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Aim: In this research, we leveraged bioinformatics and machine learning to

pinpoint key risk genes associated with occupational benzene exposure and to

construct genomic and algorithm-based predictive risk assessment models.

Subject and methods: We sourced GSE9569 and GSE21862 microarray data

from the Gene Expression Omnibus. Utilizing R software, we performed an

initial screen for di�erentially expressed genes (DEGs), which was followed

by the enrichment analyses to elucidate the a�ected functions and pathways.

Subsequent steps included the application of three machine learning algorithms

for key gene identification, and the validation of these genes within both a cohort

exposed to benzene and a benzene-exposed mice model. We then conducted

a functional prediction analysis on these genes using four machine learning

models, complemented by GSVA enrichment analysis.

Results: Out of the data, 40 DEGs were identified, primarily linked to

cytokine signaling, lipopolysaccharide response, and chemokine pathways.

NFKB1, PHACTR1, PTGS2, and PTX3 were pinpointed as significant through

machine learning. Validation confirmed substantial changes in NFKB1 and PTX3

following exposure, with PTX3 emerging as paramount, suggesting its utility as a

diagnostic biomarker for benzene damage.

Conclusion: Risk assessment models, informed by oxidative stress markers,

successfully discriminated between benzene-injured patients and controls.

KEYWORDS

benzene-induced damage, benzene exposure, machine learning, bioinformatics, risk

assessment, occupational health

1 Introduction

Benzene is a ubiquitous environmental and industrial chemical that is classified as a

Group I carcinogen by the International Agency for Research on Cancer (44) because

of its ability to cause a variety of blood-related diseases. In the occupational setting,

benzene exposure occurs primarily in the petroleum, chemical, shoe and paint industries

(1). About 500,000 people in China work with benzene or benzene-containing solvents (2),

and China’s production and use of pure benzene is increasing every year, with production

reaching 11.45 million tons in 2016 and supply expected to reach 19.3 million tons by

2023 (3). In order to prevent blood diseases and protect the health of workers who receive

benzene, all countries in the world have formulated occupational exposure limits for

benzene, and the occupational exposure limits for benzene now implemented in China

are higher than the foreign health standards. However, even with the implementation
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of national standards, chronic low-level benzene exposure could

still cause changes in some of the indicators of blood routine

(4).This shows that our current occupational exposure limits

for benzene do not protect the health of workers who receive

benzene (3). Machine learning is understood by some scholars

as “a computer program that is able to learn from experience

with certain tasks and performance measures (5).” The machine

learning process consists of two main steps, the first step is to

generate models by analyzing big data; the second step is to

draw inferences from the analysis (6). As a core area of artificial

intelligence and data science (7), machine learning could easily

adapt to new environments and is also self-tuning (8), That’s why

the application of machine learning in bioinformatics is becoming

increasingly popular, and it’s being used by researchers to tap into

the underlying mechanisms, potential biomarkers, and therapeutic

targets of various diseases (9).

Based on this, this study used a bioinformatics approach

combining three different machine learning algorithms to obtain

characteristic genes for occupational benzene exposure, and then

we used four machine models to further analyze the key genes

in order to explore the early biomarkers of long-term low-level

occupational benzene exposure. Combining early biomarkers with

machine learning algorithms could be effective for risk assessment

and early identification of benzene poisoning, which provides a

theoretical basis for early intervention in benzene toxicity and a

more comprehensive and sensitive model for risk assessment.

2 Materials and methods

2.1 Materials

We downloaded the benzene-induced damage expression

profiling datasets GSE9569 and GSE21862 from the GEO database.

The GSE21862 dataset includes 83 benzene-connected workers

exposed to different benzene concentrations and 42 unexposed

controls. Of these, 29 workers exposed to <1 ppm benzene at most

dosimetry reading over a 14-month period (Very Low), 30 exposed

to average <1 ppm (Low), 11 exposed to 5–10 ppm (High), 13

exposed to >10 ppm (Very High). The GSE9569 dataset includes

eight benzene-exposed workers and eight non-exposed controls,

and the resulting data were compared on twomicroarray platforms,

but the level of exposure in this dataset is unknown.

