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Introduction: Heatstroke is a serious clinical condition caused by exposure to

high temperature and high humidity environment, which leads to a rapid increase

of the core temperature of the body to more than 40◦C, accompanied by

skin burning, consciousness disorders and other organ system damage. This

study aims to analyze the e�ect of meteorological factors on the incidence of

heatstroke using machine learning, and to construct a heatstroke forecasting

model to provide reference for heatstroke prevention.

Methods: The data of heatstroke incidence andmeteorological factors in a city in

South China fromMay to September 2014–2019 were analyzed in this study. The

lagged e�ect of meteorological factors on heatstroke incidence was analyzed

based on the distributed lag non-linear model, and the prediction model was

constructed by using regression decision tree, random forest, gradient boosting

trees, linear SVRs, LSTMs, and ARIMA algorithm.

Results: The cumulative lagged e�ect found that heat index, dew-point

temperature, daily maximum temperature and relative humidity had the greatest

influence on heatstroke. When the heat index, dew-point temperature, and

daily maximum temperature exceeded certain thresholds, the risk of heatstroke

was significantly increased on the same day and within the following 5 days.

The lagged e�ect of relative humidity on the occurrence of heatstroke was

di�erent with the change of relative humidity, and both excessively high and

low environmental humidity levels exhibited a longer lagged e�ect on the

occurrence of heatstroke. With regard to the prediction model, random forest

model had the best performance of 5.28 on RMSE and dropped to 3.77 after

being adjusted.

Discussion: The incidence of heatstroke in this city is significantly correlated

with heat index, heatwave, dew-point temperature, air temperature and zhongfu,

among which the heat index and dew-point temperature have a significant

lagged e�ect on heatstroke incidence. Relevant departments need to closely

monitor the data of the correlated factors, and adopt heat prevention measures

before the temperature peaks, calling on citizens to reduce outdoor activities.
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1 Introduction

Heatstroke is a series of clinical symptoms caused by fluid and

electrolyte disorder, acid-base imbalance, and dysfunction of the

thermoregulatory center and the cardiac and cerebral nerves due to

prolonged body exposure to high temperature and heat radiation

(1). Heatstroke may occur when the temperature exceeds 36◦C and

the relative humidity exceeds 58% (2). With increasing greenhouse

gas emissions and El Nino events, the probable appearance of

a year with extreme heat within the next 5 years is as high

as 98 per cent (3), which may lead to a significant rise in the

number of heatstroke victims. Heatstroke predisposes the heart to

added burden, triggering neurological organ damage and systemic

inflammatory response syndromes, which can lead to a dramatic

increase in the risk of death (4, 5). Compared with the 1986–2005

average, Chinese people experienced 7.85 more heatwave days on

average in 2021 (6), and the number of deaths associated with high-

temperature heatwaves in China has risen rapidly since 1979 (7).

Therefore, the analysis of the impact of meteorological factors on

the incidence of heatstroke is crucial for preventing heatstroke and

maintaining public health.

Previous studies exploring the effect of meteorological factors

on heatstroke have focused on key variables such as temperature

and humidity, and analyzed them with a single statistical method.

Kumar et al. used simple statistical estimation methods to analyse

the effect of heat exposure on human health in the Indian region

(8). Wang et al. (9) used a random-effects Poisson regression

model to estimate the relative risk (RR) of hospital admission for

heatstroke in heatwave weather vs. non-heatwave weather, and had

found that the more severe and prolonged the heatwave, the higher

the RR value. Li et al. (10) used a zero-inflated Poisson regression

model with a logistic distribution to analyze the influence of

daily maximum temperature on the occurrence of heatstroke,

considering factors such as gender, age, and the severity of

heatstroke. In recent years, machine learning algorithms have been

gradually applied to the environmental and public health fields.

