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SARS-CoV-2 seroprevalence and 
antibody trajectories after easing 
of COVID-19 restrictions: a 
longitudinal study in China
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Background: We aimed to evaluate the seroprevalence of SARS-CoV-2 and 
investigate the trajectories of protective immunity and associated risk factors in 
eastern China between March and November 2023 after the easing of COVID-19 
restrictions.

Materials and methods: We conducted repeated population-based 
seroepidemiologic studies using a multistage, population-stratified, cluster 
random sampling method. We  measured neutralizing antibodies (nAbs) 
using a fluorescence immunoassay. We  calculated both overall and stratified 
seroprevalence. The latent class growth mixed model (LCGMM) was used 
to analyze the dynamic trajectories of antibodies, and a multinomial logistic 
regression model was used to identify factors associated with different antibody 
trajectory patterns.

Results: A total of 6,147 participants were included at baseline, with a median 
age of 53.61  years. Both observed and adjusted seroprevalence remained high 
and stable throughout the study period. The LCGMM identified four distinct 
antibody trajectories: 75.22% of participants had a high and stable antibody 
trajectory, while nearly 8% of them exhibited an increase, decline, or low-stable 
antibody trajectory. Younger participants, women, those fully vaccinated, and 
individuals with a history of previous infection were more likely to have high and 
stable antibody trajectories.

Conclusion: The majority of the population maintained sustained protective 
immunity after the outbreak, following the easing of COVID-19 restrictions 
across the country.
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Introduction

COVID-19 (1), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (2), has led to an unprecedented global pandemic crisis over the past 4 years. To date, 
there have been over 771 million confirmed cases and 6 million deaths worldwide. 
Asymptomatic infections account for up to 40% of cases (3), with silent transmission playing 
a significant role in outbreaks (4–7). While reverse transcription-polymerase chain reaction 
(RT-PCR) and rapid antigen assays have facilitated the diagnosis of both symptomatic and 
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asymptomatic infections (8), serologic testing remains crucial for 
assessing the presence and longevity of antibodies after infection 
or vaccination.

Studies of antibody dynamics have shown varying results, with 
some reporting a decline in neutralizing antibodies (nAbs) over time 
after infection or vaccination (9–11), while others observed sustained 
high levels, particularly in vaccinated individuals (12, 13). Research 
using latent class growth mixture models (LCGMM) has classified 
antibody response trajectories as distinct patterns, offering insights 
into how different populations maintain immunity over time (14). 
However, the majority of these studies were conducted during the 
early stages of the pandemic with relatively small sample sizes. Limited 
data are available after the easing of COVID-19 restrictions, which is 
important for designing future immunization strategies. On 7 
December 2022, China eased its stringent COVID-19 control 
measures, leading to the rapid emergence of new outbreaks, 
predominantly of the SARS-CoV-2 Omicron lineages BA.5.2 and 
BG.7 across the country (15). Despite high vaccination rates, there is 
limited knowledge regarding the long-term persistence of immunity 
in the population after the easing of restrictions.

To address these knowledge gaps, we conducted a prospective, 
longitudinal seroepidemiologic study to investigate the seroprevalence 
of SARS-CoV-2 and explore the trajectories of nAbs after the easing 
of COVID-19 restrictions in China.

Materials and methods

Study design and participants

This repeated population-based seroepidemiologic study was 
conducted between March 2023 and November 2023  in Zhejiang 
Province, China, which is administratively divided into 11 cities, 90 
counties (districts), and over 20,000 villages (communities). 
We  employed a multistage, population-stratified, cluster random 
sampling method with the following steps: First, in each of the 11 
cities in Zhejiang Province, China, 1 or 2 counties (districts) were 
randomly selected. Second, in each county (district) of 11 cities, 2 
villages (communities) were randomly selected, and a total of 24 
sampling sites were identified (Supplementary Figure S1). Finally, 
age-specific random sampling was conducted in each village 
(community), sample size calculation was based on a cross-sectional 
design, and 500 residents were included in each county 
(Supplementary methods). The baseline survey was conducted in 
March 2023, with three follow-ups in May, August, and November 
2023. The flowchart for the inclusion and exclusion of study 
participants is shown in Figure  1. Written informed consent was 
obtained from all participants, with an impartial witness facilitating 
the process for those who were unable to read and write. The study 
was approved by the Ethics Committee of the Zhejiang Provincial 
Center for Disease Control and Prevention (2023-005-01).

