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Microplastics (MPs) are particles with a diameter of <5mm. The disposal of
plastic waste into the environment poses a significant and pressing issue concern
globally. Growing worry has been expressed in recent years over the impact
of MPs on both human health and the entire natural ecosystem. MPs impact
the feeding and digestive capabilities of marine organisms, as well as hinder the
development of plant roots and leaves. Numerous studies have shown that the
majority of individuals consume substantial quantities of MPs either through their
dietary intake or by inhaling them. MPs have been identified in various human
biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and
blood. MPs can cause various illnesses in humans, depending on how they enter
the body. Healthy and sustainable ecosystems depend on the proper functioning
of microbiota, however, MPs disrupt the balance of microbiota. Also, due to
their high surface area compared to their volume and chemical characteristics,
MPs act as pollutant absorbers in different environments. Multiple policies and
initiatives exist at both the domestic and global levels tomitigate pollution caused
by MPs. Various techniques are currently employed to remove MPs, such as
biodegradation, filtration systems, incineration, landfill disposal, and recycling,
among others. In this review, we will discuss the sources and types of MPs,
the presence of MPs in different environments and food, the impact of MPs on
human health and microbiota, mechanisms of pollutant adsorption on MPs, and
the methods of removing MPs with algae and microbes.
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Introduction

ere is growing concern among researchers and environmentalists regarding the
impact of microplastics (MPs) on human health and aquatic ecosystems. ey can be
found in both freshwater and marine ecosystems, although the signiĕcance of freshwater
environments is oen overlooked and underreported in comparison to marine ecosystems
(1, 2). MPs are particles with a diameter of <5 millimeters (3). e term “MPs” was
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introduced nearly two decades ago by ompson et al. (4)
in their research on marine plastic contamination in the
United Kingdom. Since then, MPs have garnered the interest of the
academic community, governmental bodies, non-governmental
organizations, and various other stakeholders. In the last century,
global plastic production has reached 320 million tons a year, and
more than 40 percent of it is used as single-use packaging. One
hundred ninety-two coastal nations produced 275 million metric
tons (MT) of plastic garbage in 2010, and this ĕgure reached 350
million tons in 2017 (5–8). In 2013, China manufactured around
63.0 million metric tons of plastic, representing the largest share
of global plastic production. When this ĕgure is aggregated with
the plastic output of other nations in Asia, the collective plastic
production amounts to around 114.0million tons (9).e European
Union emerged as the second most signiĕcant region in terms
of plastic production, generating approximately 50.0 million tons
(10). Furthermore, it is anticipated that the amount of plastic trash
producedwill reach around 250millionmetric tons by 2025, placing
further strain on systems for managing plastic garbage (11). e
disposal of plastic waste into the environment poses a signiĕcant
and pressing issue. Atmospheric elements, including abrasion,
wave action, mild oxidation, and ultraviolet radiation, along with
microbial activity, contribute to the degradation of plastic fragments
into micro and nanoparticles (12, 13). ere has been a notable
rise in public apprehension regarding the issue of MP pollution in
recent years. MPs can spread various unsettling deterrents through
the environment in addition to acting as a poisonous deterrent. MPs
impact the feeding and digestive capabilities of marine organisms,
as well as hinder the development of plant roots and leaves (14–18).
When plastics are introduced into the environment, they undergo
degradation, resulting in the formation of smaller fragments that
have the potential to enter the food chain directly or introduce
potentially hazardous substances into it (19, 20). Most individuals
ingest substantial quantities of MPs and even nanoplastic particles
from their diet, particularly from consuming ĕsh and other types
of seafood (21). So far, MPs have been discovered in various food
items, including drinking water, sugar, seafood, canned tuna,
honey, and table salt (22, 23). Numerous nations have established
goals to eradicate or decrease speciĕc items like plastic bags
and waste to combat plastic pollution (24, 25). In May 2018, the
European Commission implemented a new plan that prohibited
various single-use plastic items and imposed more stringent rules
on others. Sixty nations have implemented prohibitions or levies on
disposable plastics (26, 27). e generation and dispersion of plastic
waste in marine environments are progressively escalating, leading
to a corresponding increase in its accumulation at both surface
and seabed levels (28). Plastic in aquatic environments disrupts
vital conditions, leading to adverse impacts on the socio-economic
aspects of industries such as tourism, trawling, shipping, and
ĕsh farming (29, 30). e resilient and enduring nature of MPs
renders them prevalent in aquatic environments as a form of
marine pollution, serving as a conduit for transmitting pollutants
to aquatic organisms (31, 32). e diminutive dimensions of MPs
result in their ingestion by various marine organisms, causing
disturbances in their physiological processes. is subsequently
permeates through the food chain, giving rise to adverse health
effects in humans (33, 34). Exposure to MPs induces oxidative

stress, microbial dysbiosis, and persistent inĘammation within the
human organism. ese particles have also been associated with
cancer and may also impact the development of the fetus (35–37).
e number of articles published in PubMed with the Keyword
microplastics [Title/Abstract] from 2012 to 22 March 2024 is shown
in Figure 1.

e objective of this investigation is to acquire an extensive
comprehension of MPs, encompassing their origin and assortment,
along with exploring the signiĕcance of MPs in different
environments and examining their inĘuence on human health, as
well as their impact on the microbiome and the degradation of MPs
by algae, fungi, and bacteria.

Types and sources of microplastics

MP particles are categorized into many categories and vary
in composition, size, color, and thickness. Plastic particles were
classiĕed as macro, meso, micro, and nano, respectively, based
on their size ranges: more than 25mm, between 5 and 25mm, 1
to 5mm, and 1 nm to 1 micrometer (38–40) (Figure 2). Research
demonstrates two main sources of MPs: primary and secondary.
Primary MPs are discharged into our ecosystems directly by tires,
personal care items, marine coatings, and synthetic textile goods.
Conversely, secondary MPs come from bigger plastics broken
down into smaller pieces by mechanical abrasion or UV exposure.
ese larger plastics include ĕshing nets, garbage cans, and tire
wear (41, 42). MP particles, with an average size of 0.25mm,
are commonly utilized in industrial shot-blasting abrasives and
cosmetic treatments. Granules and powders, which are particles of
MP diameters, are undoubtedly used in a variety of applications
(43, 44). Primary MPs being released into the environment straight
from home factories and sewerage. Skin care product MP beads are
deposited in the environment due to being transported through the
sewage system with sewage and not being adequately eliminated.
An average of 700,000 ĕbers are released from 6 kg of synthetic
garments containing MPs in a single wash (45–47). MPs enter
the environment through pellets used as raw material for plastic
products in industrial applications. Additionally,sewage releases
MPs used in dentistry and pharmaceutical containers into the
environment. Primary MPs are challenging to remove from aquatic
systems because of their smaller size and lack of knowledge (28,
48). ere has also been evidence of raw food contamination
from contact with plastic chopping boards (49). e amount of
MPs released from plastic materials may be inĘuenced by several
variables, including physical stress and heat. A polypropylene (PP)
baby milk bottle heated from 25 to 90 degrees Celsius emitted
between 0.6 and 55 million MP particles per liter (50). It is
believed that MPs, which have also been recovered from surgical
environments, are a result of the widespread usage of plastics in
healthcare settings (51). ere have also been reports of MPs falling
from home objects. MPs have been found to have leaked from
plastic tea ĕlter bags, throwaway cups, and food containers (52–54).
e prevalent MPs found in the environment include polyethylene
(PE), PP, polyvinyl chloride (PVC), and polystyrene (PS) (55).
Table 1 compiles the physical characteristics and origins of prevalent
MPs (56).
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FIGURE 1

The number of articles published on the MPs updated to 22 March 2024. The expanding number of papers is indicative of the scientific community’s
and researchers’ increased interest in and awareness of the problem of MP contamination. The number of papers has been steadily increasing, which
highlights the relevance of tackling MP pollution in different ecosystems and the developing character of research on this topic.