Compared with traditional statistical methods, machine learning

algorithms have stronger data processing and model generalization

capabilities, and are able to better capture complex non-linear

relationships and interactions between multiple factors. The

application of machine learning algorithms has made significant

progress in the study of the relationship between heatstroke

and meteorological factors. Han et al. used correlation analysis

and random forest model to analyze the relationship between

meteorological variables and heatstroke search index in 333

Chinese cities from 2013 to 2020 (2). Wang et al. used a random

forest model to predict heatstroke occurrence for heatwave based

on 3 years’ data in typical cities with high temperatures in China,

which had better performance than the traditional linear regression

model. The results indicates that meteorological factors play the

most significant role in the model’s estimation of the parameters

evaluated (11). In addition, some studies have found that the high

temperature and high humidity of sanfu (the dog days of summer

in China) is closely related to the occurrence and treatment of

many diseases, such as heatstroke and asthma. Zhu et al. (12)

conducted a study on the treatment of asthma by acupuncture, and

came to the conclusion that the treatment of the disease is related

to sanfu in China. Although a number of studies have examined

the relationship between heatstroke and meteorological factors,

relatively few studies have combined multiple meteorological

factors to analyse heatstroke disease in a multidimensional manner.

Therefore, a variety of characteristic data, such as

meteorological factors, comprehensive indicators and time series

of sanfu, were incorporated in this study to reveal the influencing

factors of the onset of heatstroke more comprehensively. Adopting

a variety of machine-learning algorithms, this study tried to fully

exploited the potential information of the data, and has selected

the optimal model for making predictions by comparing the

performance and prediction effects of different algorithms, so as to

improve the accuracy and reliability of the predictions. In addition,

to understand the lagged effect and non-linear relationship of

heatstroke incidence in a deeper way, this study used the traditional

statistical method of Distributed Lag non-linear Model (DLNM)

for analysis, thus describing more accurately the relationship and

pattern between meteorological factors and heatstroke incidence,

which provided an important basis for formulating effective early

warning strategies and constructing prediction models. This study

has a positive effect on reducing the incidence of heatstroke and

protecting public health.

2 Materials and methods

2.1 Data source and variables

This study used data from Data on heatstroke incidence and

meteorological factors in a southern city from May to September in

2014–2019 created by the Chinese Center for Disease Control and

Prevention (CDC). The dataset was collected and filled in through

the existing monitoring system, integrating data from multiple

testing sources, and was released after review by experts, thus

reliable data quality. The data contains 919 records and 11 features.

In order that the characteristic data could be better used

for the prediction of heatstroke, we calculated the data of

daily average air temperature, daily maximum air temperature

and relative humidity, and obtained two commonly used

comprehensive meteorological indicators, namely heat index and

dew-point temperature.

Heat index, i.e., apparent temperature, taking into account the

combined effect of both air temperature and relative humidity,

refers to the fact that at high temperatures, when the relative

humidity is increased, the temperature felt by the human body is

higher than the actual temperature. Research has shown that at

the same temperature, different relative humidity levels will give

individuals different levels of comfort, which in turn will have

different impacts on human health (13, 14). The formula for its

calculation is as follows:

HI = c1 + c2T + c3 [RH]+ c4T [RH]+ c5T
2 + c6 [RH]2 +

c7T
2[RH]+ c8T[RH]2 + c9T

2[RH]2

Dew-point temperatu3ature at which the atmosphere is

saturated with water vapor when it is cooled without changing its

pressure or vapor content (15). When the dew-point temperature
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is low, the air temperature or the relative humidity will also be low,

either of which can facilitate effective heat dissipation by the human

body, thereby reducing the risk of heatstroke. This study employed

the Magnus formula to calculate dew-point temperature, utilizing

values of a= 17.27 and b= 237.7◦C.

Td =
bγ(T,RH)

a− γ (T,RH)

γ (T,RH) =
aT

b+ T
+ ln(RH/100)

High-temperature heatwaves were included in our study

as features as well. A high-temperature heatwave is a complex

atmospheric phenomenon that usually refers to a series of

consecutive hot days (16). According to the criteria of China

Meteorological Administration (CMA), a daily maximum

temperature≥35◦C is considered as a “high-temperature day,” and

three or more consecutive high-temperature days are considered

as a high-temperature heatwave. Based on this standard, the daily

maximum temperature in the original data was converted, and

those who were in a high-temperature heatwave were assigned a

value of 1 and those who were not 0.