Epidemiology data collection

At baseline, face-to-face questionnaires were used to collect 
participants’ demographic information (age, sex, and ethnicity), 
comorbidities, and vaccination history. Information on SARS-CoV-2 

infection history, including time of onset and severity, was also collected. 
Vaccination data were retrieved from the National Vaccine Registry.

Laboratory procedures

Venous blood samples were collected from each participant and 
transported to the local Center for Disease Control and Prevention 
(CDC) laboratory. After centrifugation, the serum was aliquoted 
under aseptic conditions in a biosafety cabinet and stored at 
−20°C. The samples were then transported under a cold chain to the 
Microbiology Laboratory, Zhejiang Provincial Center for Disease 
Control and Prevention, Hangzhou, China.

Neutralizing antibodies (nAbs) were detected using the 
COVID-19 nAbs FIA kit from Assure Tech. (Hangzhou) Co., Ltd. This 
kit, a fluorescence immunoassay, directly detects nAbs against the 
wild strain of SARS-CoV-2 in human whole blood, serum, or plasma 
specimens. The membrane of the test strip is pre-coated with the 
human ACE2 receptor protein on the test region, while the SARS-
CoV-2 RBD antigen conjugated to fluorescent particles is on the 
conjugate pad. During testing, 80 μL of the serum sample was added 
to the strip’s sample well and incubated in a 37°C incubator for 15 min. 
Following incubation, the test strip was inserted into an AFI-6000 
Fluorescence Immunoassay Analyzer (Assure Tech. (Hangzhou) Co., 
Ltd.), with the result displayed in terms of inhibition rate (IR). In 
accordance with the manufacturer’s instructions, an IR of ≥20% was 
considered seropositive for SARS-CoV-2 nAbs, while an IR of <20% 
was considered seronegative. According to the clinical evaluation of 
the characteristics, the kit demonstrated a sensitivity of 0.96 and a 
specificity of 1.00, as validated against virus neutralization experiments.

Quality control

Epidemiology data were recorded in a unified data platform, with 
quality control overseen by experienced public health physicians. For 
the serologic test, given the shift in the predominant SARS-CoV-2 
strain to the XBB strain of the Omicron lineages post-easing 
restrictions, we randomly selected 918 samples from three follow-ups 
to assess the IR of nAbs against the XBB strain. Spearman’s rank 
correlation was performed to analyze the relationship between the IR 
of nAbs against the wild strain and the IR of nAbs against the XBB 
strain, with the results illustrated in Supplementary Figure S2. A 
significantly positive correlation (p < 0.001) was observed, suggesting 
that the nAbs against the wild strain could serve as an indicator of the 
nAbs level against the XBB strain.

Statistical analysis

Continuous variables were described using a median with an 
interquartile range (IQR), whereas categorical variables were 
presented as frequencies and percentages. Seroprevalence was 
calculated as the proportion of individuals with a positive result 
relative to those with completed tests at baseline and three follow-ups, 
and the 95% confidence interval (CI) was estimated based on a 
binominal distribution. While adjusting for test kit performance, the 
adjusted seroprevalence was calculated using the following formula:
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The bootstrap method was used to estimate the 95% CI of the 
adjusted seroprevalence.

A generalized additive model (GAM) was used to explore the 
non-linear relationship between age and seroprevalence. This model was 
selected over simpler linear models because it allows for greater flexibility 
when modeling complex, non-linear relationships between variables.