Microplastics in different
environments

MPs in marine environments

MPcontamination has been documented in various ecosystems,
including aquatic, terrestrial, and atmospheric environments
(64–66). e passage describes the inevitable exposure of MPs in
the human body due to the transfer of these particles through the
aquatic food chain (67, 68). Most plastics have a density similar
to that of water, causing plastic particles to either Ęoat or remain
suspended in water and be carried by the current. According to a
study, it was approximated that plastic constitutes 60 to 80 percent
of marine debris (69). Elevated levels of plastic particles have been
detected in coastal regions, ĕshing equipment, and semi-enclosed
seas (70). Carson et al.’ (71) research revealed that the levels of
MP in the North Paciĕc gyre varied between 85 and 184 items per
square kilometer. Lusher and colleagues (72) conducted a study in
which they gathered and characterized 2,315 plastic particles from
surface waters in the northeastern Atlantic Ocean. eir ĕndings
revealed that 89% of the collected particles were smaller than 5mm,
suggesting that MPs are the predominant form of plastic pollution
in quantity (72). In the Yellow Sea of China, the mean concentration
of MPs in the surface water was recorded at 545 ± 282 particles per
cubic meter. Additionally, sea cucumbers, a commonly consumed
food along China’s coast, were found to ingest a higher quantity of
MPs compared to other marine organisms in the same region (73).
Meteorological events such as precipitation and severe weather
can also inĘuence the distribution and fate of MPs in the ocean
to a certain degree (74). Hitchcock examined Ęuctuations in the
prevalence of MPs in surface water in the context of a storm event

and determined that the highest concentration of MPs reached
17,833 cubic meters at the height of the storm (75). e primary
contributors to plastic fragments in marine ecosystems are activities
that occur on land. e presence of MPs exhibited a notable
positive association with population density and urban/suburban
expansion. Additionally, MPs transported by coastal currents tend
to amass near urban industrial hubs along the coastlines (76, 77).
Furthermore, plastics are introduced into the marine ecosystem
through direct means such as sewage overĘows, sewage discharges,
and shipping operations (78). MP contamination resulting from
ĕshing activities is frequently underestimated. Large quantities of
plastic materials are utilized in ĕshing equipment, including ropes,
nets, and pots. Furthermore, the presence of ĕber plastic waste can
be attributed to the mechanical wear and tear of ĕshing nets and
ropes during operational use (79). One research study found that
the amount of plastic debris present on the surface of the ocean is
signiĕcantly less than the total amount of plastic debris that enters
the sea, as the majority of plastic waste ultimately settles on the
ocean Ęoor (80). Aer MPs are introduced into aquatic ecosystems,
they do not solely remain as individual particles. Plastic particles
that are suspended or Ęoating in water engage with other substances
or organisms through absorption, accumulation, and phagocytosis,
leading to the vertical displacement of plastic particles within the
water column (81). Furthermore, MP sedimentation is reversible,
as even MPs located in deep water bodies or sediment can rise to
the surface due to biological processes or water movement (82). e
possibility that MP pollution might harm ecosystem health is one
of the main worries (83). MPs’ minuscule size makes them easy for
marine animals to consume. When MP contaminants are eaten by
smaller marine species (primary consumers, such as zooplanktons),
then transferred to secondary consumers, such as big ĕsh, and
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FIGURE 2

The size of all types of microplastics.

TABLE 1 A set of physical characteristics and the origin of representatives of MPs (56–63).

Plastic class Size range Density (g cm−1) Items and common source

High-density PE 0.06 to 11.06µm 0.96 Solution containers, toys, tubing, gear

Low-density PE 0.92 Plastic wrap, bags, containers, medical products

PVC Ranging from <10 nm to up to
20µm

1.40 Pipe, containers, ĕlm, Medical equipment

PP 120 to 220µm 0.90 Pipes, strapping, food packaging, microwavable
lunch boxes, rope, drinking straws

PS 33 to 190µm 1.02–1.05 Ęoats, foamed foam, cups, insulation material, dish

Polyethylene terephthalate (PET) 12 to 18µm in thickness Length:
shorter than 1 mm

1.55 Fabric, water bottles, strapping, food packing

Polyamides(PA) Between 20 and 50µm 1.02–1.14 Fibers, fabric, carpet, pipe

Polyurethane(PU) <5mm 1.01–1.03 Adhesive, artiĕcial leather, foam

Polycarbonate(PC) 5–200 nm 1.36 Medical tubes, instrument casings, insulators, eye
lenses, dialysis equipment

Polymethylmethacrylate (PMMA) ———– 1.18 Eyeglass lens, Plexiglas, plates, orthopedics

ĕnally tertiary consumers, such as people, the food chain, or food
web, is seriously disrupted (84). Meanwhile, when MPs reach the
food chain, marine animals may end up eating additional pollutants
and dangerous substances (such as poisonous heavy metal species)
that stick to their surfaces or become lodged in their mass (85).
e health of both people and marine life is at risk from these
very toxic MPs. at is, the hydrophobic pollutants in seawater
may stick to plastic debris in a typical environmental setting (86).
Furthermore, MP pollution may have a signiĕcant impact on the
biodiversity of the impacted ecosystems. MPs have the power to
modify habitat structures, interfere with ecosystem functions, and
affect an organism’s ability to reproduce and behave (87, 88). For

instance, MP buildup in aquatic environments can suffocate and
smother benthic creatures, such as corals and shellĕsh, preventing
them from growing and developing normally (89, 90).

MPs in soil

Previous research has primarily concentrated on the dispersion
of MPs in marine environments, but recent studies have
underscored the signiĕcance of MPs in terrestrial ecosystems
(91). MPs have been detected in soils across the globe, and the
yearly inĘux of MPs into soil ecosystems may exceed that of the
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world’s oceans (92). Agriculture represents a signiĕcant contributor
to the presence of soil MPs, with an annual release of hundreds
of thousands of tons of these particles into agricultural land (93).
MPs have the potential to inĕltrate agricultural soil via various
pathways, such as the application of plastic mulch, compost, and
irrigation. is can result in the buildup of numerous MPs, ranging
from tens to hundreds per kilogram of soil (94, 95). Each year in
Germany, an estimated 0.035 to 2.2 trillion MPs are introduced into
agricultural soil through composting (96). e utilization of sludge
resulted in the presence of 1,000–4,000 MP particles per kilogram
of soil in farmland soil in Europe (97). Roughly 20 million hectares
of agricultural land globally utilize plastic mulch, with China
representing the majority share at approximately 90%. Removing
the mulching ĕlm from agricultural ĕelds requires signiĕcant labor
and time, leading to instances where the ĕlms or their remnants
are deliberately or inadvertently le behind in the farmland (94).
MPs can potentially impact the biophysical characteristics of
soil, including soil structure, pH levels, fertility, nutrient content,
microbial activity, and the formation of water-stable aggregates
(98). Currently, there is limited information regarding the potential
response of plants to the presence of MPs. Recent research by
de Souza Machado et al. (98) has conĕrmed that the addition
of MPs changes the physical properties of soil, thereby affecting
its hydrodynamics and microbial activity. is study also shows
that the impact of MPs on the soil depends on the shape and
size of the MP particles (94, 98). MPs build up in soils and affect
terrestrial ecosystems, the soil biota, nutrient cycling, and soil
biodiversity. When micro- and mesofauna in the soil are exposed
to MPs, it can negatively impact their growth, reproduction, and
overall ecosystem function. ese pollutants can also be absorbed
by plants, generating worries about human health consequences
through the food chain (99, 100).