In addition, the effect of sanfu timing characteristics on the

number of heatstroke victims was examined. According to the

theory of TCM, sanfu refers to the three specific periods of the

Chinese lunar year from July to August. Specifically, there are toufu

(the beginning part of sanfu) and mofu (the ending part of sanfu),

each lasting precisely 10 days, as well as zhongfu (the middle part

of sanfu), which lasts either 10 or 20 days (17). Sanfu has typical

climate characteristics such as high temperature, low air pressure,

high humidity and low wind speed. The three variables, toufu,

zhongfu, andmofu, were assigned 0 and 1 according to the dates of

sanfu in each year. “0” means it is not in the corresponding period,

while “1” means it is. The specific time of sanfu from 2014 to 2019

is shown in Supplementary Table 1.

The finalized dataset comprised primarily temporal variables

such as the onset date, year, month, day, weekday, holiday status,

and periods of the sanfu. It also encompassed meteorological

variables including daily average temperature, daily maximum

temperature, relative humidity, heat index, dew-point temperature,

and high-temperature heatwaves. Additionally, it featured daily

total counts of heatstroke incidents and the total population,

amounting to a total of 17 variables. The individual variables and

their descriptions are shown in Supplementary Table 2.

2.2 Method

Based on a number of meteorological characteristic data

and time characteristic data, a distributed lag non-linear model

was used to analyse the effects of meteorological factors, such

as temperature, humidity and their integrated indicators, high-

temperature heatwaves and the sanfu time series, on the incidence

of heatstroke. The results of the analyses were combined to

construct a heatstroke early warning model through machine

learning models such as random forest, which provided a basis for

preventing the occurrence of heatstroke.

2.2.1 Distributed lag non-linear models
Previous study has shown lag in effect of heat on heatstroke

(18), and that the relationship between heat and mortality in the

population was mostly non-linear with a “J” curve (19). Therefore,

in this paper, a distributed lag nonlinear model (DLNM) was

used to fit the relationship between the number of heatstroke

occurrences and meteorological factors. The DLNM describes the

distribution of the dependent variables in the independent and

lagged dimensions by constructing a cross-base, and is now mostly

used in analyses of the effects of meteorological factors (20, 21). The

formula for its calculation is as follows:

logE [Yt] = α + cb
(

xi, lag
)

+ ns
(

date, 10∗1
)

+ dow+ holiday

E [Yt] was the number of daily heatstroke occurrences on day

t, α was the intercept, cb(xi, lag) was the established cross-basis

function. A 4th order polynomial function was used to specify

the maximum number of lag days as 30, and xi was the heat

index, dew-point temperature, daily maximum temperature and

relative humidity respectively, which was used to illustrate the use

of the natural spline function to control for long-term and seasonal

trends. “Dow” and “holiday” were respectively week and holiday

variables, used to remove confounding effects of week and holiday.

The relative hazards were obtained and the lagged effects were

visualized through the usage of the R language.

2.2.2 Early warning modeling of heatstroke
Heatstroke occurrence has obvious time-series characteristics

such as seasonality and is influenced by multiple factors (e.g.,

temperature, relative humidity, etc.) (22). Therefore, an attempt

was made in this study to predict the number of heatstroke using

two time series models, ARIMA and LSTM, along with several

machine learning models such as regression decision tree, gradient

boosting tree, SVR and random forest, from which the optimal

algorithms were selected to be used as the main prediction tool for

heatstroke early warning.

Autoregressive Integrated Moving Average (ARIMA), or

Autoregressive Sliding Average Model, is a classical statistical

method widely used for time series modeling and forecasting (23).

Long short-term memory (LSTM) is a special variant of recurrent

neural networks with a “gate” structure, which allows the network

to converge better and faster, and can effectively improve prediction

accuracy (24, 25).