To assess the dynamics of nAbs, the latent class growth mixture 
model (LCGMM) was used to identify various longitudinal 
trajectories, which assumed that the population was heterogeneous 
and individuals in the study may follow different antibody response 
patterns (16). This approach allowed us to identify latent subgroups 
with varying antibody trajectories (e.g., persistently high levels, 
waning, or increasing over time) rather than assuming a uniform 
trajectory for all participants. In terms of model selection, different 
shapes, including linear, quadratic, and cubic, were tested to allow for 
flexibility in the longitudinal nAbs trajectories. We explored models 
with 1 to 5 classes and selected the best-fitting model based on the 
following criteria: (i) the lowest Bayesian information criterion; (ii) 
high mean posterior class membership probabilities (> 0.8); (iii) high 
mean posterior probabilities (> 0.7); (iv) a sufficient number of 
patients in each latent class (> 1%). We used multinomial logistic 
regression to explore the factors associated with different nAbs 
trajectories, reporting relative risk ratios (RRs) and 95% CIs.

All statistical analyses were performed in R software (version 4.1.3), 
with a statistical significance level set at a two-sided p-value of <0.05.

Results

Characteristics of the study population

Of the 6,147 participants who completed the baseline survey, 
5,766, 5,660, and 5,551 subjects participated in the three follow-ups, 

with compliance rates of 93.80, 92.08, and 90.30%, respectively 
(Figure 1). The median age of the study population [IQR] was 53.61 
[27.65] years at baseline and was similar across all follow-ups. Women 
comprised 54.35% of the participants, and more than 99% were of 
Han ethnicity. Urban residents were more than rural residents, and 
67.95% reported no comorbidities, while 30.78% reported 1–2 
comorbidities. COVID-19 vaccine coverage was 95.35%, with 76.61% 
fully vaccinated (≥ three doses) at baseline. During the follow-up, the 
vaccinated population did not substantially change. The self-reported 
SARS-CoV-2 infection rose from 75.26 to 78.15% during the study 
period (Table 1).

Overall and stratified seroprevalence

The observed overall seroprevalence (95% CI) was 89.77% (88.98–
90.51%) at baseline, increasing to 90.16% (89.37–90.92%), 90.80% 
(90.01–91.54%), and 90.47% (89.67–91.23%) at three follow-ups. The 
seroprevalence of the unvaccinated population was 45.10% at baseline, 
showing fluctuations at three follow-ups (27.27, 50.00, and 50.41%). 
Vaccinated individuals consistently displayed higher seroprevalence, 
ranging from 91.95 to 93.05%. The seroprevalence was further 
adjusted for test kit performance. Overall, the adjusted seroprevalence 
(95% CI) was 93.51% (92.89–94.11%) at baseline and 93.92% (93.30–
94.50%), 94.58% (93.98–95.16%), and 94.24% (93.60–94.79%) at three 
follow-ups, with a slightly increasing trend. In the unvaccinated 
population, the adjusted seroprevalence (95% CI) was also 
significantly lower than in the vaccinated population. The 
age-weighted adjusted seroprevalence also showed similar results 
(Table 2).

The results of the analysis of the relationship between age and 
seroprevalence are shown in Supplementary Figure S3. Overall, a 
significant non-linear relationship with age was demonstrated for 
seroprevalence (all P for trend < 0.05), but not significantly higher in 
women compared to men. The fitted curve suggested an increase until 
approximately 50 years of age and a decline thereafter.

FIGURE 1

Flowchart of the study population.
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Trajectories of nAbs and associated risk 
factors

In the trajectory analyses, we included 5,197 (84.55%) participants 
with four serologic tests and identified four discrete trajectories of 
nAbs (Figure  2). Furthermore, 75.95% (n  = 3,909) of participants 
maintained a high level throughout the study period (referred to as 
“high-persistent”), 7.81% (n = 402) of participants started with a low 
level and experienced a sustained increase (referred to as “increasing”), 
9.05% (n = 466) of participants started with a high level and then 
declined (referred to as “waning”), and 8.16% (n = 420) of participants 
maintained a low nAbs level (referred to as “low-persistent”). Class 
membership probabilities were high (all >90%), suggesting that 
participants’ trajectories could be reliably assigned to one of the four 
classes (Supplementary Table S2). After stratification by age, we found 
that the adults (≥18 years) had a similar trajectory to the overall 
population, but the children and adolescents had a different trajectory 
(Supplementary Figure S4).

