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Causal relationship between air
pollution and infections: a
two-sample Mendelian
randomization study

Shengyi Yang†, Tong Tong†, Hong Wang†, Zhenwei Li,

Mengmeng Wang and Kaiwen Ni*

Department of Infection Control, Second A�liated Hospital of Zhejiang University School of Medicine,

Hangzhou, Zhejiang, China

Background:Traditional observational studies exploring the association between

air pollution and infections have been limited by small sample sizes and potential

confounding factors. To address these limitations, we applied Mendelian

randomization (MR) to investigate the potential causal relationships between

particulate matter (PM2.5, PM2.5–10, and PM10), nitrogen dioxide, and nitrogen

oxide and the risks of infections.

Methods: Single nucleotide polymorphisms (SNPs) related to air pollution were

selected from the genome-wide association study (GWAS) of the UK Biobank.

Publicly available summary data for infections were obtained from the FinnGen

Biobank and the COVID-19 Host Genetics Initiative. The inverse variance

weighted (IVW) meta-analysis was used as the primary method for obtaining

the Mendelian randomization (MR) estimates. Complementary analyses were

performed using the weighted median method, MR-Egger method, and MR

Pleiotropy Residual Sum and Outlier (MR-PRESSO) test.

Results: The fixed-e�ect IVW estimate showed that PM2.5, PM2.5–10 and

Nitrogen oxides were suggestively associated with COVID-19 [for PM2.5:

IVW (fe): OR 3.573(1.218,5.288), PIVW(fe) = 0.021; for PM2.5–10: IVW (fe):

OR 2.940(1.385,6.239), PIVW(fe) = 0.005; for Nitrogen oxides, IVW (fe): OR

1.898(1.318,2.472), PIVW(fe) = 0.010]. PM2.5, PM2.5–10, PM10, and Nitrogen

oxides were suggestively associated with bacterial pneumonia [for PM2.5:

IVW(fe): OR 1.720 (1.007, 2.937), PIVW(fe) = 0.047; for PM2.5–10: IVW(fe): OR

1.752 (1.111, 2.767), P IVW(fe) = 0.016; for PM10: IVW(fe): OR 2.097 (1.045, 4.208),

PIVW(fe) = 0.037; for Nitrogen oxides, IVW(fe): OR 3.907 (1.209, 5.987), PIVW(fe) =

0.023]. Furthermore, Nitrogen dioxide was suggestively associated with the risk

of acute upper respiratory infections, while all air pollution were not associated

with intestinal infections.

Conclusions: Our results support a role of related air pollution in the Corona

Virus Disease 2019, bacterial pneumonia and acute upper respiratory infections.

More work is need for policy formulation to reduce the air pollution and the

emission of toxic and of harmful gas.
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1 Background

Bacterial pneumonia, Corona Virus Disease 2019 (COVID-19),

acute upper respiratory infections, and intestinal infections are

common causes of hospital admission and important contributors

to death (1). Among respiratory infectious diseases, lower

respiratory tract infections (LRTIs) and pneumonia, in particular,

rank in highest in terms of mortality (2). Several factors are

implicated in heightening the risk of infection, including age,

vaccination coverage, antibiotic therapy, seasonal fluctuations, and

air pollution (3).

Notably, the persistently rising levels of air pollution worldwide

have yielded dire consequences, leading to an alarming number

of premature deaths. This increase in pollution is linked to a

higher incidence of infections, especially respiratory infections

(4, 5). Consequently, the role of respiratory infections as a driver

of human mortality has assumed a position of paramount concern

and it is now more crucial than ever to gain a comprehensive

understanding of the intricate interplay between air pollution and

infections. Particulate matter (PM) serves as a key indicator of air

pollution, resulting from a variety of natural and human activities

(6). Traditional observational studies have explored the association

between PM and infections. Evidence from China by Yongjian Zhu

indicated significantly positive associations of PM2.5, PM10, and

Nitrogen dioxide (NO2) over the past 2 weeks with newly confirmed

COVID-19 cases (7). However, this study did not include gender-

or age-specific cases. Another study in Italy found that long-

term air quality data with cases of COVID-19 in up to 71 Italian

provinces, further indicating that chronic exposure to air pollution

could facilitate virus spread (8). A systematic review with 15

studies by Chiara Copat indicated PM2.5 and NO2 are more closely

correlated to COVID-19 than PM10 (9). Notably, these studies

included limited sample sizes with potential confounders.