Random forest is a powerful and flexible integrated learning

algorithm commonly used for classification and regression

problems (26). It is built on decision trees and improves the

performance and generalization of the overall model by combining

multiple decision trees (27). The algorithm uses Bootstrap sampling

technique to randomly select multiple subsamples from the original

dataset, each of which is used to train an independent decision tree

(28). Its prediction results are based on the integration of multiple

decision trees (Supplementary Figure 1). For the regression task

the predicted value of the random forest is the average of all the

decision trees. Suppose there are B decision trees and the predicted

value of the ith tree is fi (x), then the predicted value of the random
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forest is:

Ŷ(x) =
1

B

B
∑

i−1

fi(X)

The ARIMA and LSTM models were constructed by analyzing

the time series of daily heatstroke occurrences, and both used

rolling forecasts for better model predictions (29). The other

machine learning models were trained with multiple features in

mind and used static prediction in their forecasting. To facilitate the

comparison of the models, each model used 2014–2018 data as the

training set and 2019 data as the validation set. Parameter tuning

of the models were performed by methods such as grid search to

improve the generalization ability of the models.

3 Results

3.1 Descriptive statistics

This study analyzed the occurrence of heatstroke, related

meteorological factors and comprehensive indicators from May to

September in a southern city over a 6-year period from a variety of

perspectives. The results showed that there were obvious seasonal

fluctuations in the distribution of the number of heatstroke

occurrences in this place, with the sanfu period being the high

incidence time of heatstroke. The occurrence of heatstroke was

mainly affected by the local temperature and relative humidity, and

the calculated high-temperature heatwave and heat index had the

strongest correlation with the number of heatstroke occurrences.

FIGURE 1

Date distribution of daily maximum temperature, May–September 2014–2019.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1420608
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xu et al. 10.3389/fpubh.2024.1420608

3.1.1 Distribution of heatstroke occurrences
Descriptive statistical analysis of the number of heatstroke

occurrences showed that July and August were the peak periods

for heatstroke. From 2014 to 2019, the number of heatstroke

occurrences in July was 1,753, accounting for 59.14 per cent

of the total number; the number of heatstroke occurrences in

August was 966, making up 32.59 per cent of the total number;

and the number of heatstroke occurrences in June was 178,

constituting 6.01 per cent of the total number; the number of

heatstroke occurrences in May and September was comparable,

with 24 and 43 occurrences respectively. The number of heatstroke

occurrences from 2014 to 2019 showed a more pronounced

seasonal variation, with a general trend of increasing and then

decreasing (Supplementary Figure 2).

Through visual analyses of daily maximum temperatures, the

daily distribution of daily maximum temperatures from May to

September 2014–2019 was obtained, which is shown in Figure 1.

Maximum temperatures concentrated in the sanfu period, and the

sanfu days were the peak time for the occurrence of heatstroke.

The highest number of heatstroke occurrences in zhongfu was

1,630, accounting for 54.99% of the total number. The number

of heatstroke occurrences in the toufu, mofu, and non-sanfu days

FIGURE 2

Time-series plot of meteorological data.
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FIGURE 3

Heat map for correlation analysis. *represents statistical significance at the p < 0.05 level. **represents statistical significance at the p < 0.01 level.

***represents statistical significance at the p < 0.001 level.

was relatively small, at 488, 227, and 619 respectively, constituting

16.46%, 7.66%, and 20.88% of the total number.

3.1.2 Relevance analysis
As shown in Figure 2, the daily maximum air temperature,

daily mean air temperature, heat index, and dew-point temperature

all exhibit distinct seasonal fluctuation patterns over the annual

cycle. Further visualization analysis shows a significant positive

correlation between temperature and the number of daily

heatstroke events, and a clear temporal correspondence between

the peak in the number of heatstroke events and the highest point

in temperature (Supplementary Figure 3). Relative humidity shows

some negative correlation with the number of daily heatstroke

occurrences and corresponds to the peak in the number of daily

heatstroke occurrences when the relative humidity drops to certain

low points (Supplementary Figure 4).