2.2 Diagnostic criteria and populations

The diagnosis of chronic mild benzene poisoning was judged

with reference to “the Diagnostic Standard for Occupational

Benzene Poisoning” GBZ 68-2022: Occupational history of close

exposure to benzene for 3 months or more, which may be

accompanied by dizziness, headache, fatigue, insomnia, memory

loss, recurrent infections and other clinical manifestations. Review

peripheral blood cell analysis every 2 weeks for 3 months with one

of the following criteria: (a) White blood cell count below 3.5 ×

109/L on 4 or more occasions (seeWS/T 405); (b) Neutrophil count

below 1.8 × 109/L on 4 or more occasions (see WS/T 405); (c)

Platelet count below 80x109/L on 4 or more occasions.

Based on the above diagnostic criteria, we intend to establish

a five-year prospective cohort of benzene-exposed workers. In the

first year, we selected 445 study participants, 214 in the benzene-

exposed group and 231 in the benzene-non-exposed group, and

analyzed the general condition of the study participants in relation

to their blood counts.

2.3 Methods

2.3.1 Data processing and analysis of variances
We eliminate the extrinsic differences between the two datasets

by principal components analysis (PCA); We used the R software

“limma” package to screen the differentially expressed genes

betweenGSE9569 andGSE21862 with P< 0.05 and |logfoldchange|

≥ 0.5 as the initial screening condition, after that, we use the

“pheatmap” package to plot heat maps of DEGs and the “ggplot2”

package to plot volcano maps of DEGs.

2.3.2 Enrichment analysis of DEGs
We used the “ClusterProfiler” package in R software for

GO, KEGG and GSEA enrichment analysis of DEGs. The GO

analysis includes cell components (CC), molecular function (MF)

and biological process (BP) (10). A standard of p < 0.05 was

used and bubble plots were used to show the results of the

enrichment analysis.

2.3.3 Screening and validation of key genes
We screened the feature genes through R software using three

machine learning algorithms: lasso regression algorithm, SVM-RFE

support vector machine recursive feature elimination algorithm

and random forest algorithm, and then took the intersection of

these by employing venn package to obtain the key genes. The

R software was used to plot the receiver operating characteristic

curve (ROC) for the key genes obtained, and AUC was calculated

separately, with larger AUC values indicating better diagnostic

performance; and violin plots were made.

2.3.4 Population validation and statistical analysis
Data were analyzed using SPSS 27.0 software, and for

information that conformed to a normal distribution, x̄ ± swas

used to indicate, comparisons of differences between groups

were analyzed using independent samples t-tests; for information

that did not fit a normal distribution, the median and quartiles

were expressed, and non-parametric tests were used to compare

differences between groups. p < 0.05 indicates that the difference

is significant.

2.3.5 Modeling of benzene-exposed mice
We chose clean-grade C57BL/6 male mice provided by the

animal laboratory of Nanjing Medical University to construct

this benzene-exposed mouse model. After numbering, weighing,

and excluding underweight or overweight mice, we randomly

numbered the mice according to the office software, and divided
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them into 2 groups (n = 12), with corn oil as solvent, and set up

solvent control and benzene 150 mg/(kg-b.w.) groups, respectively.

The difference in body weight of mice should not exceed 10% of

the average body weight of all mice, and the difference in average

body weight between groups should not exceed 5%. We took the

subcutaneous injection method to stain the mice, and chose to

perform the injection once every morning for 5 consecutive days,

with an interval of 2 days in between, and the staining time was

4 weeks in total, which started on the 5th day and ended on the

34th day. Mice were executed 24 h after the last administration of

benzene corn oil or corn oil alone, and then blood was collected

from the orbital venous plexus as well as urine specimens for the

next step of analysis and manipulation.

2.3.6 Mouse blood test
We used orbital venous plexus for blood collection from mice.

Subsequently, peripheral blood hematological indices, including

neutrophils (ANC), platelets (PLT) and white blood cells (WBC),

were measured in C57BL/6 mice.

