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framework to predict the risk of 
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Objective: This study aims to develop risk prediction models for neck and 
shoulder musculoskeletal disorders among healthcare professionals.

Methods: A stratified sampling method was employed to select employees 
from medical institutions in Nanning City, yielding 617 samples. The Boruta 
algorithm was used for feature selection, and various models, including Tree-
Based Models, Single Hidden-Layer Neural Network Models (MLP), Elastic Net 
Models (ENet), and Support Vector Machines (SVM), were applied to predict 
the selected variables, utilizing SHAP algorithms for individual-level local 
explanations.

Results: The SVM model excels in both Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) and exhibits more stable performance when 
generalizing to unseen data. The Random Forest model exhibited relatively 
high overall performance on the training set. The MLP model emerges as 
the most consistent and accurate in predicting shoulder musculoskeletal 
disorders, while the SVM model shows strong fitting capabilities during the 
training phase, with occupational factors identified as the main contributors 
to WMSDs.

Conclusion: This study successfully constructs work-related musculoskeletal 
disorder risk prediction models for healthcare professionals, enabling a 
quantitative analysis of the impact of occupational factors. This advancement is 
beneficial for future economical and convenient work-related musculoskeletal 
disorder screening in healthcare professions.
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Contributions to the literature

 • Our study employs the Boruta algorithm for feature selection, 
reducing neck musculoskeletal disorder screening to just 12 key 
items and shoulder disorder screening to 17, enabling a simplified 
screening process. By inputting demographic data into an 
electronic system, the musculoskeletal disorder prediction model 
can assess the risk of these conditions in healthcare professionals, 
thereby significantly reducing the workload for screening.

 • We have developed interpretable models for predicting the risk 
of shoulder and neck musculoskeletal disorders, utilizing SHAP 
algorithms for individual-level local explanations.

 • Machine learning models show better prediction accuracy and 
precision compared to untrained Logistic regression, which was 
more commonly used in past research. Studies using machine 
learning for predicting musculoskeletal disorders in populations 
are relatively scarce.

1 Introduction

Work-related musculoskeletal disorders (WMSDs) refer to 
injuries or disorders of the muscles, nerves, tendons, joints, cartilage, 
and spinal disks that are associated with exposure to risk factors in the 
workplace (1). According to the data on work-related musculoskeletal 
disorders (WMSDs) from 2018 to 2020 published by the Chinese 
Center for Disease Control and Prevention, there are three high-
prevalence groups in China: flight attendants, medical staff, and 
workers in vegetable greenhouses. Medical staff, in particular, are a 
high-risk group for WMSDs due to their heavy workloads 
accompanied by poor dynamic loads, static loads, physical loads, and 
ergonomic environments (2). Current research has revealed that 
WMSDs among medical staff are most commonly observed in the 
shoulder, neck, and lower back (3), with the highest prevalence 
occurring in the lower neck region (4).

Previous studies have predominantly utilized descriptive statistical 
analysis and logistic regression to analyze the influencing factors of 
musculoskeletal disorders among medical staff in terms of dynamic 
loading, static loading, physical loading, repetitive motion, ergonomic 
environment, and labor organization. Wang et al. employed logistic 
regression to analyze a sample of 1,017 medical staff in the department 
of obstetrics and gynecology and found that individual, postural, 
work-environmental, as well as psychosocial factors were the main 
contributors to musculoskeletal disorders (5). Krishnan et  al. 
discovered that musculoskeletal disorders were associated with age, 
low education level, female gender, years of working experience, and 
lifestyle (6). Machine learning models have demonstrated significant 
advantages, such as high accuracy and resistance to overfitting. 
Consequently, they have been widely applied in predicting chronic 
diseases, infectious diseases, and tumors. However, the utilization of 
machine learning models in the study of work-related musculoskeletal 
disorders (WMSDs) remains relatively limited.

Considering these research gaps, we  utilized data on Work-
Related Musculoskeletal Disorders (WMSDs) from healthcare 
professionals in Nanning, Guangxi Zhuang Autonomous Region, to 
construct risk prediction models for shoulder and neck WMSDs. This 
approach quantitatively reveals the varying degrees of influence each 

variable has on the risk of developing work-related musculoskeletal 
disorders, A web calculator for the neck and shoulder disease risk of 
WMSDs was constructed based on shinyapps.io, which can be applied 
to the early detection and prevention of neck and shoulder WMSDs 
in healthcare workers. Risk prediction model for neck WMSDs 
website is: https://shoulderwmsdspred.shinyapps.io/neck/. Risk 
prediction model for shoulder WMSDs website of shoulder is: https://
shoulderwmsdspred.shinyapps.io/shoulder/.

2 Methods

2.1 Setting and participants

This study, funded by the Health Commission of Nanning, was 
conducted as part of a survey on musculoskeletal disorders among 
occupational populations in Nanning. The research was carried out 
from June 2022 to March 2023. Medical personnel from medical 
institutions in seven districts and five counties of Nanning were 
selected as the study participants using stratified sampling. The survey 
was conducted online using the QuestionStar platform, and 617 
medical personnel from three tertiary hospitals, seven secondary 
hospitals, and three disease control centers participated by completing 
the questionnaires.