MPs in freshwater

As previously stated, a signiĕcant portion of marine plastic
originates from terrestrial sources, with rivers serving as the
primary conduit for transporting plastics of diverse dimensions
(101). e attention toward MPs in freshwater ecosystems is a
relatively new development, with initial research published in
the past 15 years. MPs have rapidly emerged as a prevalent
form of pollution. It is not unusual for studies in freshwater
environments to detect and document the presence of MPs at all
sampling locations and frequently in all samples collected (102–
104). e broadening of research attention to encompass freshwater
ecosystems is paramount, given the recognized signiĕcance of
rivers in the conveyance of MPs, especially toward marine
habitats (105). MPs found in freshwater environments originate
from diverse sources. Studies have indicated spatial associations
between the types of MPs in a particular location and human
activities. Signiĕcant contributors include industrial discharges,
urban waterways, and effluents from wastewater treatment plants
in the vicinity (55). Both direct and diffuse sources of pollution
contribute substantial quantities of MPs to river ecosystems (106,
107). Scholars have approximated that the yearly release of MPs
into adjacent rivers from an industrial manufacturing facility may
reach a maximum of 95.5 tons (108). Since high tidal forces, among

othermechanical consequences, worsen plastic disintegration in the
marine environment, the freshwater environment is not susceptible
to these forces, leading most experts to conclude that secondary
MPs are primarily found in the latter. ese are not all primary
MPs, however, as examination of the morphology and particle size
of MPs in freshwater environments has revealed that many are
secondary MPs created by the breakdown of bigger plastics (109).
Since secondary MPs can enter the freshwater ecosystem through
various routes and can be formed either before or aer entering
freshwater, pinpointing a speciĕc source can be challenging (110).
An excellent illustration of secondary MPs introduced into the
environment consists of synthetic ĕbers that become dislodged from
clothing during the washing process. An average 6 kg wash load of
acrylic fabric is estimated to release between 140,000 and 730,000
microĕbers (47). e microĕbers turn into secondary MPs before
being released into the surroundings. However, most secondary
MPs are created following their introduction into the environment
via biological, photodegradation, or mechanical abrasion. ey are
then carried to the freshwater environment by wind, surface runoff,
and other activities (105, 111).

MPs in the atmosphere

Although polymers with higher densities have been recorded in
atmospheric deposition/air mass sampling, the variety of polymer
types detected in atmospheric samples described thus far does not
clearly distinguish between lesser or greater density (112).MostMPs
found in the atmosphere are microĕbers with minor amounts of
foam, ĕlm, and fragments. ese MPs are mainly at the micron
scale (113, 114). MPs found in urban air are frequently linked
to high levels of human activity, with primary sources stemming
from the incineration of waste, degradation of synthetic textiles,
tire abrasion, industrial processes, and urban particulate matter
(115, 116). e atmosphere is crucial in facilitating the movement
of MPs. Additionally, the movement of air in the atmosphere and
the processes of wet and dry deposition are signiĕcant mechanisms
through which MPs originating from land-based sources may enter
and impact other environmental compartments. ese processes
can inĘuence the dynamics of plastic pollution as it moves between
different ecosystems (112, 117). Furthermore, the distribution of
atmospheric MPs is inĘuenced by patterns of rainfall and heat
cycles (118). is indicates that the movement and preservation
of plastics in the air vary depending on the current weather
patterns over various periods or geographical areas. e research
above, has established the widespread presence of MPs in the
atmosphere and the potential for terrestrial MPs to be carried into
marine environments. However, the extent to which atmospheric
transportation contributes to pollution in aquatic and terrestrial
ecosystems remains uncertain. Additional investigation is necessary
to explore the transportationmechanisms and their correlation with
meteorological factors (119–121).

MPs in human food items

e widespread presence of MPs in oceans and seas suggests
that products derived from these marine environments may also
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contain signiĕcant amounts of MPs. Numerous studies have
reported the occurrence of MPs in aquatic organisms, particularly
in seafood such as crabs, ĕsh, and clams (122, 123). Likewise,
sea salt, a non-living product derived from the sea, has also
been documented to contain MPs (124, 125). As per the research
conducted by Danapoulos et al. (126), most studies have detected
MP contamination in seafood, with reported MPs content typically
being <1 MP particle per gram (126). In a study, Jin et al. (127)
found that aquatic food items such as ĕsh and bivalves exhibit
varying levels of MPs, with concentrations ranging from 0 to 10.5
items per gram for bivalves and 0 to 20 items per individual for
ĕsh. ese same authors reported that drinking water and salt are
also a pathway of MPs exposure to humans, with concentrations
ranging from 0–61 particles/L in tap water, from 0–3,074 MPs/L in
bottled water, and from 0–13,629 particles/kg for salt (127, 128).
MPs have also been detected in various food sources, including
vegetables (6.4 particles/100 g), honey (1,992–9,752 particles/kg),
sugar (249 ± 130 particles/kg), cereals (5.7 particles/100 g), fruits
(5.2 particles/100 g), beers (152± 50.97 particles/L), dairy products
(8.1 particles/100 g), meats (9.6 particles/100 g), energy drinks (14
± 5.79 particles/L), tea (11 ± 5.26 particles/L), and so drinks
(40 ± 24.53 particles/L) (129–134). Sure researchers argue that the
consumption of MPs through bottled water is typically higher than
tap water (128, 135). A compilation of research results frommultiple
studies regarding the presence of MPs in seafood is presented in
Table 2 (122, 136, 137, 139–143).

The impact of MPs on human health

As a burgeoning area of research, MPs necessitate further
investigation to comprehensively understand their effects on
both organisms and human health (145). Plastic production has
signiĕcantly increased in recent years, with projections indicating an
additional 33 billion tons of plastic will be generated by 2050, adding
to the current level of approximately 370 million tons produced
in 2019 (146). is remarkable surge in plastic production also
serves as a cautionary reminder of the substantial volume of plastic
waste being deposited into the environment (147). MPs have been
discovered to possess the capacity to impact human health (148–
150). Research has indicated thatMPs have the potential to inĕltrate
the human body via ingestion ofwater and food, aswell as inhalation
of airborne particles (151). Also, MPs have been identiĕed in
various human biological samples, such as lungs, placenta, stool,
sputum, liver, breast milk, and blood (148, 152). MPs can cause
various illnesses in humans, depending on how they enter the body
(Figure 3) (153). ey may release harmful chemicals into the body,
which may result in a variety of health concerns, including cancer,
developmental disorders, and problems with reproduction (154,
155). Additionally, it has been discovered thatMPs aid in developing
antibiotic resistance. is is due to the possibility that MPs may
operate as a breeding ground for bacteria thatwill eventually develop
antibiotic resistance. Given that antibiotic resistance is already
a major worldwide health problem, this might have substantial
ramiĕcations for human health (156, 157). Ingestion is the primary
way that MPs are consumed. One of the main ways that people
consume MPs is via eating seafood that has been polluted; eating
sea salt can also cause one to consume MPs. e human body also

obtains MPs from drinks, tap water, and bottled water. According to
a recent study,MPs can enter the body by eating fruits and vegetables
(158, 159). Inhaling dust from both indoor and outdoor sources also
facilitates the entrance of MPs into the human body; the majority of
MPs identiĕed in dust come from synthetic fabrics, aerosols, and
tires (160, 161). e direct penetration of MPs through the dermal
layer is uncommon due to the delicate nature of the skin membrane.
However, there have been documented instances of MPs entering
through hair follicles, sweat glands, and skin lesions such as cuts or
wounds (162). Recent research has indicated the presence of MPs in
human fecal matter, providing evidence for the ingestion of MPs by
humans (134, 163). e results of research on the effects of MPs on
the human body are displayed in Table 3. e extent of penetration
of MPs into the organs or lungs is inĘuenced by the size of the MPs
(135). e lungs or cells will directly absorb MPs that are a few
microns in size through cellular uptake; more prominent MPs (up
to 130 microns) can still reach tissues through paracellular uptake;
MPs larger than 150 microns are not absorbed (135, 203). Hence, it
can be inferred that MPs have the as well as to impact human health
directly. In the following, we will examine the implications of MPs
on human health, including the speciĕc organs and tissues that may
be affected.

Lung damage

Previous research has identiĕed the existence of synthetic
ĕbers in human lung tissue samples. However, there is a scarcity
of studies that have utilized chemical analysis techniques, such
as micro-Raman spectroscopy and Fourier transform infrared
spectroscopy, to deĕnitively conĕrm the presence of MPs in
the lungs (36, 204). e potential for inhaling MPs has been
emphasized, with studies documenting the presence of MPs smaller
than 5µm in air samples (205). It is still uncertain whether MP
particles can inĕltrate and persist in the respiratory system of
the general public due to environmental exposure, as opposed to
the sustained levels observed in industrial environments. MPs are
engineered to possess durability, making them resistant to lung
degradation, which may result in their potential accumulation
over time, contingent upon their aerodynamic diameter and the
body’s respiratory defenses (164, 206). Smaller-sized MPs can
induce respiratory discomfort and cytotoxic and inĘammatory
effects when they penetrate the human respiratory system (164,
165, 207–209). Particles of 50 nm in size of PS have been shown
to have cytotoxic and genotoxic effects on pulmonary epithelial
cells (166). Interstitial ĕbrosis, inĘammatory and ĕbrotic changes
in the bronchial and peribronchial tissue (chronic bronchitis),
and asthma-like bronchial reactions are a few symptoms of a
synthetic particle entering the body. ese symptoms have been
seen in textile industry workers who are in close contact with
acrylic, polyester, and nylon ĕbers (210). In comparison to bigger
particles (202–535 nm), the smaller particles (64 nm) produced a
considerably higher neutrophil inĘux in the lungs, according to
research examining proinĘammatory responses in rats to different
sizes of PS particles (167). Evidence suggests that MPs may also
spread to other tissues aer being swallowed or breathed. For
example, research reported that Ęuorescent PS microspheres given
intraperitoneally to mice were discovered in the spleen 10 days
later (211).
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TABLE 2 MPs contamination in seafood.