2.3.7 Detection of related substances in mouse
urine

Detection of 8-hydroxy-deoxyguanosine (8-OHdG) and S-

phenylmercapturic acid (S-PMA) in mouse urine. In this

experiment, we chose 8-hydroxydeoxyguanosine quantification kit

from Nanjing Sembega Biotechnology Co, 8-OHdG detection kit

was chosen to determine the content of 8-OHdG in mouse urine by

ELISA double antibody sandwich method. As previously reported

(11), We used liquid chromatography-electrospray tandem mass

spectrometry for the determination of urinary S-PMA, and the limit

of detection was 0.01 mg/L.

2.3.8 Oxidative stress detection
Urine serum malondialdehyde (MDA) concentrations were

determined by the OxiSelect DNA oxidative damage ELISA kit

(product no. STA-320, Cell Biolabs, Inc., San Diego, CA, USA).

2.3.9 Cell lines and cell cultures
Mouse bone marrow cells were selected for this experiment

for subsequent manipulation. Cells were cultured using Iscove’s

modified Dulbecco’s medium (GIBCO, Grand Island, NY, USA) in

a 5% CO2 incubator at 37
◦C, It contained 10% fetal bovine serum

(FBS, GIBCO), 100 U/mL penicillin and 100 mg/mL streptomycin.

2.3.10 Total RNA extraction and qPCR
This experiment used TRIzol reagent (Gibco, USA) to isolate

high-quality total RNA from the cells, which was then treated with

Invitrogen SuperScript III reverse transcriptase to generate cDNA.

qPCR assays were performed using SYBR Green qPCR MasterMix

and Applied Biosystems StepOne qPCR instrument (Carlsbad, CA,

USA). β-actin was used as an internal reference. In the analysis

of the results, conforming to normally distributed data, expressed

asx̄ ± s, and comparisons of differences between groups were

analyzed using the independent samples t-test, the remaining data

that did not fit the normal distribution were expressed as medians

and quartiles, and comparisons of differences between groups

were analyzed using nonparametric tests. p < 0.05 represents a

significant difference.

2.4 Selection and application of machine
algorithms

In this study, different models were used to train the screened

genes, and the trained models were applied to the test set to obtain

the confusionmatrices of the different models, and after calculating

the accuracy of each model and plotting the ROC curves and

making comparisons, the appropriate model was finally obtained

for subsequent analysis. Plotting of comparisons using GraphPad

Prism 8.3 software. The models applied in this study are Random

Forest, Support Vector Machine, bp Neural Network and Bayesian.

The models applied in this study are C5.0 Decision Tree (C5.0DT),

Support Vector Machine, BP Neural Network and Naïve Bayes.

2.5 Gene set variation analysis of key genes

Gene set variation analysis (GSVA) is a non-parametric,

unsupervised analysis method that is primarily used to evaluate

gene set enrichment results from sequencing (12). In this study,

we used the “GSVA” software package to evaluate genome-

associated pathways.

3 Results

3.1 GSE9569 and GSE21862 dataset DEGs

After eliminating the extrinsic differences between the two

datasets by PCA analysis (Figures 1A, B), differential analysis

screened a total of 40 DEGs, of which 38 were up-regulated genes

and 2 were down-regulated genes, mapping volcano and heat

maps. The volcano plot demonstrates the differential genes of

GSE9569 and GSE21862, with up-regulated genes in red and down-

regulated genes in green (Figure 1C); the clustered heatmap shows

the specific expression of DEGs in each sample (Figure 1D).

