air pollution levels in one region leads to relatively lower 
pollution levels in its neighboring region, thereby positively impacting 
public health in the latter. The RDI and HME in the region positively 
impact the reduction of IRD in neighboring areas. One plausible 
explanation for this is that the economic advancement and increased 
healthcare spending not only enhance the residents’ quality of life in 
neighboring regions but also draw nearby residents to seek medical 
care in the region, ensuring efficient treatment of illnesses. This 
finding aligns with the conclusions drawn by previous researchers Xin 
et al. (145). Furthermore, the rise in URB may have impeded the 
enhancement of public health in neighboring regions. This may stem 
from traditional urbanization challenges, such as intensified land 
development and industrial expansion, which positively correlate with 
IRD in adjacent areas, which consistent with Jiang et al. (146).

Furthermore, the total effect analysis revealed that increases in 
API, PD, and URB were significantly associated with adverse impacts 
on public health, whereas OCP and HME demonstrated positive 
effects. However, the effects of the remaining variables were deemed 
statistically insignificant.

5.5 Robustness analysis

In this study, we employ a geographic proximity matrix to assess 
the spatial influence of API on IRD. To mitigate potential errors in the 
selection process of the spatial weight matrix, we follow Feng et al. and 
employ a nested spatial weight matrix grounded in economic 
geography for robustness testing (147). The calculated results are 
depicted in Table 4.

From the table, it is evident that the API continues to exhibit a 
significant positive effect on IRD. However, the RDI and OCP show 
contrary results compared to the aforementioned ones. The other 
control variables differ only in magnitude, while the direction of 
spillover remains unchanged. Consequently, the robustness analysis 

TABLE 2 Regression results of the spatial durbin model.

Variables Model 1 
(Temporal-

FE)

Model 2 
(Spatial-

FE)

Model 3 
(Spatial–

temporal -FE)

LnAPI 3.195*** −0.445*** −0.45***

(0.375) (0.0822) (0.0794)

LnRDI 2.319*** 1.274*** 1.479***

(0.309) (0.225) (0.244)

LnGRE −0.561 −0.121** −0.155***

(0.397) (0.0598) (0.0577)

LnURB −1.032** 0.328 0.445**

(0.427) (0.203) (0.195)

LnPD 0.565*** −0.331 −0.315

(0.0490) (0.219) (0.222)

LnOCP −1.448*** 0.0348 0.0240

(0.301) (0.0595) (0.0562)

LnHME −0.169 0.152*** 0.111***

(0.242) (0.0399) (0.0384)

W*LnAPI −2.142*** 0.170 0.018

(0.763) (0.120) (0.124)

W*LnRDI −2.241*** −1.962*** −0.348

(0.636) (0.247) (0.618)

W*LnGRE −0.713 0.163 −0.065

(0.868) (0.127) (0.129)

W*LnURB 3.748*** 0.0396 −0.022

(0.814) (0.325) (0.413)

W*LnPD 0.0375 1.603*** 1.438***

(0.0940) (0.372) (0.429)

W*LnOCP −0.837 −0.0212 0.069

(0.576) (0.103) (0.104)

W*LnHME −1.173*** 0.285*** 0.118

(0.441) (0.0785) (0.081)

R2 0.616 0.347 0.275

σ2 0.219*** 0.0022*** 0.002***

LM lag 0.352 0.425 0.04

LM error 252.392*** 43.809*** 30.703***

Robust LM lag 0.03 0.862 0.003

Robust LM error 252.065*** 44.247*** 30.665***

LR_error 18.26**

LR_lag 24.35***

Wald_error 77.13***

Wald_lag 38.29***

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

TABLE 3 Decomposition of direct, indirect, and total effects of the spatial 
durbin model with time fixed effects.

Variables Direct-
effects

Indirect-
effects

Total-
effects

lnAPI 3.552*** −2.848*** 0.703*

(0.441) (0.669) (0.418)

lnRDI 2.609*** −2.536*** 0.0727

(0.322) (0.516) (0.391)

LnGRE −0.488 −0.315 −0.804

(0.382) (0.645) (0.722)

LnURB −1.432*** 3.270*** 1.838***

(0.440) (0.683) (0.604)

LnPD 0.585*** −0.166** 0.419***

(0.0531) (0.0755) (0.0481)

LnOCP −1.405*** −0.204 −1.608***

(0.316) (0.443) (0.440)

LnHME −0.0680 −0.826** −0.893**

(0.246) (0.356) (0.362)

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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aligns with the aforementioned analysis, indicating the stability and 
reliability of the paper’s findings.