The correlation of the variables in the data was visualized and

the heat map obtained is shown in Figure 3, which reveals that

the number of daily heatstroke occurrences shows a statistically

significant correlation with daily maximum temperature, daily

average temperature, relative humidity, toufu, zhongfu, high-

temperature heatwaves, heat index, and dew-point temperature,

with all P-values <0.001, indicating a strong significance. The

correlation coefficients between the number of daily heatstroke

occurrences and the daily maximum temperature, daily average

temperature are 0.5 and 0.55 respectively, indicating that the

higher the temperature, the higher the likelihood of heatstroke

occurrences. In addition, the correlation coefficient between the

number of daily heatstroke occurrences and whether or not it

is zhongfu is 0.5, indicating that the likelihood of heatstroke

also increases during zhongfu. However, the correlation coefficient

between the number of daily heatstroke occurrences and relative

humidity is −0.2, indicating that the direct link between relative

humidity and the number of heatstroke is not strong.

3.2 Cumulative and lagged e�ects

Figure 4 presents the visualization of the results from the

DLNM analysis, encompassing contour plots illustrating the

changes in lag time, relative risk (RR), and meteorological data,

along with three-dimensional representations depicting various

meteorological factors, lag days, and RR values. Within the two-

dimensional graphs, regions are color-coded, with red and blue

areas signifying where RR is >1 and <1, respectively. These

graphical illustrations demonstrate the varying RR of heatstroke

incidence in relation to shifts in heat index, dew-point temperature,

maximum temperature, and relative humidity, indicating a non-

linear association. The lagged effect of heat index, dew-point

temperature and daily maximum air temperature on the number

of heatstroke incidence was 0–5 days. When the daily heat index

was >30◦C, dew-point temperature was >23◦C and maximum

air temperature was >35◦C, the risk of heatstroke increased
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FIGURE 4

Relative risk of di�erent meteorological factors and lagged days: (A) Heat Index 2D plot, (B) Heat Index 3D plot, (C) Dew-Point Temperature 2D plot,

(D) Dew-Point Temperature 3D plot, (E) Daily Maximum Temperature 2D plot, (F) Daily Maximum Temperature 3D plot, (G) Relative Humidity 2D plot,

(H) Relative humidity 3D plot.
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significantly on the same day and within the following 5 days, and

the risk of heatstroke decreased gradually with increasing lag time.

Relative humidity had a lagged effect on the number of heatstroke

occurrences and the effect varied with relative humidity. When the

daily relative humidity was<65%, the relative risk of the lagged 20–

25 days was>1, and the risk of heatstroke increased; when the daily

relative humidity was between 65 and 78%, the relative risk of the

same day and the lagged 5 days was >1 and the risk of heatstroke

was relatively high; when the daily relative humidity was> 85%, the

relative risk of the lagged 22–28 days was>1, which shows that high

humidity has a longer lagged effect on the number of heatstroke

incidence.

3.3 Results and comparison of models for
predicting the number of heatstroke

3.3.1 Feature selection
In pursuit of enhancing the predictive accuracy of the model,

this study initiated the process with the implementation of

the Boruta Algorithm for feature selection. Boruta is a feature

selection method grounded in random forests, which introduces

randomized “shadow features” to compare against real features

within an augmented feature matrix. The algorithm trains on

this composite matrix and employs the importance scores of

these shadow features as a reference baseline, thereby identifying

a subset of real features that exhibit genuine relevance to the

dependent variable. Given that the suggested depth for Boruta

operates optimally with trees pruned to depths ranging from

3 to 7, our study configured each tree in the forest to a

depth of 4, retaining default settings for all other parameters,

including an estimator count set to “auto,” perc at 100%, alpha

at 0.05, a two-step approach enabled (two_step = True), and a

maximum iteration limit of 100. The resultant analysis identified

day, daily maximum temperature (Tmax), daily mean temperature

(Tmean), relative humidity (RH), zhongfu, high-temperature

heatwaves (is_heatwave), heat index (Heat_Index), and dew-

point temperature (Dew_Point_Temperature) as variables exerting

significant influence on the target variable.