2.2 Research tools

The questionnaire comprised four sections: personal 
information, musculoskeletal disorder status, work stress, and 
occupational health literacy. The Cronbach’s Alpha for this 
questionnaire is 0.741.

The musculoskeletal disorder status was assessed using Chinese 
version of the “Musculoskeletal Disorder Questionnaire” provided by 
the Occupational Health and Poison Control Institute of the Chinese 
Center for Disease Control and Prevention, a tool developed by 
referring to the musculoskeletal disorder survey forms in Nordic 
countries and adapted to the Chinese context (7). The survey assessed 
musculoskeletal disorders in nine areas: neck, shoulders, back, elbows, 
waist, wrists, hips, knees, and ankles/feet. The respondents reported 
neck and shoulder WMSDs occurrences during the last 12 months, 
which were used as dependent variables to construct neck and 
shoulder WMSDs predictive models.

The work stress scale utilized in this study was the Q17 Stress Test, 
which is widely applied to assess work stress in hospitals (8).

For evaluating occupational health literacy, the 2021 National 
Health Commission’s National Key Industry Occupational Health 
Literacy Monitoring Questionnaire was employed. A correct response 
rate of 60% was considered as having adequate occupational 
health literacy.

2.3 Ethical consideration

This study obtained approval from the Ethics Committee of 
Guangxi Medical University (approval number: 2021002). The 
purpose and content of the research were explained to all participants, 
and informed consent was obtained from each of them.
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2.4 Machine learning model workflow

2.4.1 Refining variables with the Boruta algorithm
The Boruta algorithm represents an approach for feature selection, 

particularly well-suited to address feature selection challenges within 
machine learning tasks. Its primary objective lies in the identification 
of the most pivotal attributes from a dataset teeming with numerous 
features, thereby bolstering model performance while mitigating the 
risk of overfitting.

As indicated in Figure 1, it becomes evident that several variables 
exhibit pronounced interrelationships. In light of this observation, this 
research segregates the dataset into training and testing subsets at a 
3:1 ratio. Subsequently, the target variables, namely the presence of 
neck and shoulder musculoskeletal disorders, are employed to train 
machine learning algorithms. Leveraging the Boruta algorithm, 
we  undertake a rigorous examination of feature variables, culling 
those that bear no meaningful contribution to the model. Ultimately, 
this process yields 12 independent variables for the “Neck” category 
and 17 independent variables for the “Shoulder” category, as 
elaborated in Figure 2 and Table 1.

2.4.2 Robustness assessment of models
We conducted a comparative analysis encompassing four distinct 

model categories: (1) Tree-Based Models: This category includes 
decision tree models, random forest models (RF), and XGBoost 
models (Xgboost). (2) Single Hidden-Layer Neural Network Models 
(MLP). The multilayer perceptron consists of multiple layers of 
neurons, where each layer is connected to the preceding layer, 
receiving its inputs. Simultaneously, each layer is also connected to the 
subsequent layer, influencing the neurons within the current layer. 
These layers include the input layer, hidden layer, and output layer. In 
this study, the MLP employed a single hidden layer comprising 15 
hidden units. (3) Elastic Net Models (ENet). (4) Support Vector 
Machines (SVM). For each of these model categories, we performed 
an extensive hyperparameter grid search through 5-fold cross-
validation on the training dataset (refer to Figure 3) (9). Subsequently, 
we evaluated model performance on both the training and testing 
datasets using metrics such as mean absolute error (MAE), root mean 
square error (RMSE), accuracy, and other relevant indicators.

2.4.3 Model interpretability
We employ the SHapley Additive exPlanations (SHAP) framework 

as our chosen method for model interpretability. In this context, 
we  utilize the R programming language and leverage both the 
“fastshap” and “shapviz” packages (10, 11). These tools allow us to 
construct beeswarm plots and waterfall plots, respectively. The bee 
swarm plots show the distribution of the SHAP values for each feature 
across all the data points, and the waterfall plots are individualized 
explanations of a single prediction, showing the contribution of each 
feature to the final prediction (see Figures 4, 5).

The Shapley value represents the average marginal contribution of 
a variable across all conceivable coalitions. For each individual, the 
SHAP value associated with each variable reflects its contribution to 
the individual’s risk of musculoskeletal disorders in the neck and 
shoulder. The determination of an individual’s susceptibility to neck 
and shoulder musculoskeletal disorders is achieved by summing the 
contributions of these variables relative to the baseline value (which 
corresponds to the average predicted age across the dataset).

2.4.4 Partial dependency computation
The computation and graphical representation of partial 

dependency values for each variable are showcased in Figures 6, 7, 
offering illustrative examples.

3 Results

3.1 Demographic data

The surveyed medical personnel consisted of 403 females and 214 
males (see Table  2). Among them, 419 were married, 173 were 
unmarried, and 25 had unknown marital status. Regarding age 
distribution, 244 medical personnel were between 25 and 34 years old, 
194 were between 35 and 44 years old, and 102 were between 45 and 
54 years old. In terms of educational background, 42 respondents had 
education levels below a university degree, 527 had completed college 
or undergraduate studies, and 48 had completed postgraduate studies 
or above. Regarding work experience, 215 medical personnel had been 
in the profession for 15 years or more. Self-assessment of health status 
revealed that 379 individuals rated their health as average, while 216 
rated it as good. As for monthly income, 201 medical personnel 
earned between 3,000 and 4,999 yuan, and 190 earned between 5,000 
and 6,999 yuan. In terms of the size of their employing institutions, 
376 medical personnel worked in units with 300–999 employees. 
Night shifts were part of the work schedule for 280 medical personnel. 
Additionally, 214 individuals had a weekly working time of 40 h or 
less, and 402 had no more than two types of chronic diseases.