Investigating the causal association between air pollution and

the risk of infections is challenging due to reverse causation and

confounding. Mendelian randomization (MR) has emerged as a

potent method for determining causation between risk factors and

diseases by using genetic variants as instrument variables (IVs) (10).

MR analysis can largely overcome the confounders with random

assignment of an individual’s genetic variants at conception.

Moreover, it minimizes the risk of reverse causation, since the

presence of a disease cannot affect individuals’ genotypes (11).

In our study, we applied a two-sample MR analysis to explore

the potential causal association between air pollution (including

PM2.5, PM2.5–10, PM10, nitrogen dioxide, and nitrogen oxides)

and risk of infections (intestinal infections, acute upper respiratory

infections, bacterial pneumonia, and Corona Virus Disease 2019)

using the summary statistics derived from the publicly available

GWAS data.

2 Materials and methods

2.1 Study design

This study is reported according to the STROBE-MR guidelines

(12). Our study is based on the Mendelian randomization design to

explore the causal relationship between Air pollution and infections

using publicly available summary datasets from two genome-

wide association studies. In this study, air pollution indicators

(PM2.5, PM2.5–10, PM10, nitrogen dioxide, and nitrogen oxides)

were selected as exposures, while various infections (Intestinal

infections, acute upper respiratory infections, bacterial pneumonia,

and Corona Virus Disease 2019) served as outcomes. The design of

this MR study is presented in Figure 1.

2.2 Data retrieval for MR analyses

We collected summary data on single nucleotide

polymorphism (SNP)–phenotype associations from different

Genome-wide Association Studies (GWAS). Publicly available

summary data for PM2.5, PM2.5–10, PM10, nitrogen dioxide,

and nitrogen oxides were obtained from UK Biobank, including

more than 400,000 participants with European ancestors (13). UK

Biobank is a large-scale biomedical database and research resource,

containing in-depth genetic and health information from half

a million UK participants (https://www.ukbiobank.ac.uk/). Air

pollution-related indicators were measured by land use regression

(LUR) models (14).

Publicly available summary data for Corona Virus Disease 2019

was from COVID-19 Host Genetics Initiative including 1,887,658

European participants (15). One hundred and five studies have

joined the initiative, and participation is still expanding. The

majority of studies are conducted in Europe (55%) and the US

(28%) (15). Summary data for bacterial pneumonia, acute upper

respiratory infections and intestinal infections were both from

FinnGen Biobank with European ancestors (215,268 for Bacterial

pneumonia, 218,792 for acute upper respiratory infections, 200,006

for intestinal infections). The GWASs conducted on the FinnGen

dataset were analyzed using SAIGE and were adjusted for sex, age,

first ten principal components, and genotyping batch (16). The

detailed information was presented in Table 1.

2.3 Genetic instrumental variables selection

All genetic variants reaching genome-wide significance (P <

5 × 10−8) were selected as instruments for the MR analysis.

To minimize the potential for weak instrumental variable bias,

we employed a screening criterion of P < 5 × 10−6 for

linear regression of each genetic variant on the respective risk

factor (17–19).

Additionally, we lowered the genome-wide significance

threshold of the PM2.5–10 to P < 5× 10−6 to select enough

SNPs as IVs associated with this significance level (17–19). The

corresponding linkage disequilibrium was tested to confirm that

there were any SNPs in a linkage disequilibrium state and the SNPs

were independent by pruning SNPs within a 10,000 kb window

with an R2
< 0.001 threshold (20). Furthermore, we identified

SNPs associated with potential confounders of the outcomes.