3.2 Enrichment analysis of DEGs

The screened differential genes were analyzed for GO,

KEGG, and GSEA enrichment. GO enrichment analysis revealed

(Figure 1E) that bioprocesses (BP) are mainly involved in a series

of inflammatory response processes such as cytokine-mediated

signaling pathways, leukocyte migration, leukocyte-cell adhesion,

and response to lipopolysaccharide; cellular components (CC)

are mainly involved in tertiary granules, specific granules, and

serine-like peptidase complexes, etc; molecular function (MF) is

mainly concerned with cytokine receptor binding, cytokine activity,

receptor ligand activity, etc. The results of KEGG enrichment

analysis (Figure 1F) showed that the enriched pathways were
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FIGURE 1

Results of the analysis of the GSE9569 and GSE21862 datasets and functional enrichment results of di�erential genes. (A, B) The 2D plots of the first

two components from the principal component analysis results. a is before adjustment and b is after adjustment. As could be seen from the plots,

there is a large overlap between the two datasets after adjustment. (C) Volcano plot of di�erentially expressed gene results, with red dots for

up-regulated genes, green dots for down-regulated genes, and gray dots for non-di�erentially expressed genes. (D) Heat map of di�erentially

expressed gene clustering. (E) Results of GO enrichment analysis, the graph is divided into three sections, from top to bottom, BP biological

processes, CC cellular components, and MF molecular functions, with colors corresponding to the degree of enrichment. (F) KEGG enrichment

analysis results, the horizontal coordinate indicates the number of genes enriched in the pathway, the vertical coordinate indicates the pathway

name, and the color corresponds to the degree of enrichment.
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mainly focused on inflammatory and immune response pathways,

such as cytokine-cytokine receptor interactions, interactions of

viral proteins with cytokines and cytokine receptors, chemokine

signaling pathways, and NF -KB signaling pathways, etc. Further

analysis by GSEA enrichment revealed that DEGs were enriched

in the high-expression group to a set of five positive genes, mainly

involved in cytokine receptor interactions, graft-vs.-host disease,

jak stat signaling pathway, leishmaniasis infection, and signaling

pathways similar to node receptors (Supplementary Figure 7a);

five positive gene sets were enriched in the low-expression

group, mainly involved in base excision repair, Huntington’s

disease, oxidative phosphorylation, Parkinson’s disease, and RNA

degradation (Supplementary Figure 7b).

3.3 Screening and validation of key genes

The LASSO algorithm was used to screen 26 feature genes

from DEGs (Figures 2A, B), the SVM-RFE algorithm was used to

screen 29 feature genes (Figures 2C, D), while the RF algorithm

was used to screen 11 feature genes (Figures 2E, F), and the

intersection of the three was taken to identify four genes

(Figure 2G), which are NFKB1, PHACTR1, PTGS2, and PTX3,

respectively. For each individual in the abnormal and normal

blood group, the level analysis of the four genes was performed

(Supplementary Figure 1a); subsequently, ROC curves were plotted

for each of the four (Supplementary Figure 2), with AUCs (95%

CIs) of 0.822 (0.743–0.893), 0.755 (0.680–0.824), 0.802 (0.714–

0.873) and 0.834 (0.756–0.901).We then extracted GEO data to plot

violin maps for the four key genes (Figures 3A–D).

3.4 Results of population validation and
statistical analysis

The results of the basic population analysis for the

benzene-exposed and benzene-non-exposed groups are shown

in Supplementary Table 1, and the results of the statistical

comparison of blood counts with the four genes are shown in

Supplementary Figure 3. After comparison, we found that the

p-values of 8-OHdG, MDA, Neutrophil, PLT, S-PMA, WBC,

NFKB1, and PTX3 were all <0.05, which was statistically

significant; while the p-values of PHACTR1 and PTGS2 were

all >0.05, which was not statistically significant. It could be

concluded that the changes in 8-OHdG, MDA, Neutrophil,

PLT, S-PMA, WBC, NFKB1 and PTX3 were significant in

benzene-exposed group compared to benzene-non-exposed

group, and it could not be concluded yet that the changes in

PHACTR1 and PTGS2 were significant in benzene-exposed group.

Subsequently, according to GBZ 68-2022 “Diagnostic Criteria

for Occupational Benzene Poisoning”, the benzene-exposed

group was subdivided into the blood abnormality group and the

blood normal group (Supplementary Table 2). The results of their

statistical comparison were plotted (Supplementary Figure 4).