3.2 Model performance comparison

The calibration curve of the model illustrates the degree of 
calibration in predicting probabilities on both the training and testing 
datasets. An ideal calibration model would exhibit a curve closely 
aligned with the diagonal line running from the lower-left corner to 
the upper-right corner. As the calibration curve approaches this 
diagonal line, the model’s probability predictions become more 
accurate. Performance varies among risk prediction models for 
different musculoskeletal disorders affecting the neck. The random 
forest model shows a relatively significant deviation from the ideal 
diagonal line on the training set, suggesting potential overfitting to the 
training data. On the other hand, the support vector machine exhibits 
a curve on the training set that is closer to the ideal diagonal line, 
indicating more accurate probability predictions. XGBoost 
demonstrates good calibration on the training data but appears to 
overestimate probabilities on the testing data. The calibration curve 
on the testing set for the elastic net model suggests a degree of 
miscalibration in predicting neck diseases. Although the MLP model 
exhibits strong calibration on the training data, its calibration 
performance on the testing data is comparatively subpar (see 
Figure 8).

The performance of various risk prediction models for different 
shoulder musculoskeletal disorders varies. The RF model exhibits a 
certain degree of deviation from the ideal diagonal line in both the 
training and testing calibration curves. This suggests some 
inconsistency between the model’s predicted probabilities and the 
actual occurrence frequencies. The SVM model displays a calibration 
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FIGURE 1

Heatmap illustrating the correlations between different variables. (A,B) Respectively present the variable correlations for musculoskeletal disorders in 
the neck and shoulder regions.
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curve close to the ideal state on the training set, indicating relatively 
accurate probability predictions during the training phase. However, 
the calibration curve on the testing set deviates slightly, indicating 
that the model’s predicted probabilities may be too high or too low 
when dealing with new data. The XGBoost model demonstrates good 
probability calibration on the training set, with a calibration curve 
that closely aligns with the ideal diagonal line. On the testing set, 
although there is a slight deviation in the curve, the overall 
performance remains relatively robust. The ENet model exhibits low 
predicted probabilities on both datasets, as evidenced in the 
histograms, where a significant portion of predicted probabilities 
clusters in the lower probability value range. Regarding the MLP 
model, the calibration curve on the training set indicates strong 
probability calibration. However, on the testing set, the curve 
deviates slightly from the ideal diagonal line, suggesting the 
possibility of mild overfitting. The histograms reveal a more even 
distribution of predicted probabilities on the training set but a 

somewhat more concentrated distribution on the testing set (see 
Figure 9).

Among the risk prediction model for neck musculoskeletal 
disorders, the SVM model achieves the lowest average MAE of 0.9165, 
indicating the smallest average prediction error. Following closely are 
the MLP and RF models, with average MAE values of 0.9850 and 
0.9855, respectively. The Xgboost model has a slightly higher average 
MAE of 0.9950. The ENet model exhibits the highest average MAE 
at 0.9990.

Similarly, the SVM model attains the lowest average RMSE of 
1.0385, signifying its superior performance when considering 
penalties for larger errors. The MLP model follows with an average 
RMSE of 1.0940, ranking second. ENet, Xgboost, and RF models 
display similar RMSE values of 1.1010, 1.1035, and 1.1045, respectively.

Among these models, the SVM model excels in both MAE and 
RMSE, indicating its relatively high predictive accuracy, especially in 
handling larger prediction errors. The MLP model performs well in 
RMSE but slightly lags behind the SVM in MAE. ENet, XGBoost, and 
RF models exhibit comparable performance in both metrics but fall 
slightly short of SVM and MLP.

In the risk prediction model for shoulder musculoskeletal 
disorders, The MLP (Multilayer Perceptron) model shows the best 
performance on both the training set (MAE = 0.946) and the testing 
set (MAE = 0.954), indicating its predictions are closest to the actual 
values on average. The XGBoost model follows closely with 
MAE = 0.974 on the training set and MAE = 0.982 on the testing set, 
suggesting slightly less accurate predictions than MLP but still 
outperforming other models. The SVM and ENet models have 
identical MAE on the training set (MAE = 1.001) and very similar 
performance on the testing set (SVM MAE = 1.009, ENet 
MAE = 1.007), which are moderate compared to MLP and XGBoost. 
The RF (Random Forest) model exhibits the highest MAE, particularly 
on the testing set (MAE = 1.111), which implies less accurate 
predictions on average compared to the other models.

The MLP model stands out as the most consistent and accurate 
model for predicting shoulder musculoskeletal disorders according to 
both MAE and RMSE metrics. XGBoost also performs well and could 
be considered a good alternative, especially if computational efficiency 
is a concern, as gradient boosting can be  more computationally 
intensive than neural networks depending on the implementation and 
dataset size. The SVM and ENet models show moderate performance, 
while the RF model might require further parameter tuning or feature 
engineering to improve its prediction accuracy (see Figure 10).