3.3.2 Model comparison
In order to compare the prediction ability of each model,

three indicators, mean square error (MSE), root mean square

error (RMSE) and coefficient of determination (R2), were selected

for model evaluation in this study. The calculation formulas are

as follows:

MSE =
1

n

n
∑

i−1

|yi − ŷi|

RMSE =

√

√

√

√

1

n

n
∑

i−1

(yi − ŷi)
2

R2 = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ŷ)2

n is the number of samples; yi is the ith observation; ŷi is the ith

predicted value; and ŷ is the mean of the observations.

TABLE 1 Comparison of evaluation indicators for di�erent models.

Model name MSE RMSE R
2

Regression decision tree 15.13 3.89 0.79

Random forest 12.74 3.57 0.82

Gradient boosting decision tree 14.64 3.82 0.80

Linear SVR 14.86 3.85 0.80

ARIMA 34.58 5.89 0.52

LSTM 44.86 6.70 0.38

Residuals are defined as the difference between observations

and model predictions. Mean square error (MSE) measures the

extent to which the residuals are dispersed, while root mean square

error (RMSE) measures the magnitude of residual fluctuations.

RMSE is the same scale as MSE, but being on the same order of

magnitude as the data points makes it easier to visually compare

with the raw data (30). The lower the MSE and RMSE of the model,

the higher the quality of the fit. The coefficient of determination

R2 measures the strength of correlation between the predicted

and actual values of the model, and its value tends to be closer

to 1 indicates the stronger predictive ability the model has. The

results of the evaluation of these indicators are shown in Table 1

and indicate that the random forest model stands out among

all the compared models with its smallest MSE, RMSE, and R2

value closest to 1, which suggests that it has higher accuracy in

predicting the number of heatstroke victims per day. In order

to visualize the effectiveness of the different model algorithms in

predicting the number of daily heatstroke occurrences fromMay to

September 2019, a line graph of the actual number of observations

against the predictions of the four models was plotted, using time

as the horizontal coordinate and the number of daily heatstroke

occurrences as the vertical coordinate, as shown in Figure 5.

3.3.3 Random forest model
In this study, the random forest model was hyper-

parametrically optimized by a grid search method to determine

the optimal parameter configuration: the maximum depth of the

decision tree was set to 4; the minimum number of samples to be

included in each leaf node was set to 1; and the minimum number

of samples required to split a node was 4; the model as a whole

consisted of 13 decision trees.

Furthermore, this study calculated the SHAP values and SHAP

interaction values for the finalized model and presented them

visually, and the results obtained are exhibited in Figure 6. The

results show that the thermal index received the highest feature

importance score and played a key role in the model prediction

process. This finding is consistent with thermodynamic principles

and established medical a priori knowledge, the latter suggesting

that the onset of heatstroke is closely related to high temperature

and relative humidity. Daily mean temperature, daily maximum

temperature, relative humidity, and dew-point temperature also

exhibited notable significance in themodel. The feature importance

of the date in the time series was notably high, suggesting a potential

periodicity in heatstroke cases throughout the months. Although
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FIGURE 5

Forecasts of daily heatstroke numbers from May to September in 2019 by di�erent model algorithms.

FIGURE 6

SHAP summary plot.

the feature importance score for the zhongfu period was relatively

low, the graphical depiction clearly illustrated a pronounced

positive impact of zhongfu on the escalation of heatstroke cases,

aligning with the descriptive statistical findings of this research.

By comparison, the feature related to high-temperature heatwaves

had a lesser role in the model, yet it still contributed to the model’s

performance to some extent.

In order to assess the robustness of the constructed random

forest regression model under different conditions, this study

conducted a sensitivity analysis by adjusting the values of each

feature individually and monitoring the possible effects of these

adjustments on the model performance. By comparing the

differences in model scores before and after adjusting the feature

values, we assessed the specific impact of different features on

model performance (Supplementary Figure 5). The results show

that changes in the values of features such as heat index, daily mean

temperature, daily maximum temperature, onset day, and dew-

point temperature had some impact on the model, but the impacts
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were all small, indicating that the random forest regression model

developed in this study has good stability and robustness.