In this study, obesity, pregnancy, cardiovascular disease, and

Parkinson’s disease were considered confounding factors when

COVID-19 was identified as the outcome (21–24). BMI, alcohol

intake, asthma and coronary artery disease were considered
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FIGURE 1

Workflow of two-sample MR for causal e�ect between air pollution and infection risks. PM, Particulate matter.

TABLE 1 Details of the genome-wide association studies included in this Mendelian randomization analysis.

Exposures/outcomes Consortium Ethnicity Participants No. of SNPs Sex

Air pollution Particulate matter (PM) 2.5

um

UK Biobank European 423,796 9,851,867 Males and Females

Particulate matter (PM)

2.5–10 um

UK Biobank European 423,796 9,851,867 Males and Females

Particulate matter (PM) 10

um

UK Biobank European 455,314 9,851,867 Males and Females

Nitrogen dioxide UK Biobank European 456,380 9,851,867 Males and Females

Nitrogen oxides UK Biobank European 456,380 9,851,867 Males and Females

Infections Intestinal infections FinnGen Biobank European 200,006 16,380,395 Males and Females

Acute upper respiratory

infections

FinnGen Biobank European 218,792 16,380,466 Males and Females

Bacterial pneumonia FinnGen Biobank European 215,268 16,380,460 Males and Females

Corona Virus Disease 2019 COVID-19 Host

Genetics Initiative

European 1,887,658 8,107,040 Males and Females

COVID-19, Corona Virus Disease 2019; PM, Particulate matter.

TABLE 2 The F statistic, heterogeneity and horizontal pleiotropy test between the exposures and outcomes of this MR.

Exposures and outcomes PM2.5 PM2.5–10 PM10 Nitrogen oxides

Corona Virus Disease 2019 •
a
•
b
•
c

• • • • • • • • •

Bacterial pneumonia • • • • • • • • • • • •

Acute upper respiratory infections • • • • • • • • • • • •

Intestinal infections • ◦ • • • • • ◦ • • ◦ •

a, •means F statistic > 10; b, •means heterogeneity existence; ◦means no heterogeneity existence; c, •means horizontal pleiotropy existence.PM, particular matter.
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confounding factors when Bacterial pneumonia and acute upper

respiratory infections were identified as the outcomes (25, 26).

Furthermore, Proton pump inhibitor (PPI) was considered

confounding factors when Intestinal infections were identified

as the outcome (http://www.phenoscanner.medschl.cam.ac.

uk/) (27–29). SNP harmonization was conducted to correct the

orientation of the alleles. We used the F statistic and R2 to evaluate

the strength of the association between SNP and exposure and

were also conducted to further assess weak instrument (30, 31).

A strong correlation between SNP and exposure with sufficient

statistical power was confirmed when the F statistic is >10

(Table 2).

2.4 Two-sample MR analysis

Two-sample MR analysis were performed to explore the

potential causal associations between air pollution and infections in

two populations, respectively. For a genetic variant to be qualified

as a valid instrument for causal inference in a MR study, it must

meet three core assumptions (32):

a. The genetic variant must be truly associated with

the exposure;

b. The genetic variant should not be associated with

confounders of the exposure-outcome relationship; and

c. The genetic variant should only be related to the outcome of

interest through the exposure under study.

The inverse variance weighted (IVW) meta-analysis was

used as the main method for obtaining the MR estimate (33).

Complementary analyses were performed using the weighted

median method (34) and MR-egger method (34). Cochran’s Q

test and I2 was applied to assess heterogeneity between individual

genetic variants estimates, by which random-effects model or fixed-

effects model of IVW was determined (35).

Furthermore, we have performed another one-sample MR

analysis as Replicative analysis. Summary statistics of air pollution

and COVID-19 were all obtained from the (GWAS) UK Biobank.