From the results, it could be seen that the p-values of PTGS2 and

PLT were all >0.05, which was not statistically significant, while

the rest of the p-values were all <0.05, which was statistically

significant. It could be assumed that the changes in 8-OHdG,

MDA, Neutrophil, S-PMA, WBC, NFKB1, PHACTR1 and PTX3

were significant in the abnormal blood group compared to

the normal blood group, and it could not be assumed that the

changes in PTGS2 and PLT were significant in the abnormal

blood group yet. Next, we further analyzed the changes in NFKB1

and PTX3 according to smoking status and sex and found

that smoking and sex significantly altered PTX3 (p < 0.05),

whereas there was no significant effect on NFKB1 (p > 0.05)

(Supplementary Tables 3, 4). Meanwhile, we analyzed these two

genes in GSE21862 and GSE9569, and found that NFKB1 and

PTX3 were significantly increased in the benzene-exposed group

in GSE21862 compared to the control group (p < 0.05), while

NFKB1 was significantly increased in the benzene-exposed group

in GSE9569 (p < 0.05), and the change in PTX3 could not yet be

considered significant (p > 0.05). Then, this study also analyzed

the changes of NFKB1 and PTX3 at different exposure levels

in GSE21862, and found that the changes of NFKB1 between

the ≪ 1 ppm group and the < 1 ppm group as well as the

changes of PTX3 between the < l ppm and 5–10 ppm groups

were significant (p < 0.05) while the changes of the two genes

between the rest of each two groups were not significant (p > 0.05)

(Supplementary Figure 5).

3.5 Four genes di�ered in
benzene-exposed mice vs. control mice

From Supplementary Table 5, it could be seen that the p-

values of PLT, PHACTR1 and PTGS2 are all >0.05, which

is not statistically significant, while the rest of the p < 0.05,

which is statistically significant. It could be assumed that the

changes in S-PMA, 8-OHdG, MDA, WBC, ANC, NFKB1 and

PTX3 were significant in benzene-exposed mice compared to

those in benzene-non-exposed group, and it could not yet be

assumed that the changes in PLT, PHACTR1 and PTGS2 were

significant. Plotting the results of their statistical comparison

(Supplementary Figure 6).

3.6 Determination of machine algorithms

In this study, GraphPad Prism 8.3 software was used to

plot the results obtained from different predictive models in the

training and test sets. Figure 4 shows that model performance,

measured in terms of accuracy and AUC values, is combined with

a ROC plot (Figure 5) to compare the four predictive models, C5.0

Decision tree allows better prediction of benzene-induced damage;

the prediction results for the benzene-exposed group showed an

AUC value and a correct prediction rate of 100% and 97.24%,

respectively, for the training group, while the AUC value and

prediction accuracy of the training group in the non-benzene-

exposed group were both 100%. The weights of the C5.0 DT model

were then plotted (Figures 5B, D), according to which PTX3 was

the most important gene. In turn, the volcano and heat maps of

PTX3 are plotted (Figures 5E, F). Details of the overview of the four

machine learning algorithms are given in Supplementary Note 1.
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FIGURE 2

Results of key gene screening. (A, B) Identification of benzene-induced damage-related genes using LASSO and cox regression analysis. (C, D) The

accuracy and the error of the estimate generation for the SVM-RFE algorithm. (E) Random forest algorithm. The horizontal coordinate is the number

of trees and the vertical coordinate is the cross-validation error; the red line indicates the error in the benzene exposure group, the green line

indicates the error in the control group, and the black line indicates the error in all samples. (F) Random Forest Gene Importance Ranking. The graph

shows the ordering of the top 30 genes in terms of importance. (G) Venn diagram demonstrating four genes shared by the LASSO and SVM-RFE and

RF algorithms. In the red part, it represents the LASSO algorithm, the green part reaches the standard RF algorithm, the purple part represents the

SVM algorithm, the intersection part represents the identified key genes, and the numbers in the figure represent the number of genes.
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FIGURE 3

Violin chart showing the relative expression of di�erent genes in Benzene-exposed and non-exposed groups. ***Indicates that compared with

control group, p < 0.001.