When evaluating various machine learning models for predicting 
neck musculoskeletal disorders, we  observed that conventional 
logistic regression model performs relatively average. The Random 
Forest model exhibited relatively high overall performance on the 
training set (accuracy = 0.703, sensitivity = 0.749, specificity = 0.667, 
AUC = 0.772). However, on the testing set, the SVM model 
outperformed with an accuracy of 0.574 and an AUC of 0.623. This 
suggests that while the Random Forest model demonstrates strong 
learning capabilities during the training phase, the SVM model 
exhibits more stable performance when generalizing to unseen data 
(see Table 3).

For the prediction of shoulder musculoskeletal disorders, the 
conventional logistic regression model performs relatively average. 
The SVM model demonstrates the best performance on the training 
set (accuracy = 0.781, sensitivity = 0.802, specificity = 0.768, 

FIGURE 2

Data variable selection based on the Boruta algorithm. (A,B) 
Respectively depict the variable selection outcomes for the risk 
prediction dataset of neck musculoskeletal disorders and shoulder 
musculoskeletal disorders.
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TABLE 1 Variables of the musculoskeletal disorder risk prediction model.

Abbreviation Item Variables of the work-related neck 
musculoskeletal disorder risk prediction 

model

Variables of the work-related shoulder 
musculoskeletal disorder risk prediction 

model

Tired_after_work Do you feel physically tired after work? √ √

Contact_with_customers Does your job frequently involve interaction with patients or the public? √

Turn_around_slightly Do you often slightly turn your body during work? √

Neck_forward_maintain Do you frequently lean your neck forward or maintain this posture for 

extended periods during work?

√ √

Neck_titled_back Do you frequently lean your neck backward or maintain this posture for 

extended periods during work?

√ √

Bend_wrist_maintain Do you frequently bend your wrists or maintain this posture for 

extended periods during work?

√ √

Twist_wrist_maintain Do you frequently twist your wrists and maintain this posture for 

extended periods during work?

√ √

Upper_arm_finger Do you frequently repeat the same movements with your upper arms 

and fingers multiple times per minute during work?

√ √

Same_action_head Do you frequently repeat the same movements with your head multiple 

times per minute during work?

√

Uncomfortable_position Do you often work in uncomfortable postures? √

Sit_work Do you spend long periods sitting during work? √ √

Same_position Do you maintain the same posture for extended periods during work? √ √

Self_assessment_health Self-assessment of your health status √

Absence_because_illness Have you taken sick leave in the past year due to illness? √

Working_pressure Work-related stress √

Chronic_diseases Types of chronic diseases √

Sufficient_rest_time Do you feel your rest periods are sufficient? √

Sharp_turn Do you frequently make large turns of your body during work? √

Slightly_bend Do you frequently maintain a slightly bent posture for extended periods 

during work?

√

Slight_turning_position Do you frequently maintain a slightly turned posture for extended 

periods during work?

√

Simultaneous_bending_turning Do you frequently maintain a posture that involves both bending and 

turning for extended periods during work?

√

https://doi.org/10.3389/fpubh.2024.1414209
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FIGURE 3

The optimal hyperparameter cross-validation results for machine learning models. The subplots in (A), from left to right, and from the first row to the 
second row, represent the optimal hyperparameter cross-validation results for neck musculoskeletal disorder prediction models for RF, SVM, Enet, 
MLP, and Xgboost, respectively. The subplots in (B), from left to right, and from the first row to the second row, represent the optimal hyperparameter 
cross-validation results for shoulder musculoskeletal disorder prediction models for RF, SVM, Enet, MLP, and Xgboost, respectively. The horizontal axis 
is sensitivity, and the vertical axis is 1-specificity.
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FIGURE 4

The beeswarm plot and waterfall plot for neck musculoskeletal disorders. In (A), from the first row to the second row, and from left to right, the 
subplots represent the neck musculoskeletal disorders beeswarm plots for RF, SVM, Xgboost, Enet, and MLP, respectively. In (B), from the first row to 
the second row, and from left to right, the subplots represent the neck musculoskeletal disorders waterfall plots for RF, SVM, Xgboost, Enet, and MLP, 
respectively.
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FIGURE 5

The beeswarm plot and waterfall plot for shoulder musculoskeletal disorders. In (A), from the first row to the second row, and from left to right, the 
subplots represent the shoulder musculoskeletal disorders beeswarm plots for RF, SVM, Xgboost, Enet, and MLP, respectively. In (B), from the first row 
to the second row, and from left to right, the subplots represent the shoulder musculoskeletal disorders waterfall plots for RF, SVM, Xgboost, Enet, and 
MLP, respectively.
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AUC = 0.866). On the testing set, the MLP model achieves the highest 
accuracy (0.690), while the Xgboost model has the highest AUC value 
(0.734). This suggests that the SVM model exhibits strong fitting 
capabilities to the data during the training phase, but on the testing 
set, the MLP and Xgboost models provide better generalization. 
Particularly, the MLP model exhibits higher specificity (0.713) on the 
testing set, indicating its good performance in reducing false positives 
(see Table 4).