Fish species Ecosystem Country MPs Shape MPs type Reference

Sciades sona

Priacanthus hamrur

Benthopelagic species

Carangoides chrysophrys

Otolithoides pama Marine Bangladesh Films, granules, foams, fragments,
ĕbers

PP, PS, PE, PU, styrene-butadiene
rubber (SBR)

(136)

Harpadon nehereus

Setipinna tenuiĕlis

Anodontostoma chacunda

Megalaspis cordyla

Sardinella brachysoma Marine Philippines Foams, fragments, ĕbers,
microbeads, pellets

——— (137)

Kuhila rupestris Freshwater

Valamugil speigleri

Mystus macropterus

Cyprinus carpio Films, granules, Ęakes, ĕbers,
foams, strings, lines

PVC, PP, PE, PET, PS, PA (138)

Pelteobagrus fulvidraco Freshwater China

Pelteobagrus vachelli

Cirrhinus molitorella Pellets, fragments, ĕbers ——— (139)

Oreochromis niloticus

Achirus mazatlanus

Mugil curema

Paralabrax maculatofasciatus

Eucinostomus dowii Mexico Fibers ———- (140)

Calamus brachysomus

Balistes polylepis Marine

Sardinella albella

Rastrelliger kanagurta

Istiophorus platypterus India Fibers Polyester, PA, PE (141)

Harpodon nehereus

Chirocentrus dorab

Katsuwonus pelamis

Commercially available ĕshes Pellets, ĕbers, ĕlms PA, PE, PET (142)

Oyster/mussel Coastal environment Korea Fibers, fragments Polyester, PA, PP, PE, PET, PS (143)

Manila clam

Metapenaeus affinis Freshwater Iran ĕbers, ĕlms, fragments, spherules PET, PS, PP (144)

Colorectal cancer

Colorectal cancer (CRC), which ranks as the third most
prevalent cancer globally with 1.9 million cases reported in 2020,
is on the rise among individuals under the age of 50 (212, 213).
is rise is believed to be inĘuenced by an environmental factor,

and MPs have been investigated as a potential catalyst for this
shi (170). CRC is associated with intestinal microbiota and their
interactionwith themucosa (170).e current equilibrium between
the gut bacteria and the mucus layer may be altered by MPs that
enter the diet and make their way to the colon. Consequently, they
may also modify the colonocytes’ exposure to different potentially
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FIGURE 3

Routes of human exposure to MPs and the related risks.

detrimental elements of the gut microbiota, thus impacting the
occurrence of CRC. Moreover, colonocyte cells may be directly
exposed toMP-associated carcinogens, raising the risk becauseMPs
tend to adsorb hydrophobic compounds from the environment
(170, 214). e discovery of signiĕcant MP concentrations in stool
samples indicates that most MPs pass straight through the small
intestine and into the colon. Newly discovered evidence of MPs
in human blood and tissue samples indicates that not all MPs
ingested are excreted directly through the gastrointestinal (GI)
tract. Instead, considering that the dispersion of particles in the
respiratory tract is largely dependent on particle size, it is probable
that size may also impact the deposition, distribution, and, or
aggregation of MPs at this location (171). Furthermore, surface-
associated chemicals and, or porosity may affect how MPs are
absorbed, distributed, and, or trafficked throughout the GI system.
Because of the makeup of their polymers (PS, for example), most
plastics have hydrophobic surfaces. MPs’ chemical surface allows
them to bind charged molecules and ions (including toxic metals)
through electrostatic interactions, adsorb hydrophobic compounds
(some of which are carcinogens), adhere microorganisms (some of
which may be pathogens), and simply cause a local inĘammatory
response (which may lead to non-genotoxic carcinogenesis) (170).
MPs eaten are likely to fragment due to a combination of factors,
including GI Ęuids and mechanical pressures inside the GI lumen
(215–220). Furthermore, the colon’s chemical milieu, such as pH,
may alter the properties of harmful chemical adsorption. is is

probably especially important when it comes to ingesting MPs
that have weathered. A few smaller MPs known as bile-associated
MPs pass through the colon aer being absorbed in the small
intestine and ending in bile (221, 222). MPs will touch the loosely
adhering outer mucous layer, which serves as the colon’s initial line
of defense as they transit through the body. is layer’s hydrophobic
domains can bind MPs, some of which may then be shed due
to the GI tract’s physiological peristaltic processes, which cause
this layer to constantly turnover (223). e intestinal epithelium
is probably similarly protected from MPs by the inner mucus
layer, which typically serves as a barrier to shield the underlying
epithelial cells from harmful substances and germs. When MPs
penetrate the inner layer of the colonic mucus, they may serve
as ras for the growth of bioĕlms, which are intricate bacterial
communities known to be signiĕcant regulators of gut health (170,
224). e hypothesis that bacterial adhesion to MPs in situ may
offer a platform for early bioĕlm formation is supported by evidence
of bacteria-rich bioĕlms on the surface of MPs recovered from
seawater (225). Two recent investigations have examined MPs’
potential for carcinogenicity, and both have concluded that there
is probably a connection (172, 226). However, as Domenech et al.
(226) note, most research has used short-term rodent trials or in
vitromodels, making it impossible to draw ĕrm conclusions. Toxins
produced by carcinogenic bacteria may be delivered to the colonic
epithelium by MPs. is is demonstrated by developing a genotoxin
by Escherichia coli (E. coli) in the colon, which is linked to an
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TABLE 3 The consequences and functions of MPs on human organs.

Affected organ/cell/tissue Effects and illnesses Reference

Lungs and skin Respiratory system lesions, decreased ventilatory capacity, skin disease, inĘammatory reactions,
dyspnea, genotoxicity, coughing, breathing problems, inĘammation, bio persistence, respiratory
systems, cancer, asthma, bronchitis, and cytotoxic effects.

(164–169)

Gastrointestinal tract Colorectal Cancer, inĘammatory bowel diseases, gut dysbiosis, Increased intestinal permeability,
increased bacterial toxins, immune response, cytotoxicity, oxidative stress.

(170–179)

Ocular surface Cytotoxic effects, reduced cell viability, inĘammation, decreased tear volume, destruction of
corneal epithelial microvilli, dry eyes

(180–183)

Reproductive and sexual system Reduced sperm viability, disruption of endocrine processes and natural steroid hormones,
oxidative stress, impaired gamete quality, developmental abnormalities, epigenetic changes, DNA
damage

(184–195)

Cerebral cells Nervous system issues, cytotoxic effects, neurotoxicity, abnormalities in brain development,
inĘammation

(196–199)

Placenta Chemical absorption from plastic particle leaching (200)

Cells and cell division Respiratory system lesions, decreased ventilatory capacity, skin disease, inĘammatory reactions,
dyspnea, genotoxicity, coughing, breathing problems, inĘammation, bio persistence, respiratory
systems, cancer, asthma, bronchitis, and cytotoxic effects.