4 Discussion

In the context of rising global temperatures, the onset of high-

temperature red alerts is occurring earlier, their durations are

extending, the affected areas are broadening, their intensities are

amplifying, and their extremities are enhancing. Consequently,

the incidence of heatstroke, a meteorologically sensitive illness, is

anticipated to rise. Therefore, the prediction and early warning of

heatstroke are vital, which can enable the relevant departments

and the public to get the relevant information in time, which is

conducive to the adoption of protective measures in advance, to

avoid health risk, and to reduce the damage to health. This study

analyzed the cumulative and lagged effects of these factors on

heatstroke by screening the influential features of heatstroke and

constructing DLNM model analysis. Moreover, various machine

learning methods were tried to construct a prediction model for the

number of heatstroke victims, and after comparison, we found that

the random forest model had the best prediction effect. Through

the sensitivity analysis, the model showed high robustness, which

indicated that the model would still be able to maintain a highly

reliable prediction performance even in the face of some parameter

variations or uncertainties.

4.1 Influence of meteorological factors on
the number of heatstroke victims

Meteorological factors have a significant impact on summer

heatstroke. This study has found that there existed a high

correlation between the number of heatstroke cases and the

following meteorological variables: high-temperature heatwaves,

heat index, daily mean temperature, and daily maximum

temperature, as evidenced by substantial correlation coefficient

values, implying that they not only directly lead to discomfort,

but also may cause high-risk health problems, especially in areas

where extreme heat is infrequent (31). However, the feature

importance of high-temperature heatwaves was not prominent

in the random forest predictive model. Current research on

the daytime, nighttime, and compound heatwaves suggests that

nighttime heatwaves predominantly occur in low-latitude regions

and are typically accompanied by high humidity conditions during

nighttime, and that nighttime warmth may impose additional

health risks (32). Furthermore, in recent years, heatwaves have

exhibited trends of longer durations, greater spatial extents,

and slower movement, with slow-moving heatwaves indicative

of prolonged high temperatures, potentially having a substantial

impact on heatstroke incidences (33). Consequently, future studies

could incorporate a broader range of data related to heatwaves to

enhance the precision of predictive early warning systems.

Regarding time series aspects, the total number of heatstroke

cases during the sanfu periods accounted for 79.11% of the total

heatstroke occurrences, closely aligning with the peak timing

of heatstroke incidents. Particularly during the zhongfu phase,

temperatures typically reached seasonal highs, and this temporal

characteristic exhibited a significant correlation with the heatstroke

incidence, reaching 0.5, further confirming high temperatures as

a pivotal meteorological factor in heatstroke occurrences. Within

the studied region, the effect of relative humidit on heatstroke was

relatively minor. As the DLNMmodel analysis suggests, the impact

of relative humidity on heatstroke morbidity was neither linear nor

monotonous but an inverted-U shape. Relative humidity displayd a

pronounced short-term lagged effect within the range of 65%−78%,

while showing more evident long-term lagged effects when relative

humidity was below 65% or above 85%, leading to a lower Pearson

correlation coefficient. This inverted-U pattern might result from

dehydration under low humidity in high temperatures and severe

hindrance of heat dissipation under high humidity, both of which

disrupt thermoregulation and elevate heatstroke risk over extended

periods (34).

Moreover, the DLNM model analysis reveals a lagged effect of

heat index and dew-point temperature on heatstroke incidence,

with a marked increase in risk on the day of exposure and up to

following 5 days once certain threshold values are surpassed (35).

High-temperature heatwaves, heat index, daily mean temperatures,

and daily maximum temperatures all exert noticeable lagged effects

on heatstroke occurrences. In preventing andmanaging heatstroke,

the delayed impacts of these meteorological factors must be

fully considered, and appropriate protective measures should be

implemented to mitigate heatstroke incidents.

4.2 Forecasting and early warning models

The frequency and duration of extreme temperature events

are increasing (31), and the number of heatstroke victims is

likely to show a continuous increase in the future (11). It is

necessary to construct a forecasting and early warning model for

the prediction of the number of heatstroke victims to provide

early warning of heatstroke incidence (36). Based on the analysis

results of DLNM, this study experimented with a variety ofmachine

learning algorithms to construct a forecasting and warning model

for heatstroke, and chose to adopt the random forest model, which

is the most effective and robust model, to predict the number

of people suffering from heatstroke per day by using multiple

meteorological factors and time factors.