Characteristics of 5,197 participants classified by trajectory of 
antibody levels are presented in Supplementary Table S3. Participants 
with a “high-persistent” trajectory were more likely to be 18–59 years 
old, women living in urban areas, without comorbidity, fully 
vaccinated (≥3 doses), and having a previous history of SARS-
CoV-2 infection.

Furthermore, the multinomial logistic regression model was 
conducted to explore the association between potential risk factors 
and the trajectory of nAbs levels (Figure  3). Compared with 
participants aged 18–59 years, those aged 3–17 years were more likely 
to be in a “high-persistent” trajectory. Male participants had a 23% 
higher risk of being in a “waning” trajectory (RR: 1.23; 95% CI: 1.01–
1.49) and a 43% higher risk of being in a “low-persistent” trajectory 
(RR: 1.43; 95% CI: 1.13–1.82) compared to female participants. There 
was no statistically significant difference in nAbs trajectories between 
participants with different numbers of comorbidities. Compared with 
participants who were not vaccinated, those who received two or more 
doses of the COVID-19 vaccine were more likely to have a 

TABLE 1 Characteristics of the study population.

Baseline (n =  6,147) First follow-up 
(n =  5,766)

Second follow-up 
(n =  5,660)

Third follow-up 
(n =  5,551)

Age, years

  Median, [IQR] 53.61 [27.65] 53.42 [27.75] 53.78 [26.84] 53.90 [26.88]

  <3 37 (0.60) 27 (0.47) 24 (0.42) 25 (0.45)

  3–17 655 (10.66) 624 (10.82) 546 (9.65) 550 (9.91)

  18–59 3,358 (54.63) 3,163 (54.86) 3,159 (55.81) 3,074 (55.38)

  ≥60 2097 (34.11) 1952 (33.85) 1931 (34.12) 1902 (34.26)

Sex

  Woman 3,341 (54.35) 3,116 (54.04) 3,067 (54.19) 3,032 (54.62)

  Man 2,806 (45.65) 2,650 (45.96) 2,593 (45.81) 2,519 (45.38)

Ethnicity

  Han 6,130 (99.72) 5,751 (99.74) 5,647 (99.77) 5,536 (99.73)

  Other 17 (0.28) 15 (0.26) 13 (0.23) 15 (0.27)

Region of residence

  Urban 4,630 (75.32) 4,332 (75.13) 4,252 (75.12) 4,171 (75.14)

  Rural 1,517 (24.68) 1,434 (24.87) 1,408 (24.88) 1,380 (24.86)

Comorbidities

  0 4,177 (67.95) 3,922 (68.02) 3,830 (67.67) 3,749 (67.54)

  1–2 1892 (30.78) 1770 (30.70) 1757 (31.04) 1728 (31.13)

  ≥3 78 (1.27) 74 (1.28) 73 (1.29) 74 (1.33)

Vaccinated against COVID-19

  Unvaccinated 286 (4.65) 253 (4.39) 244 (4.31) 246 (4.43)

  One dose 101 (1.64) 95 (1.65) 93 (1.64) 93 (1.68)

  Two doses 1,051 (17.10) 993 (17.22) 910 (16.08) 903 (16.27)

  ≥3 doses 4,709 (76.61) 4,425 (76.74) 4,413 (77.97) 4,309 (77.63)

Infection with SARS-CoV-2

  No 1,521 (24.74) 1,386 (24.04) 1,250 (22.08) 1,213 (21.85)

  Yes 4,626 (75.26) 4,380 (75.96) 4,410 (77.92) 4,338 (78.15)

IQR: interquartile range.
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“high-persistent” trajectory. Participants with previous SARS-CoV-2 
infection were also more likely to be in the “high-persistent” class, 
with RRs (95% CIs) at 0.18 (0.15–0.23) and 0.42 (0.33–0.55), 
respectively.