(201, 202)

increased risk of CRC (173, 227). Although E. Coli typically lives
in the intestinal lumen, research showing that E. coli can attach to
MPs in an aquaculture model implies that they can also bind to
MPs in the colon (228, 229). If this is the case, MPs containing
pks+ E. coli have the potential to serve as a means of transporting
these genotoxic bacteria to the colonic epithelium surface. However,
evidence indicates that this processmay rely on the absence of a fully
intact inner mucus layer (230). Put simply, the relative abundance
of pks+ E. coli next to the colonic epithelium may rise in response
to a shi in the relative abundance of bacterial species (dysbiosis)
that break down colonic mucus (231). Mice subjected to continuous
exposure to MPs in their drinking water for 6 weeks also exhibited
imbalanced microbial communities in the colon (174, 175). Given
the growing body of evidence linking colonic microbiota to the
development of CRC, this becomes increasingly signiĕcant (232,
233). Although the pro-carcinogenic mechanisms of these different
bacterial species vary, it is plausible that their association with
MPs could increase the delivery of the corresponding bacterial
toxins to the colonic epithelium. is would support the theory that
carcinogenesis in otherwise healthy colons may be caused by long-
term storage of toxic bacteria (233, 234). Furthermore, research has
demonstrated that MPs, speciĕcally PE, can induce adverse effects
in human intestinal cells, such as heightened oxidative stress and
reduced cell viability (176).

Inflammatory bowel disease

Following ingesting food and liquids, the gut, the most
fundamental part of the human digestive system, carries out the
crucial processes of digestion and nutrient absorption. Intestinal
cells are exposed to various substances, poisons, and possible
pollutants throughout this process. e intestinal barrier, which
is made up of several components, has a variety of roles
in immunological homeostasis and in preventing the entry of
pathogens and toxins (235). Collectively, these elements work

towardmaintaining the proper operation of the digestive system and
play a role in maintaining overall immune balance. As a result, the
intestinal damage caused by contaminants poses a substantial threat
to human wellbeing and is a matter of public apprehension. ere is
mounting evidence indicating that the disturbance or impairment
of the intestinal barrier may play a role in the development of
inĘammatory bowel disease (IBD) and other systemic conditions
(236–238). IBD is a non-speciĕc, chronicGI illness that is typiĕed by
an immune response that is not normal. e two main types of IBD
areCrohn’s disease and ulcerative colitis (239, 240).e involvement
of environmental variables in the development of IBD has been
progressively validated by epidemiological research (241). A recent
investigation revealed that the presence ofMPs in the fecal matter of
individuals with IBD was notably elevated at 41.8 items per gram of
dry matter, in comparison to the lower concentration of 28.0 items
per gram of dry matter in healthy subjects. Furthermore, a direct
relationship was observed between the concentration of MPs and
the severity of the disease (178). ese ĕndings imply that MPs have
a signiĕcant role in the onset and course of IBD as an environmental
factor. e fundamental processes behind the association between
MP exposure and IBD are still unknown despite a lack of studies in
this area (235). To ascertain the impact of MPs on the development
of IBD, it is imperative to gain a comprehensive understanding
of cytokines and their interplay with the pathogenesis of IBD
(242). Aer cells are exposed to plastic particles, higher production
levels of the cytokine interleukin 6 (IL-6) are seen. Furthermore,
individuals with IBD exhibit elevated levels of IL-6 production
by CD4+ T-cells and macrophages (167, 179, 243–246). e
presence of MPs in the GI tract can disrupt the equilibrium of the
intestinal immune system, leading to non-speciĕc immune stress
and impacting the integrity of the intestinal barrier (247). Liu et al.
(248) conducted a study wherein they observed that 20µg/mL
polystyrene microplastics (PS-MPs) decreased the expression of
TJ-related genes ZO-1 and Occludin and had a proinĘammatory
effect on colonic cell model Caco-2 cells. ese ĕndings suggest
that PS-MPs can directly impact the structure and function of
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intestinal cells (248). Li et al. (243) discovered that feeding mice
600 µg/day PE-MPs for 5 weeks may raise the level of IL-1α in
the serum and activate the signal pathways for TLR4/AP-1 (Toll-
like receptor 4/Activated protein 1) and TLR4/IRF5 (Interferon
Regulatory Factor 5) (243). ProinĘammatory transcription factors
that can stimulate inĘammatory macrophage polarization, cell
death, and cytokine production are activated by these pathways
(249, 250). In the research conducted by Sun et al. (251), mice
were given PE-MPs orally at doses of 0, 0.002, and 0.2 µg/g/d for
30 days. e investigators noted elevated levels of IL-1β and IL-
6 in the high-dose group, suggesting that PE-MPs may induce a
mild inĘammatory reaction in the colon (251). Notwithstanding
the absence of PS-MP accumulation in the gut, Rawle et al. (252)
subjected mice to 80 µg/kg/d PS-MPs for 4 weeks and discovered
substantial transcriptional alterations linked to inĘammation in the
colon (252).

MPs and ocular surface

Research conducted in vitro demonstrated that human corneal
and conjunctival epithelial cell lines could absorb MP particles
made of PS, which would then gather around the nuclei of the
cells. ese particles were cytotoxic, as evidenced by the reduced
cell viability and proliferation indicators (180). To investigate the
effects of MP exposure on the ocular surface in mouse models, test
animals were given 2.5 µL of a topical slurry containing 1 mg/mL
of either 50 nm or two µm PS-MPs three times a day, without
anesthesia, over 2–4 weeks. e control group was administered a
normal saline treatment, while a separate group, referred to as the
standard group, did not undergo any interventions (180). Weekly
assessment of ocular surface Ęuorescein staining revealed a notable
increase in staining within the test group, while no such increase
was observed in the control or regular group. Interestingly, the
mice receiving normal saline delivery showed intermittent punctate
staining. e storage conditions of the normal saline, likely in a
plastic container, were not speciĕed, and there was no indication
of pre-testing the normal saline solution for MPs. e production
of tear ĕlm was examined weekly using a phenol red thread test.
A decrease in the production of tears was observed, and this
reduction in tear secretion persisted throughout the study in both
treatment groups. Further evidence of a progressive build-up of
MP particles in the lower conjunctival sac was provided by stereo-
Ęuorescence microscopy. Aer the research, an analysis of ex vivo
tissues revealed that, compared to the control group, the goblet
cells in the lower lid had shrunk in size and density. In addition,
there was a downregulation of proliferation-related markers (p63,
Ki-67, and K14) in the treatment groups compared to the controls.
In both treatment groups, the arrangement of lacrimal gland acini
was different from that of the standard and control groups. ere
have also been reports of inĘammatory cells between acini and
time-dependent elevation of inĘammatory factors and cytokines
(IL-1α, IL1-β, and IL-6). Mice given the Ęuid containing 50 nm
MP particles showed more excellent apoptosis rates than those
given the suspension containing two µm MP particles (180). When
particulate matter 2.5 (PM2.5) environmental pollutants, which
may contain MPs, are exposed to the murine ocular surface, the

result is decreased tear volume, a slower break-up of the tear
ĕlm, and the loss of corneal epithelial microvilli and corneal
desmosomes (181). Elevated concentrations of Tumor necrosis
factor alpha (TNF-α) and Nuclear factor kappa B (NF-κB) p65 (Ser-
536 phosphorylation) on the ocular surface indicated the presence
of ocular surface abnormalities resembling those observed in
individuals with dry eye disease (182). A recent multicenter cohort
study conducted in China involving 387 individuals diagnosed
with dry eye disease observed that areas with elevated levels
of PM2.5 were associated with more severe Ocular Surface
Disease Index (OSDI) scores, greater incidence of meibomian
gland dysfunction, and elevated concentrations of IL-8 and
IL-6 (183).