5.6 Analysis of the spatiotemporal 
heterogeneity of air pollution impacts on 
public health

To investigate the impact of various factors on IRD across different 
regions and time periods, considering spatiotemporal heterogeneity, 
we re-evaluated the influence of API on IRD using the GTWR model 
implemented with Arcgis 10.8 software. Moreover, we conducted a 
comprehensive comparative analysis using the OLS model, the GWR 
model, and the GTWR model. The results are shown in Table 5.

From the table, we observe that the R2 value of the GTWR model 
(0.98) is higher than that of the OLS model (0.65) and the GWR 
model (0.531), indicating that the GTWR model has a better goodness 
of fit and stronger explanatory power. Additionally, the ARCc of the 
GTWR model is significantly lower than that of the GWR model, 
suggesting that the GTWR model is more suitable for the dataset used 
in this study. Therefore, we re-evaluated the influence of API on IRD 
using the GTWR model, implemented with ArcGIS 10.8 software.

Based on the results of the GTWR model, we created Figures 7, 8 
to reveal the effects of multiple factors on the spatiotemporal 
heterogeneity of IRD in different regions and time periods. The details 
are as follows.

In terms of air pollution, from the time evolution (Figure 7A), the 
API regression coefficients continue increasing from 2013 to 2020, 
indicating that the index has a positive impact on the IRD in the study 
area. The box becomes longer, showing that the distribution of API 
regression coefficients is becoming more dispersed. With regard to the 
spatial distribution (Figure 8A), the positive impact of API on IRD 
gradually decreases from 2013 to 2020 from North and Southwest 
China to the Eastern seaboard, with a certain gradient distribution 
trend. One possible explanation is that some provinces in North 
China, such as Hebei and Shanxi, are major coal-producing provinces, 
and the combustion of coal can directly generate serious air pollution. 
On the other hand, some of the industrial enterprises relocated from 
the coastal region of East China are gradually moving to North and 
Southwest China, leading to an increase in both energy consumption 
and the emission of pollutants in the region (148).

In terms of economic development, the temporal evolution of the 
impact degree (Figure  7B) reveals a trend where the regression 
coefficient of RDI initially decreases before rising again. It illustrates 
a predominantly positive impact of the indicator on IRD across most 
regions. The box diminishes in size and discreteness, demonstrating a 
relatively stable evolution of the RDI regression coefficient. 
Furthermore, numerous outliers are present in the RDI coefficients, 
suggesting significant variation between regions. Regarding the spatial 
distribution of the influence degree (Figure 8B), the extent of the 
positive effect of RDI on IRD from 2013 to 2020 shows an increasing 
trend from the East China coastal region (e.g., Zhejiang, Jiangsu, and 
Shanghai) to the Northwest and Southwest regions (e.g., Gansu, 
Ningxia, Inner Mongolia, and Guizhou). It could be explained to the 
increased susceptibility of residents in low-income areas such as the 
Northwest and Southwest regions to the impacts of air pollution. For 
instance, low-income groups often lack sufficient awareness about air 
pollution and disease prevention, and they frequently face financial 
constraints preventing them from covering medical and other 
healthcare expenses (149). Conversely, high-income groups residing 
in East China’s coastal areas, having satisfied their basic material 
needs, prioritize demanding higher environmental quality and are 
willing to invest more in air quality enhancements to alleviate the 
adverse effects of air pollution on their health (150). which is the same 
as the findings of Wang et al. (151).