3.3 Interpretability of machine learning 
models for the risk of musculoskeletal 
disorders

To quantitatively delineate the contribution of each variable in 
predicting the risk of musculoskeletal disorders of the neck, our 
investigation primarily focuses on the application of the Shapley 
Additive Explanations (SHAP) framework within the Random Forest 
(RF) and Support Vector Machine (SVM) models. The RF model 
elucidates the top six determinants impacting the susceptibility of 
Healthcare Professionals to musculoskeletal disorders: prolonged 

forward neck posture, wrist flexion or maintenance of this position for 
extended periods, physical exhaustion post-work, prolonged neck 
twisting posture, static posture maintenance, and prolonged sedentary 
work. The SVM model reveals a similar hierarchy of influential factors, 
albeit with slight variations in their order. The results of conventional 
logistic regression (LR) are shown in Table  5, but since the 
performance of LR is inferior to that of random forest (RF) and 
support vector machine (SVM), it is not discussed in detail. Notably, 
the sustained forward tilt of the wrist significantly augments the risk 
of neck-related musculoskeletal disorders. Conversely, prolonged 
sitting and maintaining a uniform posture while working exhibit a 
negative correlation with the risk of developing these disorders (refer 
to Figure 4).

To quantitatively exhibit the contribution of each variable in the 
prediction of shoulder musculoskeletal disorder risks, we primarily 
examine the outcomes of the Shapley Additive Explanations (SHAP) 
tree framework on the Multilayer Perceptron (MLP) and Support 
Vector Machine (SVM) models. The MLP model identifies the six 
principal factors affecting the risk among Healthcare Professionals: 
prolonged forward neck posture, prolonged sedentary work, work-
related stress levels, number of chronic diseases, physical exhaustion 

FIGURE 6

Bias plot of important factors for neck musculoskeletal disorders.
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post-work, and absence due to illness. Conversely, the SVM model 
highlights the top six influential factors as prolonged neck twisting 
posture, number of chronic diseases, sustained bending posture, 
absence due to illness, physical exhaustion post-work, and wrist 
flexion or maintenance of this position for extended periods. The 
results of conventional logistic regression (LR) are shown in Table 6, 
but since the performance of LR is inferior to that of multilayer 
perceptron (MLP) and support vector machine (SVM), it is not 
discussed in detail. Notably, low levels of work stress and not sitting 
for prolonged durations have a negative impact on the risk of lumbar 
musculoskeletal disorders. In contrast, maintaining a prolonged 
forward neck posture significantly increases the risk of shoulder 
musculoskeletal disorders (refer to Figure 5).

Healthcare professionals who maintain a prolonged forward neck 
posture face a higher risk of developing neck musculoskeletal 
disorders. Similarly, those with extended periods of wrist flexion are 
more likely to suffer from these disorders. Medical staff experiencing 
varying degrees of tiredness post-work—from slightly tired to 
extremely exhausted—are more susceptible to neck musculoskeletal 
disorders. Additionally, a long-term neck twisting posture and 
prolonged periods of sitting while working significantly increase the 
likelihood of these conditions (refer to Figure 6).

Results from the SVM and MLP models indicate that healthcare 
professionals who frequently maintain a forward neck posture are at 
a greater risk of shoulder musculoskeletal disorders. Similarly, 
prolonged sitting while working elevates the risk of these disorders. 
Moderate to high levels of work-related stress are more likely to lead 
to shoulder musculoskeletal disorders in medical staff. Those with 
one or more types of chronic diseases face a heightened risk of 
developing these conditions. Experiencing tiredness or extreme 
fatigue after work increases the likelihood of these disorders, as does 
a history of absenteeism due to illness. Moreover, maintaining a 
prolonged neck twisting posture, sustaining a significant bending 
posture for extended periods, and long-term wrist flexion are all 
associated with an increased risk of shoulder musculoskeletal 
disorders (see Figure 7).

4 Discussion

Different models exhibit varying performances in assessing the 
risk of shoulder and neck musculoskeletal disorders, each with unique 
strengths and limitations. For instance, while the Random Forest excel 
in training datasets for predicting neck musculoskeletal disorder risks, 

FIGURE 7

Bias plot of important factors for shoulder musculoskeletal disorders.
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TABLE 2 Basic demographic characteristics of survey participants.

Total (%) Neck musculoskeletal disorders X2 p Shoulder musculoskeletal 
disorders

X2 p

Yes (%) No (%) Yes No

Gender 6.572 0.010 6.999 0.008

  Male 214 (34.68) 81 (29.24) 133 (39.12) 69 (28.40) 145 (38.77)

  Female 403 (65.32) 196 (70.76) 207 (60.88) 174 (71.60) 229 (61.23)

Marital status 1.780 0.411 3.901 0.142

  Married 419 (67.91) 193 (69.68) 226 (66.47) 173 (71.19) 246 (65.78)

  Unmarried 173 (28.04) 71 (25.63) 102 (30.00) 58 (23.87) 115 (30.75)

  Other 25 (4.05) 13 (4.69) 12 (3.53) 12 (4.94) 13 (3.48)

Age 4.321 0.364 5.284 0.259

  <25 years 57 (9.24) 19 (6.86) 38 (11.18) 14 (5.76) 41 (10.96)

  25–34 years 244 (39.55) 107 (38.63) 137 (40.29) 93 (38.27) 151 (40.37)

  35–44 years 194 (31.44) 93 (33.57) 101 (29.71) 79 (32.51) 115 (30.75)