MPs and male fertility

Numerous environmental pollutants have the potential to
function as endocrine-disrupting chemicals (EDCs), imitating the
actions of natural steroid hormones and disrupting endocrine
processes through various mechanisms (184). Recently, there has
been a notable focus on plastic additives, plasticizers, and emerging
contaminants of concern (CECs), such as personal care products,
pharmaceuticals, food additives, natural and synthetic hormones,
andmicro- and nano-sized.ese substances are being released into
the environment either directly or indirectly (184). In this regard,
substances such as bisphenols, phthalates, poly- and perĘuorinated
alkyl substances, and others are widely utilized in themanufacturing
of everyday consumer products, leading to their frequent release
into the environment as waste (185). e adverse effects of
EDCs include oxidative stress-induced tissue damage leading to
apoptosis, developmental abnormalities, impaired gamete quality,
metabolic disorders, neurotoxicity, and epigenetic changes due
to in-utero exposure (185–189, 253). Research has indicated that
exposure to MPs can lead to abnormalities in the structure of
testicular and sperm cells, reduced sperm viability, and disruption
of the endocrine system in male individuals (190). e harm
inĘicted by MPs on the male reproductive system may result
in reproductive dysfunction and reduced fertility (191). e
impact of the plasticizer bisphenol A (BPA) on spermatogenesis is
multifaceted, involving central and local effects. It inĘuences steroid
biosynthesis, triggers apoptosis in germ and Sertoli cells, disrupts
the initial stage of spermatogenesis, hinders the development of
the blood-testis barrier, and alters the expression patterns of non-
coding RNA, consequently impacting sperm quality (184). Various
results regarding male reproductive effects have been documented
about the method of exposure, levels of exposure, duration of
exposure, and developmental stage. Research conducted on humans
has compared levels of BPA in urine with semen parameters,
suggesting a potential correlation between BPA exposure and
decreased semen quality (192–194). For instance, Pollards et al.
(193) demonstrated an increased exposure to BPA correlated with
atypical sperm tail structure in a group of 161 men between the
ages of 18 and 40 who did not have recognized subfertility. Omran
et al. (194) documented an inverse relationship between urinary
BPA concentrations and antioxidant levels, as well as semen quality
parameters such as morphology, motility, and concentration.
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Additionally, they observed a positive correlation between BPA
levels and DNA damage, as well as lipid peroxidation in seminal
plasma. Finally, a potential association between the presence of
BPA/phthalates metabolites in urine and sperm characteristics
was examined, indicating a higher level of exposure to EDCs
in individuals with reduced fertility compared to the broader
population (195).

Effects of MPs on microbiota

Healthy and sustainable ecosystems depend on the proper
functioning of microbiota, with the diversity and quantity of
microorganisms within a healthy microbiota believed to remain
relatively constant (254).emicrobiota comprisesmicroorganisms
that exhibit symbiotic, pathogenic, or commensal relationships. In
multicellular organisms, the intestinal microbiota plays a crucial
role in preventing diseases by creating a protective barrier against
potential pathogens and enhancing GI physiology and mucosal
immunity (255, 256). e utilization of mice as a model to
investigate the effects of MPs on microbiota in organisms revealed
that the absorption of PE led to an elevation in inĘammatory
markers such as IL-1β, IL-6, IL-8, and IL-10. Additionally, it
resulted in a reduction in colon mucin expression, disturbance
in lipopolysaccharide (LPS) metabolism, and an increase in the
amino acid metabolism pathway of the microĘora by modifying
the composition of intestinal microĘora (251). e microbiome
plays a crucial role in preventing the introduction of novel bacterial
strains from the surrounding environment through colonization.
Disruption of this protective barrier could potentially facilitate the
colonization of pathogens and contribute to the onset of disease
(257). An instance of this is when Chinese mitten crabs (Eriocheir
sinensis) were subjected to MPs, leading to the upregulation
of immune-related genes and a reduction in the population
of Firmicutes and Bacteroidetes, which are recognized as the
predominant bacterial species in the GI tract (258). Members
of Parliament MPs have been found to disrupt the balance
of gut microbiota and induce inĘammation in the intestines
by promoting the growth of Proteobacteria and increasing LPS
production in Danio rerio, a widely used aquatic model organism
(259). Moreover, MPs have the potential to elevate the levels of
reactive oxygen species (ROS) within various microorganisms, such
as Danio rerio and Sparus aurata Linnaeus, by inĘuencing the
composition of bacterial populations in their microbiota, including
Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes (260,
261). Scholars have also documented the adverse effects of MPs
on the growth and regeneration of epithelial cells in the intestinal
tract of Danio rerio, a vertebrate species, through the reduction
of Pseudomonas and Aeromonas populations (262). Within marine
ecosystems, sediments serve as a primary reservoir of organic
carbon, with the microbiota inhabiting these sediments playing
a signiĕcant role in the biogeochemical processes and nutrient
cycling within the ecosystem. Disturbing data indicates that MPs
are disrupting the equilibrium of microbial communities in marine
sediments. Seeley et al. (263) found that MPs have antibacterial
properties that support certain types of bacteria, such as sulfate
reducers, while hindering others like nitriĕers. Additionally, their

research suggests that MPs could serve as a carbon source for
speciĕc microbial communities in sediment, such as Acidobacteria,
Bacteroidetes, andChloroĘexi (264). Microorganisms functioning as
decomposers play a crucial role in circulating organic compounds
and energy within the soil ecosystem. However, introducing
MPs into this ecosystem disrupts the equilibrium of bacterial
populations. Research indicates that certain bacteria, such as
Rhodococcus ruber and Actinomadura sp., can utilize MPs as a
source of energy. However, the degradation process of MPs by
these bacteria can lead to the release of harmful compounds
like phthalates, which can adversely affect soil biota (260, 265).
Moreover, due to the high hydrophobic nature of MPs, certain
environmental pollutants like antibiotics and heavy metals tend
to adhere to their surface through adsorption. e hazardous
compound mixtures found in MPs have the potential to exert a
more substantial inĘuence on microbiota compared to the MP
particles alone. A recent research study indicates that heavy metal
concentrations found in MP particles are signiĕcantly higher,
ranging from 10 to 100 times greater than those typically observed
in the surrounding local environment (266). Furthermore, the
microbiota balance is affected by the form, composition, and
concentration of MPs. In this study, Sun et al. (91) examined the
impacts of different concentrations and compositions of spherical
MPs (150µm) on the bacterial community within soil. e
results indicated that the polymer structure’s composition plays a
signiĕcant role in inĘuencing bacterial reactions within the soil
environment (91).

Mechanisms of pollutant adsorption on
MPs

MPs serve as absorbers of pollutants in various environments
because of their elevated surface area relative to their volume and
their unique chemical characteristics (267, 268). When MPs break
down into smaller plastic particles, more of their surface area is
exposed, increasing their chemical reactivity, which might improve
the adsorption of pollutants onMPs. Environmental factors that can
have a substantial impact on the kinetics of contaminant adsorption
onto MPs include weathering, UV, pH, and the hydrophobicity
of persistent organic pollutants (POPs) (269). e efficiency of
MP treatment and other emerging contaminants coexisting in
the aquatic environment may be affected by MPs with adsorbed
contaminants (c-MPs). However, studies on the mechanisms of
contaminant adsorption on MPs, the fate and transport of MPs
with adsorbed contaminants, and the effectiveness of MP treatment
are oen lacking. Per- and poly-Ęuoroalkyl substances (PFAS),
one of the growing pollutants, have become a greater threat
to human health due to their extensive use, manufacture, and
resilience to environmental degradation (267, 270). Of all the
perĘuorinated compounds (PFCs), perĘuorooctanoic acid (PFOA),
and perĘuorooctane sulfonate (PFOS) are particularly concerning
due to their high stability, unclear destination, and frequent
discovery in the environment, animals, and even human bodies
(271). It’s possible that newly identiĕed pollutants of concern, such
as per- and poly-Ęuoroalkyl substances (PFAS) polycyclic aromatic
hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), will
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be adsorbed on MPs. Due to the widespread discovery of PFAS in
drinking water, surface water, and wastewater treatment facilities,
as well as their resistance to degradation and chemical stability,
PFAS has recently been a signiĕcant source of worry (2, 272–
281). PFAS consists of two primary categories, namely PFOA and
PFOS, which have garnered escalating concern due to their adverse
impacts on both public health and the environment (282). MPs
readily absorb other POPs and pollutants (such as EDCs, PBDEs,
and PPCPs) in aqueous conditions due to their hydrophobic nature.
Because of their vast surface area and hydrophobicity, MPs may
adsorb contaminants, which might lead to pollutants associated
with MPs being released into the environment. e process of
adsorption and desorption of pollutants onto and from MPs is
intricatewithin diverse environmental settings due to a combination
of dynamic variables including the characteristics of MPs (such as
composition, structure, binding energy, and surface properties), the
medium in which they are released (including pH, temperature,
salinity, and ionic strength), and factors related to contamination
(such as solubility, redox state, charges, and stability) (283–286).
For instance, when benzo(a)pyrene is adsorbed onto PVC MPs,
it exhibits a time- and dose-dependent adsorption kinetics that
results in heightened toxicity levels compared to both unalteredMPs
and benzo(a)pyrene in isolation. is underscores the substantial
function of MPs as carriers for organic pollutants within sediment
environments and highlights the potential synergistic impact of
pollutant-absorbing MPs (287, 288). Under different environmental
conditions, the pollutants could inĘuence MPs’ transition into
byproducts including plastic particles, however, this information
isn’t documented in the literature. Regarding the processes of
pollutants adsorbed on hydrophobic adsorbents, hydrophobic
interaction, electrostatic repulsion and attraction, pore obstruction,
and site competition may be the main mechanisms involved in c-
MPs (289–292). MPs’ hydrophobicity (KOW) and weathering/aging
processes are the mechanisms by which contaminants adsorb onto
them (293). Depending on the kind of MP, such as PE, PS,
PP, and PVC, the adsorption/desorption kinetics may vary; PE
(rubbery polymer PE) has greater adsorption than that of other
forms of MPs (64). Even at high temperatures, a PFAS molecule
with a negatively charged head and a hydrophobic C–F chain
remains chemically stable (294, 295). e processes by which
PFAS adhere to MPs may entail electrostatic and hydrophobic
interactions, which play a signiĕcant role in the adsorption of
PFAS onto various adsorbent substrates (296). Hydrogen bonding
and covalent bonding can also be observed in the interactions
between PFAS and adsorbents (296). e occurrence of either
electrostatic repulsion or electrostatic interaction is dependent on
the surface charge of adsorbents, with repulsion taking place when
the adsorbent surface carries a negative charge, and interaction
occurringwhen the surface charge is positive. For short-chain PFAS,
electrostatic interactions seem to play a primary role, while longer
PFAS tend to adsorb through hydrophobic interactions, promoting
the formation of molecular aggregates of PFAS on the active surface
of the adsorbent (297–299). e presence of organic matter (OM)
in the environment can impact the adsorption of both long- and
short-chain PFAS on MPs due to the complexation of PFAS with
OM or co-sorption (296, 300). As a result, PFAS adsorption on
OM in the presence of MPs may happen as a result of hydrophobic
or electrostatic interactions between PFAS and OM-adsorbed MP