Comparing the structure of the decision trees within the final

models, commonalities in the branching structure are visible at

certain levels, which maps to a consistent understanding of the key

predictors in the model. For example, the heat index and average

daily temperature are prominent in most trees, implying that these

two features contribute more to predicting the target variable in

the overall model. At the same time, individual decision trees were

observed to pay more attention to additional factors such as “day,”

“zhongfu,” and “high-temperature heatwaves,” signaling that the

model has a certain degree of versatility and is able to make more

adaptable predictions for different data patterns.

Synthesizing the analysis of the DLNM model and the results

of the comparison of the prediction models, this study proposes

a comprehensive early warning mechanism for heatstroke. The

core strategy is to use the random forest model to make accurate

heatstroke number predictions. Based on the predicted data and
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the set warning thresholds, an early warning is implemented when

the model predicts a high risk of heatstroke events, and further

calculation of the relative humidity, heat index, and dew-point

temperature is made. If one of them is identified as a driver of

heatstroke occurrences beyond the warning thresholds, then a

reinforced warning process for at least five consecutive days is

started. At the same time, if the relative humidity is <65 per cent

on that day, another warning is issued on the 20th to 25th day after

that day, and if it is >85 per cent, another warning is issued on the

22nd to 28th day after that day.

The model could provide real-time early warning information

to governments, medical institutions and other public health

departments, and promote the development of appropriate

preventive measures. By using the model, public health

departments can intervene early to improve public health

and safety emergency response capabilities, enhance group health

protection, and reduce the incidence of heatstroke.

4.3 Research programmes and prospects

The scope of this paper is mainly limited to a specific region

in southern China, and thus it is difficult to directly apply

the conclusions obtained so far to cities in other geographical

environments or climatic conditions. In terms of the selection

of meteorological factors, this study covers a relatively limited

number of indicators and does not take into account factors such as

wind speed, air pressure and weather phenomena. Future research

endeavors will broaden the scope of data collection to encompass

climatic data from diverse regions, facilitating inter-regional

comparative analyses. This enhanced dataset will incorporate a

wider array of meteorological variables, including wind velocity,

atmospheric pressure, nocturnal heatwaves, compound heatwaves,

and the velocity of heatwave movement, aligning with the forefront

of meteorological research domains. Such comprehensive data

integration aims to enhance the precision of predictive early

warning systems.

Exertional heatstroke poses a persistent threat to individuals

exposed to high temperatures, with young, healthy individuals of

higher body mass index exhibiting an elevated risk, as evidenced

in recent literature (37). The diagnostic criteria for occupational

heatstroke released by the Chinese Center for Disease Control

and Prevention in 2019 highlighted outdoor occupations such

as construction, engineering, agricultural labor, and sanitation

work as prevalent causes during summer months. Furthermore,

intense activities during summer, including sports competitions

and military drills, significantly contribute to heatstroke incidents.

Subsequent studies could, therefore, stratify participants based on

occupation and duration of outdoor exposure, in addition to gender

and age, to create detailed population profiles. Integrating these

profiles with the city-specific meteorological factors would enable

a holistic analysis and the targeted delivery of heatstroke warnings.

The aspiration is that these methodologies will augment the

universality and accuracy of heatstroke alerts, thereby furnishing

more scientifically grounded approaches for the prevention and

control of urban heatstroke diseases.

5 Conclusion

In this study, a distributed lag nonlinear model was used

to investigate the lagged and cumulative effects of various

climatic factors on heatstroke, and a forecasting model for

daily heatstroke occurrences was constructed using the random

forest algorithm. The early warning strategy for heatstroke shows

that exposure to hot and humid weather tends to increase

the risk of heatstroke, and their effects are not limited to

the day, but can last for days afterwards. These findings may

inform government departments, medical institutions and other

organizations of more accurate early warning of heatstroke risks,

thus improving public health and safety emergency response

capabilities, and reducing the damage to health caused by

hot weather.
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