  45–54 years 102 (16.53) 49 (17.69) 53 (15.59) 47 (19.34) 55 (14.71)

  ≥55 years 20 (3.24) 9 (3.25) 11 (3.24) 8 (3.29) 12 (3.21)

Education 0.510 0.775 0.456 0.796

  Below University 42 (6.81) 17 (6.14) 25 (7.35) 17 (7.00) 25 (6.68)

  College/undergraduate 527 (85.41) 237 (85.56) 290 (85.29) 205 (84.36) 322 (86.10)

  Postgraduate 48 (7.78) 23 (8.30) 25 (7.35) 21 (8.64) 27 (7.22)

Work experience 5.626 0.131 10.487 0.015

  <5 years 154 (24.96) 59 (21.30) 95 (27.94) 48 (19.75) 106 (28.34)

  5–9 years 126 (20.42) 53 (19.13) 73 (21.47) 43 (17.70) 83 (22.19)

  10–14 years 122 (19.77) 62 (22.38) 60 (17.65) 54 (22.22) 68 (18.18)

  ≥15 years 215 (34.85) 103 (37.18) 112 (32.94) 98 (40.33) 117 (31.28)

Self-rated health 12.849 0.002 8.726 0.013

  Poor 22 (3.57) 12 (4.33) 10 (2.94) 10 (4.12) 12 (3.21)

  Fair 379 (61.43) 189 (68.23) 190 (55.88) 165 (67.90) 214 (57.22)

  Good 216 (35.01) 76 (27.44) 140 (41.18) 68 (27.98) 148 (39.57)

Monthly income 5.602 0.231 7.404 0.116

  <3,000 yuan 58 (9.40) 20 (7.22) 38 (11.18) 17 (7.00) 41 (10.96)

  3,000–4,999 yuan 201 (32.58) 84 (30.32) 117 (34.41) 71 (29.22) 130 (34.76)

(Continued)
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TABLE 2 (Continued)

Total (%) Neck musculoskeletal disorders X2 p Shoulder musculoskeletal 
disorders

X2 p

Yes (%) No (%) Yes No

  5,000–6,999 yuan 190 (30.79) 89 (32.13) 101 (29.71) 81 (33.33) 109 (29.14)

  7,000–8,999 yuan 83 (13.45) 43 (15.52) 40 (11.76) 40 (16.46) 43 (11.50)

  ≥9,000 yuan 85 (13.78) 41 (14.80) 44 (12.94) 31 (12.76) 51 (13.64)

Institution size 1.287 0.732 1.826 0.609

  <20 employees 25 (4.05) 9 (3.25) 16 (4.71) 8 (3.29) 17 (4.55)

  20–299 employees 98 (15.88) 42 (15.16) 56 (16.47) 34 (13.99) 64 (17.11)

  300–999 employees 376 (60.94) 174 (62.82) 202 (59.41) 153 (62.96) 223 (59.63)

  ≥1,000 employees 118 (19.12) 52 (18.77) 66 (19.41) 48 (19.75) 70 (18.72)

Shift work 2.332 0.312 4.418 0.110

  Yes, with night 280 (45.38) 118 (42.60) 162 (47.65) 100 (41.15) 180 (48.13)

  Yes, without night 159 (25.77) 79 (28.52) 80 (23.53) 73 (30.04) 86 (22.99)

  No 178 (28.85) 80 (28.88) 98 (28.82) 70 (28.81) 108 (28.88)

Weekly work hours 15.731 0.001 15.204 0.002

  ≤40 h 214 (34.68) 81 (29.24) 133 (39.12) 65 (26.75) 149 (39.84)

  41–44 h 155 (25.12) 64 (23.10) 91 (26.76) 60 (24.69) 95 (25.40)

  45–48 h 110 (17.83) 66 (23.83) 44 (12.94) 56 (23.05) 54 (14.44)

  49–54 h 138 (22.37) 66 (23.83) 72 (21.18) 62 (25.51) 76 (20.32)

Chronic diseases 20.162 0.000 23.053 0.000

  0 402 (65.15) 156 (56.32) 246 (72.35) 136 (55.97) 166 (44.39)

  1 176 (28.53) 95 (34.30) 81 (23.82) 80 (32.92) 96 (25.67)

  2 33 (5.35) 21 (7.58) 12 (3.53) 22 (9.05) 11 (2.94)

  ≥3 6 (0.97) 5 (1.81) 1 (0.29) 5 (2.06) 1 (0.27)
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FIGURE 8

The calibration curves for machine learning models predicting the risk of neck musculoskeletal disorders. The first column shows the calibration 
curves for the training data, and the second column shows the calibration curves for the testing data. From the first row to the fifth row, the calibration 
curves for RF, SVM, Xgboost, Enet, and MLP are displayed for both the training and testing data.
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FIGURE 9

The calibration curves for machine learning models predicting the risk of shoulder musculoskeletal disorders. The first column shows the calibration 
curves for the training data, and the second column shows the calibration curves for the testing data. From the first row to the fifth row, the calibration 
curves for RF, SVM, Xgboost, Enet, and MLP are displayed for both the training and testing data.
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the SVM demonstrate superior generalization abilities on test datasets. 
These findings emphasize the importance of considering performance 
metrics when selecting models for specific medical prediction tasks, 
especially in clinical applications where a model’s generalizability and 
its ability to reduce misdiagnosis (through high specificity) are crucial. 
Future research could explore these models’ performances on larger 
and more diverse datasets and refine their parameter settings, offering 

deeper insights for effective clinical prediction of 
musculoskeletal diseases.