surfaces (294, 296). e research found that OM inhibited the
sorption of PFOA on active carbon ĕber, but no discernible sorption
happened when the quantity of OM was increased to 500mg L−1

(301). e ĕndings back up the competitive sorption between
OM and PFOA as well as OM’s pore-blocking of active carbon
ĕber. rough the clariĕcation of the processes involved in the
adsorption of pollutants onto MPs, a deeper comprehension can
be gained regarding the destiny, movement, and environmental
consequences of pollutants associated with MPs (267, 268, 292,
302).

New methods of removing MPs

Numerous policies and initiatives exist at both the domestic
and global levels to mitigate pollution caused by MPs. On a
worldwide scale, the United Nations has initiated efforts to combat
MP pollution by launching the Clean Seas campaign, which aims
to eliminate primary sources of plastic and MP pollution in the
oceans (303). e campaign is centered on advocating for the
decrease and eradication of disposable plastics, enhancing waste
disposal practices, and raising public consciousness (303, 304).
In Europe, the European Union has enforced a prohibition on
using MPs in personal care items, including facial cleansers and
toothpaste (305, 306). e EU has also suggested implementing a
prohibition on disposable plastics, encompassing items like utensils
and drinking straws (307). Various strategies are used in MP
removal and elimination procedures to address the problem of
MP contamination (308). Studies on the degradation of MPs
have advanced with a speciĕc emphasis on biological and non-
biological methodologies. e utilization of microorganisms such
as algae, bacteria, and fungi for the degradation of MPs is viewed
as a promising method for cost-efficient and environmentally
friendly treatment strategies (309). e process of wastewater
treatment is essential for the effective capture and removal of
MPs from wastewater before its release into aquatic environments.
Sophisticated treatment methods such as membrane ĕltration
and activated sludge systems are utilized for this objective (308).
Various ĕltration systems such as sand ĕlters, mesh screens, and
activated carbon ĕlters are employed to capture larger MP particles
from water sources. In regions characterized by elevated levels
of MP accumulation, Ęoating boom systems may be utilized to
conĕne and retrieve Ęoating plastic waste, which encompasses
MPs. One commonly employed approach involves manually
extracting visible plastic waste from rivers, shorelines, and beaches
as part of clean-up efforts. Moreover, novel technologies such
as electrocoagulation, magnetic nano adsorbents, and ultrasonic
treatment are currently under investigation for their potential
to improve the efficiency of removing MPs (310). e process
of biological decomposition of MPs involves the presence of
numerous enzymes (311, 312). Various extracellular enzymes such
as lipases, esterases, laccases, lignin peroxidases, and manganese
peroxidases are crucial in the degradation of MPs. ese enzymes
enhance the hydrophilicity of MPs and transform them into
carbonyl or alcohol residues (313). Hydrolase enzymes, including
esterases, lipases, and cutinases, facilitate the degradation of
MPs on plastic surfaces by promoting chain cleavage reactions.
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ese enzymes are unable to penetrate the polymer matrix.
However, they exert their catalytic activity on the surface, leading
to the development of ĕssures. e resulting monomers are
absorbed into the cytoplasm of microorganisms and subsequently
participate in various metabolic pathways (309). In the following,
we will discuss novel methods for MP removal by algae, fungi,
and bacteria.

Algae in the degradation of MPs

Microalgae, along with their enzymes and toxins, have
demonstrated efficacy in the enzymatic degradation of polymeric
substances (314–316). One primary beneĕt is that they do not
necessitate a high carbon source for their growth in contrast to
bacterial systems, and they are well-suited to a diverse range of
environments where most MPs are found (317). Microalgae have
been observed to attach to plastic surfaces within wastewater
streams, which leads to the initiation of plastic degradation
through the secretion of ligninolytic and exopolysaccharide
enzymes. Primarily, these polymers function as a carbon
reservoir, augmenting cellular proteins, and carbohydrates,
thereby enhancing the growth rate. Most recently, the surface
deterioration or disintegration of low-density PE sheets due to
algal colonization has been detected through scanning electron
microscopy (SEM) (318). Algal biodegradation primarily occurs
through, including hydrolysis, corrosion, fouling, penetration,
and other processes (315). Phormidium lucidum and Oscillatoria
subbrevis were identiĕed as capable of inhabiting the surface of
low-density polyethylene and breaking it down without the need
for prooxidative additives or prior treatment (319). e compound
BPA, which exhibits estrogenic properties and is frequently present
in polymers, was decomposed through a collaborative effort
involving various bacteria and algae species such as Chlorella fusca
var. vacuolate, Stephanodiscus hantzschii, Chlorella vulgaris, and
Chlamydomonas mexicana (320–322). Recent advancements in
various biotechnological methods have enabled the development
of genetically modiĕed microalgal cell factories that can produce
and release enzymes necessary for the degradation of plastics (323).
e green microalgae Chlamydomonas reinhardtii underwent
genetic modiĕcation to express Polyethylene terephthalate (PET)
hydrolase, an enzyme capable of breaking down PET ĕlms and
terephthalic acid (324). A comparable alteration was effectively
implemented in P. tricornutum, resulting in the production
of PET hydrolase that exhibited catalytic efficacy toward PET
and the copolymer polyethylene terephthalate glycol (PETG)
(314). In conclusion, microalgae may use plastic monomers as
a carbon source by producing degrading enzymes, and because
they are simple to grow, they have the potential to be effective MP
degraders (325).