3.7 Results of gene set variation analysis

The relevant pathways in different risk populations were further

explored for PTX3. Figure 5G shows that in the up-regulated

group, PTX3 triggered valine and isoleucine degradation, glycine

serine and threonine metabolism, and pentose and glucuronide

interconversion, among others; in contrast, PTX3 in the down-

regulated group triggered cytokine receptor interactions, node-like

receptor signaling pathways, and the jak stat signaling pathway, etc.

4 Discussions

Benzene is a known and carcinogenic environmental

toxicant. As society develops, benzene poisoning is concentrated

in occupational settings. Occupational benzene poisoning is

categorized into acute and chronic poisoning, and the damage

caused to the human body varies. The most common type is

occupational chronic benzene poisoning. It is well known that

high benzene exposure could cause serious hematologic disorders

such as pancytopenia, aplastic anemia and leukemia (13, 14). It has

also been shown that chronic low-level benzene exposure induces

hematologic toxicity (15–17). Benzene has no safe exposure limit

and poses a risk of hematologic malignancies even at relatively low

benzene exposure levels (18). Therefore, it is particularly important

to actively explore biomarkers for low-level benzene exposure

(Figure 6).

Machine learning methods have been very widely and

successfully applied in bioinformatics by virtue of their easily

adaptable and self-tunable characteristics. genes by three machine

learning algorithms: lasso regression algorithm, SVM-RFE support

vector machine recursive feature elimination algorithm, and

random forest algorithm, and then the intersection of the three

screened feature genes was taken, and then four more accurate

key genes of benzene-induced damage were obtained: NFKB1,

PHACTR1, PTGS2, and PTX3.

We then further validated this with an established population

cohort, and in the early phase, we found a strong correlation

between two genes, NFKB1 and PTX3, and oxidative stress injury;

meanwhile, we found significant differences in the changes of

oxidative stress indicators MDA and 8-OhdG as well as intra-

benzene exposure indicator S-PMA in benzene-exposed and

control groups (P < 0.05), which side by side proved the

relationship between two genes, NFKB1 and PTX3, and oxidative

stress damage. Then we referred to GBZ 68-2022 “Diagnostic
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FIGURE 4

Comparing the predictions of four machine algorithms for benzene-exposed and benzene-non-exposed groups. (A, C) are the AUC and accuracy of

the test group, and (B, D) are the AUC and accuracy of the training group, respectively, (E, G) are the AUC and accuracy of the test group and (F, H)

are the AUC and accuracy of the training group, respectively.
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FIGURE 5

In the benzene-exposed group, (A) ROC plots of the four machine models, and (B) weight plots of the four genes in the decision tree model; in the

benzene-non-exposed group, (C) ROC plots of the four machine models, and (D) weight plots of the four genes in the decision tree model. And

volcanic and heat maps of PTX3 (E, F) and results of GSVA analysis of PTX3 (G).
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FIGURE 6

Schematic view of methods.
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Criteria for Occupational Benzene Poisoning” and divided the

benzene-exposed group into the blood abnormal group and the

blood normal group. Upon analysis, we found that MDA, 8-OhdG

and S-PMA were more significantly altered, and the differences in

the changes in leukocyte counts and neutrophil counts were also

differential (P < 0.001). We also found that the differences in the

changes in the expression of NFKB1, PHACTR1 and PTX3 were

also more pronounced (P < 0.05).

To further verify whether these four genes are critical genes

for benzene exposure injury, we established a benzene-exposed

mouse model and found that the number of neutrophils and the

number of leukocytes were significantly lower in benzene-exposed

mice compared to mice in the normal group (P < 0.05). Benzene

exposure is known to disrupt the balance between ROS production

and clearance, resulting in oxidative stress (19). MDA, the end

product of lipid peroxidation, is commonly used as a measure

of oxidative stress and inflammation in biological materials (20).