In terms of the living environment (see Figure 7C), the coefficient 
of PD in regression exhibits a slight upward trend, with minimal 
variation within the boxplot, indicating stable dispersion. Concerning 
spatial distribution (Figure 8C), the overall effect of PD on IRD from 
2013 to 2020 is significantly positive, with the spatial trend decreasing 
from the southeast coastal region to the inland northwest. Specifically, 
PD negatively impacts IRD most significantly in Southern and Eastern 
China, exemplified by Guangdong, Shandong, and Anhui, possibly 
due to higher population densities enabling intensive energy use, 
thereby reducing air pollutant emissions and favorably impacting 
public health (152). Conversely, IRD is mildly positively influenced by 

TABLE 4 Robustness analysis of nested spatial weight matrix based on 
economic geography.

Variables Direct-
effects

Indirect-
effects

Total-
effects

lnAPI 1.071*** 1.087 2.158***

(0.389) (1.330) (1.629)

lnRDI −0.520 −4.282 −4.802

(0.329) (1.521) (1.767)

LnGRE −1.172*** −3.609** −4.782***

(0.356) (1.484) (1.661)

LnURB 1.139** 5.945** 7.083***

(0.470) (2.394) (2.713)

LnPD 0.426*** 1.500*** 1.926***

(0.0390) (0.284) (0.308)

LnOCP −0.0222 0.273 0.251

(0.307) (0.998) (1.189)

LnHME −0.425* −1.963** −2.388**

(0.236) (0.974) (1.136)

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

TABLE 5 Comparison of accuracy under different models.

Model Kernel type Adjusted R2 AICc Bandwidth Observations

OLS – 0.65 – – 248

GWR Gaussian 0.531 79.988 37.483 31

GTWR – 0.98 2.557 0.113 248
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FIGURE 7

The estimated coefficients of various factors in different periods for the 31 provinces in China from 2013 to 2020. (A) Shows the coefficients of API; 
(B) displays the coefficients of RDI; (C) reflects the coefficients of PD; (D) represents the coefficients of URB; Figure e depicts the coefficients of GRE; 
(F) indicates the coefficients of the number of OCP; (G) presents the coefficients of HME.

PD in northwest and southwest regions, such as the provinces and 
cities of Shaanxi, Gansu, and Tibet, which aligns with the findings of 
Chen et al. (115).

Meanwhile, from the time dimension (Figure  7D), the URB 
exhibits a gradual decline over time. Notable characteristics include 
the compact size of the box plot and decreased variability, indicating 
high stability. From the spatial dimension (Figure 8D), South China, 
represented by Fujian and Guangdong, is consistently positively 
correlated with URB from 2013 to 2020. This could be owed to the 
significant negative impact of urbanization on air quality improvement 
in China, thereby exacerbating public health burden (153). However, 
the Southwest region, including Sichuan, Guizhou, Xinjiang, and 
Yunnan, experienced increasing negative impacts from the URB 
throughout the study period. In other words, urbanization-driven 
population migration effectively reduces IRD (154).

Furthermore, see Figure 7E, the regression coefficients for GRE 
show a pattern of increase followed by decrease, indicating that this 
indicator has a negative impact on IRD in most regions. The boxes 
become more concentrated, suggesting significant variations in the 
distribution. Numerous outliers are present in the regression 

coefficient of this factor, demonstrating significant variations between 
the GRE coefficients and regions. From the spatial dimension 
(Figure 8E), the negative relationship between GRE and IRD from 
2013 to 2020 exhibits a gradient distribution, ranging from high in the 
Middle East to low in the Northeast. Specifically, northeastern regions 
including Heilongjiang, Jilin, and Liaoning are weakly affected by the 
negative impact of GRE, while southern and central regions like 
Guangxi, Hunan, Guangdong, and Hubei, and eastern regions such as 
Shanghai, Fujian, and Zhejiang are strongly affected by the negative 
impact of GRE. This is related to the higher level of landscaping in 
South and East China compared to Northeast China (155). 
Landscaped green spaces can provide a variety of ecosystem services 
to residents, thus improving air quality and promoting public health 
(156), which is consistent with the findings of Yang et al. (157).