Fungal degradation of MPs

e fungi encompass various organisms that primarily function
as saprotrophs, opportunistic parasites, or obligate parasites. ey
exhibit remarkable adaptability and are capable of thriving in a

variety of habitats, including aquatic and terrestrial ecosystems,
across a range of environmental conditions. In addition to
their ability to withstand harmful chemicals and metals, these
organisms exhibit a wide array of external enzymes and natural
surfactants, such as hydrophobins, which can break down intricate
polymers into basic monomers. is process enables them to
serve as a supplier of electrons and carbon for microorganisms,
thereby aiding in the breakdown and conversion of complex
pollutants into simpler forms (326, 327). e primary genera
linked to the decomposition of various polymer varieties like
PE, PET, and PP consist of Cladosporium, Aspergillus niger,
Zalerion maritimum, and Penicillium simplicissimum (328–330).
ese microorganisms utilize MPs as their exclusive carbon
source aer the breakdown enable by extracellular enzymes. ey
facilitate the creation of various chemical bonds characterized by
carboxyl, carbonyl, and ester functional groups while reducing
their hydrophobic nature. e deterioration of PU material was
observed in multiple fungal species, including Cladosporium
pseudocladosporioides,Aspergillus tubingensis,Aspergillus fumigatus,
Penicillium chrysogenum, and Fusarium solani, and in strains
of Pestalotiopsis microspora (331–334). In most instances, serine
hydrolase serves as a crucial factor in the process of PU
degradation. e breakdown of high-density PE in marine coastal
environments by two fungal strains,Aspergillus tubingensisVRKPT1
and Aspergillus Ęavus VRKPT2, was found to be approximately
6.02 ± 0.2% and 8.51 ± 0.1%, respectively (330). In a recent
study, Kunlere et al. (335) documented the effective breakdown
of low-density PE by Aspergillus Ęavus and Mucor circinelloides
strains obtained from a municipal landĕll. Before biodegradation,
the MPs, speciĕcally PE, can be subjected to pretreatment using
substances like sodium hydroxide and nitric acid. is process
has been observed to enhance the biodegradation rate of PE by
the fungus Aspergillus niger (336). ermal oxidation at 80◦C for
15 days was necessary to induce degradation in low-density PE
facilitated by Penicillium pinophilum and Aspergillus niger, resulting
in degradation levels of 0.57% and 0.37% respectively following a
30-month incubation period (337). Likewise, Lysinibacillus spp. and
Aspergillus spp. exhibited a biodegradation rate of 29.5% for UV-
irradiated polymer ĕlms and 15.8% for non-UV-irradiated polymer
ĕlms (338).

Bacterial degradation of MPs

Various research investigations have been carried out utilizing
bacteria to break down MPs. Bacteria with the ability to break down
MPs have been identiĕed in multiple environments, such as sludge,
wastewater, polluted sediments, compost, municipal landĕlls, and
even in extreme climates like Antarctic soils, mangrove areas, and
marine sediments (339, 340). Additionally, microorganisms capable
of degrading MPs have been identiĕed within the GI microbiota of
earthworms. It’s commonly known that microorganisms that reside
in contaminated areas frequently learn how to activate the enzyme
system that breaks down MPs (341). Both individual bacterial
strains and mixed bacterial communities can be employed to
degrade MPs. Nevertheless, using pure cultures provides numerous
beneĕts in the degradation process, serving as a practicalmethod for
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investigating the metabolic pathways associated with this process.
Furthermore, the inĘuence of environmental elements such as
pH, temperature, substrate properties, and surfactants on the
degradation process can be more readily observed (342). e
initial investigation intoMP biodegradation bymicroorganismswas
carried out by Cacciari et al. (343), who utilized a combination of
Pseudomonas stutzeri, Pseudomonas chlororaphis, and Vibrio sp. to
facilitate the degradation of PP. Similarly, the study also found that
the inclusion of starch was observed to enhance the biodegradability
capacity. Subsequent studies by Arkatkar et al. (344), as well as
Fontanella et al. (345), documented the biodegradation of PP
through the utilization of a mixed culture comprising Pseudomonas
stutzeri, Rhodococcus rhodochrous, Bacillus subtilis, and B. Ęexus.
In a research investigation by Auta et al. (346) B. gottheilii caused
weight reductions of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET,
PP, and PS MPs, respectively (347). Several other bacteria linked
to the degradation of PP were identiĕed, such as Pseudomonas,
Bacillus, Chelatococcus, and Lysinibacillus fusiformis. ese bacteria
were isolated from diverse environments, including mangrove
habitats, cow dung, compost, and land polluted with plastic waste.
e intestinal microbiota of various arthropods such as Plodia
interpunctella (Indian meal moth), Tenebrio molitor (mealworms),
and Galleria mellonella (wax moths) have been documented to
contain microorganisms with the ability to biodegrade MPs (348–
350). In a research investigation byYang et al. (348), a bacterial strain
known as Exiguobacterium sp. was extracted from the intestinal
tracts of mealworms, demonstrating the capacity to create bioĕlm
structures and break downPSmaterial. Effective degradation of low-
density PE was achieved through the utilization of bacterial strains
such as Pseudomonas aeruginosa and Microbacterium paraoxydans,
resulting in degradation rates of approximately 61.0% and 50.5%,
respectively, over 2 months under incubation conditions (351).
Likewise, it has been documented that the bioĕlm produced
by Pseudomonas sp. AKS2 can break down low-density PE by
approximately 5 ± 1% over a 45-day incubation period without
the need for any prior treatment (352). Similarly, the breakdown
of PE was documented through the isolation of Rhodococcus ruber
C208, with a degradation rate of 0.86% per week (353). e
microorganisms obtained from the GI tract consisted of Firmicutes
and Actinobacteria genera. ese microorganisms were individually
investigated and found to possess the capability to break down
low-density PE MPs, leading to the release of volatile compounds
such as docosane, eicosane, and tricosane. A collaboration between
Pseudomonas and Enterobacter bacteria found in cow dung resulted
in a weight reduction of up to 15% over 120 days (354). Numerous
marine hydrocarbon-degrading bacteria, including Alcanivorax
borkumensis, have demonstrated proĕciency in breaking down
alkanes, alkyl cycloalkanes, isoprenoid hydrocarbons, and branched
aliphatic compounds (355). e study was conducted using the
identical strain that had previously demonstrated the ability to form
bioĕlms on low-density PE when exposed to hexadecane, pyruvate,
and yeast extract, as well as on low-density PE ĕlms (356). Various
actinomycetes, such as Streptomyces and Rhodococcus ruber, were
also found to play a role in the biodegradation of PE (357). In
the context of MP degradation, it was observed that Pseudomonas
accounted for 21% of the bacterial genera involved, while Bacillus

constituted approximately 15%. Additionally, combining these
two genera contributed to 17% of the total bacterial population
associated with this process (358).

Conclusion

MPs are any type of plastic piece with a length of <5
millimeters, which has become one of the main challenges for
the environment and public health. Studies have shown that MPs
are found in various ecosystem environments, including marine,
air, soil, and freshwater environments, and may enter the food
chain. e inĘuences of MPs on oceanic life and other ecosystems
are signiĕcant, including ingestion by marine animals, interference
with their reproductive systems, and even death. e harmful
effects of MPs on human health are also severe. Studies have
shown that MPs can be inĘuential in various diseases and health
complications, including damage to the lungs, eyes, brain, GI
system, skin, male fertility, etc. ey could discharge dangerous
substances into the body, which might lead to several health issues,
such as cancer, developmental difficulties, and reproduction issues.
In addition, healthy and sustainable ecosystems depend on the
proper functioning of microbiota; MPs cause damage to microbiota
and upset their balance, which is a severe issue. However, new
methods have been proposed to remove MPs, which include the use
of algae, fungi, and bacteria. ese approaches offer the potential
to remove MPs from various environments and can be regarded
as viable strategies for addressing this issue. A comprehensive
comprehension of the source, classiĕcations, impacts, and remedies
associated with MPs is imperative to develop enhanced approaches
for mitigating their adverse consequences on the environment
and human health, thereby facilitating positive outcomes in this
domain. e creation and implementation of strict environmental
regulations aimed at managing and reducing MP contamination
need to be a top priority for legislators. A few examples of
these policies would be to outlaw single-use plastics in speciĕc
industries, provide incentives for recycling and reusing recyclable
materials, enact laws to reduce the number of MPs released into
the environment and promote the widespread use of biodegradable
plastics. Scientists and researchers contribute signiĕcantly to
our growing knowledge of the origins, distribution, and effects
of MPs. Research projects examining non-plastic alternatives,
creating cutting-edge technologies for MP identiĕcation and
removal, carrying out long-term studies evaluating the health
and environmental impacts of MP pollution, and lessening the
harm that MPs cause to the ecosystem should all receive funding
and support.
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