In the present study, we found that benzene-exposed workers

and benzene-exposed mice had higher MDA levels than controls;

therefore, oxidative stress induced by benzene exposure may play

a role in benzene-induced hematotoxicity, which is consistent with

previous reports (11). 8-OHdG is one of the oxidative metabolites

and is considered a marker of oxidative DNA damage (21). In

this study, 8-OhdG was higher in benzene-exposed workers and

benzene-exposed mice than in controls, suggesting that benzene

exacerbates oxidative damage and causes DNA damage. Compared

to other markers, urinary S-PMA is considered to be a biomarker

that better demonstrates benzene exposure below 1 ppm (22). In

this study, the S-PMA of benzene-exposed workers and benzene-

exposed mice was significantly higher than that of the control

group, so the change of S-PMA in urine could indirectly reflect the

change of benzene concentration in the environment.

Also, the benzene-exposed mouse model showed differential

changes in NFKB1 and PTX3 (P < 0.05). Combining the three

validation results, it could be concluded that NFKB1 and PTX3

are the key genes for benzene exposure injury. As a member of

the NF-KB family of transcription factors, NFKB1 plays a central

role in benzene hematotoxicity (23, 24). An animal study showed

altered myelopoiesis in Nfkb-/- mice, resulting in a significant

decrease in bone marrow progenitor cells (25), this side by side

validates the central role of NFKB1 in benzene hematotoxicity.

The NF-kB pathway leads to post-inflammatory tissue fibrosis

(26). This is consistent with the KEGG enrichment analysis we

derived above. PTX3, a member of the long pentraxin family,

is rapidly produced by phagocytes and stromal cells at sites of

inflammation in response to infection or tissue injury (27). PTX3

is induced by oxidative stress (28), sustained oxidative stress

leads to chronic inflammation (29). Primary pro-inflammatory

signals (bacterial products, interleukin-1 and TNF) produced by

different cell types (mainly macrophages and vascular endothelial

cells) lead to the production of PTX3 by vascular endothelial

cells and macrophages, which is a true and direct indicator of

inflammation (30–32). Previous studies have shown that cigarette

smoke induces PTX3 expression (33–35); also, PTX3 levels are

associated with female fertility (36, 37), which is consistent with our

analysis of PTX3 in smoking status and sex. Chronic inflammation

and immunosuppression are two key features of benzene (38).

Regarding the relationship between chronic inflammation and

immunosuppression, numerous scholars have suggested that

chronic inflammation induces local immunosuppression (38–43).

In general, benzene appears to activate the innate immune system

to cause inflammation, but suppresses the adaptive immune system,

which is critical for long-term defense and protection against

repeated exposure to irritants such as benzene (38).

We note that this study has a number of shortcomings. First,

we did not specifically explore the exact link between the two

genes, NFKB1 and PTX3, and benzene exposure, and there are

some inflammatory conditions that can cause changes in these

two genes (e.g., autoimmune diseases), and second, the level of

benzene exposure of GSE9569 used for the analysis is unknown,

and does not allow us to validate the changes of the two genes

in GSE21862 across different exposure levels. Meanwhile, due to

the insufficiency of experimental equipment, we were unable to

perform strict inhalation benzene exposure, but used subcutaneous

injection instead, which may produce some discrepancies in the

experimental results. To address these shortcomings, we will

conduct more cellular and mouse experiments to supplement the

conclusions of this study.

5 Conclusions

Conclusively, this investigation amalgamated bioinformatics

with machine learning to elucidate pivotal risk genes implicated

in benzene-induced damage, unearthing two genes, NFKB1

and PTX3, potentially contributing to benzene’s hematotoxicity

through inflammatory response. At present, the bulk of research

is centered around the interplay between NFKB1 and benzene

exposure, with a dearth of studies exploring the correlation between

PTX3 and benzene exposure. Our study confirmed alterations in

PTX3 following benzene exposure, paving the way for ensuing

research, which may focus on the patterns and mechanisms of

PTX3 changes post benzene exposure.

The integration of validated key risk genes with machine

learning algorithms enables precise assessment of benzotoxicity

risk and early identification of symptomatic patients. Our

detection of key risk genes offers insights into the mechanisms

of benzotoxicity, reflecting the connection between oxidative

stress and inflammation. Concurrently, the risk assessment model,

constructed on the foundation of key risk genes and machine

learning algorithms, serves as an invaluable tool for early screening

of high-risk patients, facilitating timely, in-depth examinations

and interventions.
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