Discussion

In this longitudinal study, we  found that SARS-CoV-2 
seroprevalence remained consistently high, with more than 93% of the 
population exhibiting positive neutralizing antibodies (nAbs) 
throughout the study period. The vast majority of participants 
(75.95%) maintained a high-persistent antibody trajectory, while 
smaller groups showed increasing, waning, or low-persistent nAbs 
levels. Full vaccination, younger age, female sex, and a history of prior 
infection were associated with more favorable antibody trajectories 
(i.e., high-persistent). These findings highlight the sustained protective 
immunity in a highly vaccinated population following the easing of 
COVID-19 restrictions in China.

Our results have important implications for public health 
strategies, particularly concerning booster vaccination programs and 
monitoring of immune status in the population. The identification of 
risk factors for declining or low-persistent antibody trajectories (e.g., 
older age, male sex, and fewer vaccine doses) suggests that targeted 
interventions may be necessary to enhance long-term immunity in 
vulnerable subgroups. Seroprevalence of SARS-CoV-2 exhibits 
considerable variation across studies, which may be influenced by 
various factors, including geographic location, demographics, study 

timelines, testing methods, and test accuracy. Compared to a 
multicenter seroepidemiologic study in China that reported 89% 
seroprevalence after large-scale SARS-CoV-2 infection (n = 100), our 
findings indicated a comparable yet higher seroprevalence (17). 
Additionally, Zhou et al. reported seropositivity of more than 90% 
among children aged 8 months to 12 years in February and March 
2023 (n = 1,065) (18). Consistent with prior research, our study 
emphasized the rapid spread of the COVID-19 epidemic in mainland 
China after the suspension of zero-COVID control measures (19). 
Studies conducted in other countries also confirmed a high 
seroprevalence of SARS-CoV-2 (>90%) after the COVID-19 epidemic. 
For instance, Sulcebe et al. conducted two consecutive cross-sectional 
studies and observed a rise in seropositivity from 70.9 to 92.1% in 
August 2021 and 2022  in Albania (20). Notably, we  identified a 
significantly higher seroprevalence of SARS-CoV-2 in the vaccinated 
population compared to the unvaccinated population at baseline and 
three follow-ups. Despite the majority of participants having received 
the last dose of COVID-19 vaccine by the end of 2022, the high 
vaccination rate, with 95.35% of the study population receiving at least 
one dose and 76.61% fully vaccinated, also contributed to the high 
seroprevalence observed in our study.

nAbs exhibit a rapid rise following infection and can persist for 
years to decades due to long-lived plasma and memory B cells in 
most acute viral infections, playing important roles in viral clearance 
and defense against viral diseases (21). Previous studies on the 
dynamics of SARS-CoV-2 antibody levels mainly focused on the 
individual level or fitted with a linear regression model (13, 22–25). 
For instance, Kaygusuz et al. demonstrated that both IgG and nAbs 

TABLE 2 Overall and vaccination-stratified seroprevalence of SARS-CoV-2.

Baseline 
(n =  6,147)

First follow-up 
(n =  5,766)

Second follow-up 
(n =  5,660)

Third follow-up 
(n =  5,551)

Observed seroprevalence, % (95% CI)

  Overall 89.77 (88.98–90.51) 90.16 (89.37–90.92) 90.80 (90.01–91.54) 90.47 (89.67–91.23)

  Vaccinated against COVID-19

   Unvaccinated 45.10 (39.24–51.07) 27.27 (21.88–33.20) 50.00 (43.55–56.45) 50.41 (43.98–56.82)

   Vaccinated 91.95 (91.22–92.63) 93.05 (92.35–93.71) 92.63 (91.91–93.32) 92.33 (91.58–93.03)

    Fully vaccinated (≥ three doses) 92.89 (92.11–93.60) 94.51 (93.80–95.16) 93.48 (92.71–94.19) 93.13 (92.34–93.87)