Many studies using machine learning models lack interpretability 
(12–14), making it challenging to verify their reliability. Interpretability 
supports the acceptability of evidence and facilitates data-driven, 
personalized healthcare management. To achieve this, we  have 
developed interpretable models for predicting the risk of shoulder and 

FIGURE 10

The MAE and RMSE values for various machine learning models. (A) Depicts the MAE and RMSE values for neck musculoskeletal disorders, while 
(B) illustrates the MAE and RMSE values for shoulder musculoskeletal disorders.
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neck musculoskeletal disorders, utilizing SHAP algorithms for 
individual-level local explanations. Past studies have emphasized 
occupational factors as the main contributors to WMSDs, where 
muscle activity and movement during occupational tasks can lead to 
their occurrence. This finding is consistent with the results of this 
study, where the most critical influencing factors for neck and 
shoulder musculoskeletal disorders were occupational factors (15–20).

Currently, the predominant method for musculoskeletal disorder 
screening in China utilizes the Chinese version of the “Musculoskeletal 
Disorder Questionnaire” provided by the Occupational Health and 
Poison Control Institute of the Chinese Center for Disease Control 
and Prevention. This comprehensive questionnaire, consisting of 133 
items requiring 5–10 min to complete, was modified by Dong et al. 
into the Chinese Musculoskeletal Questionnaire (CMQ) (21), which 
includes five major categories and 48 items. However, it remains time-
consuming for occupational screening. Our study employs the Boruta 
algorithm for feature selection, reducing neck musculoskeletal 
disorder screening to just 12 key items and shoulder disorder 
screening to 17, Enabling a simplified screening process to identify 
individuals at higher risk of musculoskeletal disorders. By inputting 
demographic data into an electronic system, the musculoskeletal 

disorder prediction model can assess the risk of these conditions in 
healthcare professionals, thereby significantly reducing the workload 
for screening.

It is noteworthy that the forward posture of the neck in healthcare 
professionals significantly contributes to the risk of musculoskeletal 
disorders in both the neck and shoulder regions. Providing ergonomic 
chairs are recommended. Zhang et al. found that factors influencing 
sonographer’s physicians’ musculoskeletal disorders include work 
duration, consistent with the results of this study, where work duration 
was the main influencing factor for shoulder musculoskeletal disorders 
among healthcare professionals (12). We  recommend providing 
targeted ergonomics-oriented occupational health education for 
medical staff, replacing ergonomic chairs, encouraging correct working 
postures, and emphasizing the importance of rest after work to reduce 
the incidence of occupational musculoskeletal disorders. Personalized 
musculoskeletal disorder risk management advice should be provided 
to healthcare professionals across different departments, considering 
both occupational factors and individual health profiles. In addition to 
professional factors, this study also discovered a correlation between 
the number of chronic diseases in medical personnel and the risk of 
shoulder musculoskeletal disorders, suggesting that future research 

TABLE 3 Comparison of model performance for neck musculoskeletal disorder prediction.

Neck musculoskeletal 
disorder prediction model

Accuracy Sensitivity Specificity AUC

Logistic regression 0.668 0.756 0.570 0.718

SVM—Training set 0.684 0.865 0.537 0.746

SVM—Testing set 0.574 0.700 0.471 0.623

ENet—Training set 0.684 0.729 0.647 0.732

ENet—Testing set 0.587 0.629 0.553 0.616

RF—Training set 0.703 0.749 0.667 0.772

RF—Testing set 0.606 0.600 0.612 0.630

Xgboost—Training set 0.647 0.855 0.478 0.729

Xgboost—Testing set 0.568 0.786 0.388 0.610

MLP—Training set 0.673 0.691 0.659 0.741

MLP—Testing set 0.587 0.571 0.600 0.619

TABLE 4 Comparison of model performance for shoulder musculoskeletal disorder prediction.

Shoulder musculoskeletal 
disorder prediction model

Accuracy Sensitivity Specificity AUC

Logistic regression 0.684 0.599 0.778 0.737

SVM—Training set 0.781 0.802 0.768 0.866

SVM—Testing set 0.665 0.705 0.638 0.712

ENet—Training set 0.677 0.560 0.754 0.714

ENet—Testing set 0.677 0.492 0.798 0.703

RF—Training set 0.690 0.797 0.621 0.775

RF—Testing set 0.645 0.721 0.596 0.719

Xgboost—Training set 0.639 0.720 0.586 0.696

Xgboost—Testing set 0.658 0.656 0.660 0.734

MLP—Training set 0.667 0.665 0.668 0.721

MLP—Testing set 0.690 0.656 0.713 0.716
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TABLE 5 Neck musculoskeletal disorder binary logistic regression results.