In terms of healthcare, within the temporal dimension (Figure 7F), 
the estimated coefficient of OCP exhibits a gradual decline, with its 
box plot elongating and showing increased variability, indicating 
significant instability in the regression coefficients. This variation may 
stem from significant differences in the distribution of OCP among 
provinces. Regarding spatial changes (Figure  8F), the negative 
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correlation between OCP and IRD persists in East China, 
encompassing Guangdong, Shanghai, and Zhejiang, from 2013 to 
2020. Conversely, in the southwestern and northwestern regions, 
including Guizhou, Sichuan, Ningxia, and Qinghai, the negative 
correlation between OCP and IRD gradually diminishes. One possible 
explanation is that the relatively more developed economic base of 
East China provides more adequate healthcare facilities and resources, 
such as modern hospitals, advanced medical equipment, and sufficient 
medical professionals. Which enables residents in the region to receive 
prompt and effective medical care when facing health problems 
caused by air pollution Pan et al. (158). In contrast, the Southwest and 
Northwest regions have a lack of local medical professionals and poor 
access to healthcare resources and services. Consequently, when 
residents in these regions are affected by air pollution, they may not 
receive timely medical attention, increasing the risk of illness and 
death (159). This finding aligns with Zhao et al. (160).

Additionally, in Figure  7G, the regression coefficients of HME 
exhibit a gradual upward trend, suggesting that all its effects on IRD are 
negative. The widening trend of its box indicates high instability in the 
regression coefficients. In the spatial dimension (Figure 8G), the impact 
of HME on IRD from 2013 to 2020 exhibits significant geographic 
variation. Particularly, its influence is relatively weak in economically 
advanced eastern regions like Jiangsu and Zhejiang. Conversely, areas 
with a more pronounced impact are predominantly situated in 

economically underdeveloped western regions, such as Heilongjiang and 
Gansu. This phenomenon could be  attributed to the economic 
constraints in the western regions and the residents’ lower inclination to 
utilize healthcare services, consequently enabling the adverse effects of 
air pollution to surpass the beneficial effects of HME on public health 
(161). It is generally consistent with the findings of Yang et al. (149).

6 Conclusion

Air pollution and its effects on public health have garnered 
significant attention from researchers, yet there is often insufficient 
consideration of the spatiotemporal variations in these effects. 
Furthermore, the effective control of air pollution and the promotion 
of public health have emerged as key priorities for the Chinese 
government. Accordingly, based on Neidell’s theoretical framework 
for multifactorial health decision-making, we utilized panel data from 
31 provinces and municipalities collected between 2013 and 2020. 
We then integrated this data with the Time-Fixed-Effects SDM and 
GTWR models to explore the spatiotemporal variations in the effects 
of air pollution on public health. This endeavor aims to furnish 
policymakers, urban planners, and public health authorities with 
actionable insights for crafting targeted interventions. The main 
conclusions drawn from this study are summarized below:

FIGURE 8

Spatial distribution of estimated coefficients of various factors in 31 provinces of China from 2013 to 2020. (A) Shows the coefficients of API; 
(B) displays the coefficients of RDI; (C) reflects the coefficients of PD; (D) represents the coefficients of URB; (E) depicts the coefficients of GRE; 
(F) indicates the coefficients of the number of OCP; (G) presents the coefficients of HME.
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 (1) API and IRD exhibit non-random distribution among Chinese 
provinces; On the contrary, they demonstrate positive spatial 
correlation and localized clustering. High-High clustering of 
API are predominantly located in Inner Mongolia, Hebei, and 
Liaoning, while Low-Low clustering are found in Guangdong, 
Guangxi, and Fujian. Similarly, High-High clustering of IRD 
encompass regions such as Anhui, Hunan, Hubei, and Henan, 
while Low-Low clustering are prevalent in Tibet, Qinghai, and 
other areas.

 (2) The API exhibits a notable positive impact on IRD, markedly 
elevating IRD and thereby diminishing public health. 
Furthermore, the API demonstrates a more substantial adverse 
influence on public health compared to the traditional 
econometric model neglecting spatial correlation. It indicated 
that disregarding spatial effects may result in biased 
assessments of public health. Nonetheless, irrespective of 
spatial effects, air pollution persists as a significant determinant 
of public health, even after considering variables such as 
economic development, living environment, and healthcare. 
Moreover, a noteworthy spillover effect of air pollution is 
observed, with an indirect effect coefficient of −2.848, 
demonstrating that an increase in air pollution in one region 
can positively influence public health in neighboring provinces. 
Additionally, URB and OCP exhibit substantial negative 
impacts on IRD, while RDI and PD demonstrate significant 
positive effects. Conversely, GRE and HME produce 
insignificant negative effects on IRD.