Adjusted seroprevalence, % (95% CI)a

  Overall 93.51 (92.89–94.11) 93.92 (93.30–94.50) 94.58 (93.98–95.16) 94.24 (93.60–94.79)

  Vaccinated against COVID-19

   Unvaccinated 46.98 (41.25–52.80) 28.41 (23.32–33.99) 52.08 (45.90–58.21) 52.51 (46.75–58.54)

   Vaccinated 95.78 (95.24–96.25) 96.93 (96.46–97.39) 96.49 (95.99–96.97) 96.17 (95.65–96.68)

    Fully vaccinated (≥ three doses) 96.76 (96.24–97.24) 98.45 (98.06–98.80) 97.37 (96.85–97.83) 97.01 (96.50–97.52)

Age-weighted adjusted seroprevalence, % (95% CI)b

  Overall 93.92 (93.91–93.94) 94.33 (94.31–94.34) 95.12 (95.11–95.13) 94.51 (94.50–94.52)

  Vaccinated against COVID-19

   Unvaccinated 48.31 (48.28–48.34) 28.38 (28.35–28.40) 52.83 (52.80–52.86) 53.02 (52.99–53.04)

   Vaccinated 96.54 (96.53–96.55) 97.64 (97.64–97.65) 97.28 (97.27–97.29) 96.75 (96.74–96.75)

    Fully vaccinated (≥ three doses) 93.09 (93.07–93.10) 95.06 (95.05–95.08) 99.66 (99.66–99.66) 99.27 (99.26–99.27)

CI, confidence interval.
aAdjusted seroprevalence was calculated using the following formula: 

 1 
1

Observed Prevalence SpecificityAdjusted prevalence
Sensitivity Specificity

+ −
=

+ −
, and the 95% CI was estimated by using the bootstrap 

method.
bAge weighting was based on the 7th National Population Census in 2020.
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FIGURE 3

Forest plot of risk factors with the dynamic trajectories of SARS-CoV-2 neutralizing antibody based on the multinomial logistic regression model. The 
risk ratio (RR) and its 95% confidence interval (CI) were adjusted by all variables in the figure. RR, risk ratio; CI, confidence interval.

levels continued unabated even after 9 months of follow-up (24), with 
no reinfections reported during the study period. Three studies have 
used a latent class mixed model to analyze antibody responses after 
vaccination or infection (14, 26, 27). Wei et  al. included 7,256 
COVID-19 patients in the United Kingdom between April 2020 and 
June 2021 and found that 64.5% of participants had a classical 
seroconversion trajectory, and 24.0% were seronegative 
non-responders (14). However, after the easing of COVID-19 
restrictions and the resumption of social activities, the likelihood of 
recurrent infection appears inevitable. Thus, understanding the 
trajectories of antibodies in real-world settings has significant public 
health value because it can inform subsequent risks of outbreaks. Our 
study used repeated measurements and LCGMM to fit the trajectories 
of nAbs and provided valuable insights into within-person antibody 
responses after the easing of COVID-19 restrictions in mainland 
China. Notably, we observed that 75.22% of participants displayed a 
“High-persistent” trajectory of nAbs, while nearly 8% of participants 
had “increasing,” “waning,” and “Low-persistent” trajectories, 
respectively. Although no specific threshold of nAbs determined an 
individual’s risk of COVID-19 infection, prior studies have suggested 

FIGURE 2

SARS-CoV-2 neutralizing antibody trajectories based on the latent 
class growth mixture model.
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that higher antibody quantities are associated with a decreased risk 
of subsequent symptomatic COVID-19 infection (28). The 
persistently high nAbs may be due to the asymptomatic infection 
since very few populations were vaccinated during the follow-up 
period. Consequently, continued booster immunization efforts may 
be  particularly important for individuals with “waning” or 
“low-persistent” nAbs trajectories.