Item B Sig OR 95%CI interval

Do you feel physically tired after work? (ref: very tired)

  Not tired −1.225 0.007 0.294 0.121 ~ 0.711

  A little −0.328 0.377 0.720 0.348 ~ 1.492

  Tired −0.078 0.842 0.925 0.429 ~ 1.996

Does your job frequently involve interaction with patients or the public? 0.441 0.026 1.554 1.054 ~ 2.291

Do you often slightly turn your body during work? −0.164 0.540 0.849 0.502 ~ 1.436

Do you frequently lean your neck forward or maintain this posture for extended periods during work? 0.812 <0.001 2.253 1.457 ~ 3.483

Do you frequently lean your neck backward or maintain this posture for extended periods during work? 0.151 0.620 1.163 0.640 ~ 2.111

Do you frequently bend your wrists or maintain this posture for extended periods during work? 0.243 0.356 1.275 0.761 ~ 2.138

Do you frequently twist your wrists and maintain this posture for extended periods during work? −0.423 0.180 0.655 0.353 ~ 1.216

Do you frequently repeat the same movements with your upper arms and fingers multiple times per minute during work? 0.027 0.904 1.028 0.657 ~ 1.607

Do you frequently repeat the same movements with your head multiple times per minute during work? 0.126 0.635 1.135 0.673 ~ 1.912

Do you often work in uncomfortable postures? 0.116 0.670 1.123 0.659 ~ 1.912

Do you spend long periods sitting during work? 0.559 0.004 1.749 1.191 ~ 2.569

Do you maintain the same posture for extended periods during work? 0.179 0.425 1.196 0.770 ~ 1.857
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TABLE 6 Shoulder musculoskeletal disorder binary logistic regression results.

Item B Sig OR 95%CI interval

Do you feel physically tired after work? (ref: very tired)

  Not tired −0.934 0.058 0.393 0.150 ~ 1.033

  A little −0.480 0.216 0.619 0.289 ~ 1.324

  Tired −0.410 0.309 0.664 0.301 ~ 1.462

Do you frequently lean your neck forward or maintain this posture for extended periods during work? 0.744 0.002 2.105 1.316 ~ 3.367

Do you frequently lean your neck backward or maintain this posture for extended periods during work? −0.060 0.845 0.942 0.516 ~ 1.720

Do you frequently bend your wrists or maintain this posture for extended periods during work? 0.303 0.261 1.354 0.798 ~ 2.297

Do you frequently twist your wrists and maintain this posture for extended periods during work? −0.602 0.064 0.547 0.290 ~ 1.035

Do you frequently repeat the same movements with your upper arms and fingers multiple times per 

minute during work?

0.245 0.288 1.278 0.813 ~ 2.011

Do you spend long periods sitting during work? 0.630 0.003 1.877 1.248 ~ 2.824

Do you maintain the same posture for extended periods during work? 0.013 0.956 1.013 0.643 ~ 1.595

Self-assessment of your health status (ref: very good)

  Poor −0.172 0.748 0.842 0.295 ~ 2.404

  Average 0.080 0.706 1.083 0.717 ~ 1.636

Have you taken sick leave in the past year due to illness? −0.165 0.482 0.848 0.536 ~ 1.343

Work-related stress (ref: high)

  Low −0.467 0.047 0.627 0.395 ~ 0.994

  Average −0.056 0.805 0.945 0.605 ~ 1.477

Types of chronic diseases (ref: 3 or more)

  0 −2.060 0.074 0.127 0.013 ~ 1.220

  1 −1.788 0.123 0.167 0.017 ~ 1.619

  2 −0.987 0.415 0.373 0.035 ~ 4.008

Do you feel your rest periods are sufficient? −0.359 0.070 0.699 0.474 ~ 1.030

Do you frequently make large turns of your body during work? 0.230 0.435 1.259 0.706 ~ 2.243

Do you frequently maintain a slightly bent posture for extended periods during work? −0.304 0.307 0.738 0.412 ~ 1.322

Do you frequently maintain a slightly turned posture for extended periods during work? 0.016 0.964 1.016 0.501 ~ 2.061

Do you frequently maintain a posture that involves both bending and turning for extended periods 

during work?

0.241 0.539 1.273 0.590 ~ 2.744
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should delve deeper into the clinical mechanisms linking work-related 
musculoskeletal disorders with chronic diseases.

This study also has certain limitations. The absence of 
physiological tests makes it difficult to eliminate factors causing 
musculoskeletal disorders unrelated to work. Another limitation is the 
lack of comparison of musculoskeletal disorder factors among medical 
staff from different departments. The risk prediction models are 
derived from cross-sectional data, where exposure and outcome are 
ascertained at the same time point, inherently limiting the predictions. 
Additionally, the sample size of this study is relatively small. Future 
studies should establish large cohorts of healthcare workers with 
WMSDs to better explore the causal relationships between variables. 
Furthermore, a comparative analysis of musculoskeletal disorder 
factors among medical staff from different departments should 
be conducted.

5 Conclusion

Five machine learning models were utilized to construct predictive 
models for the risk of neck and shoulder musculoskeletal disorders 
among healthcare professionals. These models are economically 
feasible and convenient for preliminary screening of work-related 
musculoskeletal disorders in healthcare workers. Additionally, this 
study offers a comprehensive interpretable machine learning 
framework, enabling a quantitative analysis of the impact of 
occupational factors on the risk of work-related musculoskeletal 
disorders. A web calculator can be applied to the early detection and 
prevention of neck and shoulder WMSDs in healthcare workers.
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