 (3) Significant spatiotemporal heterogeneity exists in the impacts 
of air pollution, economic development, living environment, 
and healthcare on IRD. Regarding temporal heterogeneity, the 
temporal non-stationarity of regression coefficients for API, 
GRE, OCP, and HME increases over time, whereas that of RDI, 
PD, and URB stabilizes. Regarding spatio heterogeneity, IRD 
in North China experiences greater influence from air 
pollution. Regarding economic development factor, alterations 
in RDI exert a more pronounced effect on IRD in northwest 
China. Regarding living environment factors, alterations in PD 
predominantly affect IRD in South and East China; Changes in 
URB significantly influence IRD in South and Southwest 
China; moreover, IRD in Northeast and East China exhibits 
higher susceptibility to GRE. Regarding healthcare factors, 
Guizhou, Sichuan, Guangdong, Shanghai, and other regions of 
South and Southwest China primarily experience a more 
significant impact from OCP on IRD. Conversely, HME 
primarily influences IRD in East and Northwest China.

Based on the findings of this paper, the following policy 
recommendations are proposed:

 (i) Emphasize inter-provincial cooperation and enhance the cross-
regional linkage and coordination mechanisms for air pollution 
prevention and control. Establish and enhance a grid-based 
hotspot supervision system for air pollution to bolster 
collaborative oversight of the air pollution control process, 
thereby enhancing the tangible efficacy of air pollution 
prevention and control efforts.

 (ii) Increase investment in medical and healthcare resources and 
actively foster the recruitment and integration of high-quality 

health professionals to elevate the service standard and 
operational efficiency of medical and healthcare institutions. 
Establish a comprehensive and diverse regulatory and service 
framework for the medical and healthcare sector to foster a 
high-quality healthcare environment for patients.

 (iii) Enhancing ecological and environmental protection efforts in 
urban and rural regions, and furthering the expansion of green 
spaces in both settings. Accelerating the modernization of 
gardening practices and green infrastructure, while 
implementing an effective supervision system for urban 
gardening and greening, to foster an enhanced ecological 
environment for the public.

 (iv) Giving full play to the positive external effects brought about 
by the urbanization process, realizing the overall environmental 
improvement of the new urbanization, and promoting the 
green, healthy and sustainable development of urbanization.

 (v) Owing to the spatiaotemporal heterogeneity of indicator 
coefficients, relevant government departments ought to 
consider variances in impact levels of distinct indicators while 
formulating strategies for air pollution prevention and control. 
(First) Governments in provinces and major cities like Beijing 
and Shanghai should not only actively foster the process of new 
urbanization and harness the population and industrial 
clustering effects it brings, but also actively promote the 
development of essential public services including healthcare 
and education, aiming to bolster public health; (Second) In 
provinces like Shanxi, Guangxi, Gansu, and Shaanxi, due to 
insufficient urban medical facilities and the uneven allocation 
of health resources, the government should further increase 
healthcare spending, actively establish a long-term inter-
regional cooperation mechanism, and gradually achieve cross-
regional sharing of high-quality healthcare talents, technology, 
knowledge, and other resources to maximize the quality of 
peripheral medical and healthcare services; (Third) In 
provinces such as Sichuan, Yunnan, Guizhou, Anhui, Zhejiang, 
Hunan, and Hubei, governmental institutions should establish 
and enhance policies for controlling air pollution, strengthen 
measures for environmental protection and penalties, and 
enhance oversight of controlling pollution from mobile 
sources. Additionally, governmental bodies should enhance 
green initiatives in urban and rural regions and rationalize the 
layout of green parks.

Furthermore, the limitations of this study primarily manifest 
in two aspects. Firstly, as data at the prefecture-level is 
unavailable, pertinent provincial-level data was utilized. Thus, 
future research could delve deeper into the effects of air pollution 
on public health at the prefecture level. Secondly, this paper 
solely concentrates on air pollution as an environmental variable. 
However, exploring the impacts of additional environmental 
pollution variables on public health will be  the focus of our 
future investigations.
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