The associated factors with seroprevalence have been 
extensively explored. For instance, a previous study observed that 
participants aged 50 years had a lower seroprevalence than those 
aged 18–49 years (29). Consistent with this, our study found that 
the seroprevalence increased with age until approximately 50 years 
of age and declined thereafter. Additionally, both complete 
vaccination and prior infection with SARS-CoV-2 were positively 
associated with seroprevalence (30, 31). Factors associated with 
nAb trajectories were not explored, but the majority of them were 
expected. Our study revealed that younger age, female sex, full 
vaccination, and history of SARS-CoV-2 infection were predictors 
of a “high-persistent” trajectory, which indicated that these 
participants had a higher level and more persistent protective 
immunity. In line with this, previous studies also found that older 
participants were more likely to be  “non-responders” (14). 
Multivariate analysis of risk factors with “waning” and 
“low-persistent” trajectories would contribute to identifying 
populations with low levels of protective immunity in the future. 
Future endeavors could focus on the development of risk 
stratification models for nAb trajectories, which may contribute to 
identifying high-risk populations with diminished immunity and 
optimizing booster immunization strategies accordingly.

Our findings highlight important public health implications, 
particularly for populations with waning or low-persistent neutralizing 
antibodies (nAbs). To maintain protective immunity, targeted 
monitoring and earlier booster doses should be prioritized for high-
risk groups, such as older adults, men, and those with fewer vaccine 
doses. A tailored, data-driven approach to booster timing based on 
individual immune status rather than a uniform schedule could 
improve prevention efforts. Moreover, future studies should track 
long-term antibody titer changes under normal conditions after large-
scale outbreaks to refine immunization strategies, especially in 
identifying at-risk populations and optimizing booster timing. These 
insights are relevant not only for China but also for global 
immunization policy, as countries adapt to the evolving dynamics of 
SARS-CoV-2 and new variants.

Our study has several strengths. First, we enrolled a large sample 
size to collect seroepidemiologic data and three rounds of follow-up, 
with a relatively high compliance rate (84.55%). Second, the large 
sample size allowed us to fit the antibody trajectories accurately and 
enabled the exploration of their associated factors. However, several 
limitations need to be acknowledged. Primarily, we measured nAbs 
against the wild strain of SARS-CoV-2 despite the Omicron variants 
being predominant during the study period. Although our correlation 
analysis showed a significant positive relationship between nAbs 
against the wild strain and those targeting the XBB strain of Omicron, 
this indirect measurement may not fully capture the immune response 
to Omicron and its sub-lineages, which have demonstrated immune 
escape properties. This limitation may affect the generalizability of our 
results, particularly regarding the level of protection conferred by nAbs 
in the real-world setting of Omicron transmission. Second, the 

potential factors associated with antibody trajectories were relatively 
limited in our study. Variables such as smoking status, body mass 
index, and household size, which have been shown to be associated 
with seroprevalence, were not extensively investigated (32, 33). Third, 
while nAbs serve as a robust surrogate for immunity levels, our study 
did not assess anti-S1 or T- and B-lymphocyte responses. The absence 
of data on these immune responses limits our ability to comprehensively 
evaluate long-term protection and memory immunity conferred by 
vaccination or previous infection. Fourth, the study was conducted in 
Zhejiang Province, which has a relatively high economic status and 
well-established healthcare infrastructure, leading to higher access to 
vaccination and better compliance. Therefore, caution should 
be exercised when extrapolating these findings to regions with lower 
socioeconomic status.

Conclusion

In conclusion, this study provides valuable insights into the 
seroprevalence, nAb trajectories, and associated factors. We observed 
a consistently high seroprevalence of SARS-CoV-2, with three-
quarters of participants exhibiting a high and persistent antibody 
trajectory in this highly vaccinated population. Furthermore, age, 
sex, COVID-19 vaccination status, and previous SARS-CoV-2 
infection were all significantly associated with different antibody 
trajectories. In this context, monitoring protective antibody levels 
and promoting booster immunization strategies is crucial, especially 
for populations at risk of experiencing waning or low-persistent 
antibody trajectories.
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