2.5 Sensitivity analysis

To examine the possibility of violation of the main MR

assumptions due to directional pleiotropy, the MR-Egger test for

directional pleiotropy was performed (34). In this test, the intercept

estimates the average pleiotropic effect across the genetic variants

(36). Additionally, the MR pleiotropy residual sum and outlier test

(MR-PRESSO) was performed to detect and correct the effects from

outliers (37). To further assess the independent potential of each IV,

a leave-one-out (LOO) sensitivity analysis was also performed. A

forest plot was generated to evaluate the robustness of our results.

2.6 Statistical analysis

All analyses were performed using the package “Two-Sample-

MR” (version 0.5.6) and “MR-PRESSO” (version 1.0) in R (version

4.0.5). A two-sided P value of < 0.05 was considered a potential

causal relationship. To account for multiple testing in our primary

analyses, a Bonferroni corrected threshold of P was applied.

3 Results

3.1 Genetic instrumental variables selected

After genetic Instrumental Variables Selections, the detailed

information of the IVs was presented in Supplementary Table 1.

F statistics for every instrument-exposure association were >10 in

our study, demonstrating the small possibility of weak instrumental

variable bias. Furthermore, the excluded SNPs associated with

confounder risks were presented in Supplementary Tables 1, 2.

3.2 PM2.5, PM2.5–10, and nitrogen oxides
will increase the risk of Corona Virus
Disease 2019

After genetic instrumental variables selected, 6, 21, 20, 7,

and 4 SNPs for PM2.5, PM2.5–10, PM10, nitrogen dioxide,

and nitrogen oxides were identified after removal of chained

unbalanced IVs. Table 3 reported the MR estimated for the

association between air pollution and Corona Virus Disease 2019.

The fixed-effect IVW estimate showed that PM2.5 and PM2.5–

10 were significantly associated with Corona Virus Disease 2019

(for PM2.5: PIVW(fe) = 0.021; for PM2.5–10, PIVW(fe) = 0.005).

However, we did not observe evidence of causal association in

Bonferroni correction. To ensure the robustness of our results, MR-

PRESSO was also conducted which showed the similar results (for

PM2.5: PMR−PRESSO = 0.037; for PM2.5–10: PMR−PRESSO = 0.013).

Furthermore, The IVW method showed that Nitrogen oxides was

significantly associated with Corona Virus Disease 2019 (PIVW(fe)

= 0.010), while PM10 and Nitrogen dioxide were not the risk

factor of it (for PM10: PIVW(fe) = 0.873; for Nitrogen dioxide: P

IVW(fe) = 0.533). Figure 2 also presented the MR results by IVW

estimate. And we also found that the genetically predicted PM2.5

um was positively associated with increased risk of COVID-19

with IVW method by replicative analysis (Supplementary Tables 4,

5). There was no evidence of heterogeneity or directional

pleiotropy for the analysis of air pollution on COVID-19

(Table 2, Supplementary Table 6). The forest plots were displayed

in Figure 3. The Leave-one-out sensitivity analysis of MR estimate

were presented in Supplementary Figures 1–3.

3.3 PM2.5, PM2.5–10, PM10, and Nitrogen
oxides will increase the risk of bacterial
pneumonia

After genetic instrumental variables selected, 6, 21, 17, 7 and 5

SNPs for PM2.5, PM2.5–10, PM10, nitrogen dioxide, and nitrogen

oxides were identified after removal of chained unbalanced IVs.

The fixed-effect IVW estimate showed that PM2.5, PM2.5–10,

PM10, and Nitrogen oxides were significantly associated with

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1409640
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2024.1409640

TABLE 3 The association between air pollution and infections.

Exposure Outcome MR

nSNP Methods Beta OR (95%CI) P-value

PM2.5 COVID-19 6 IVW(re) 1.273 3.572 (1.211, 5.213) 0.021

6 IVW(fe) 1.273 3.573 (1.218, 5.288) 0.021

6 MR-PRESSO 0.986 2.680 (1.132, 6.350) 0.037

6 Weighted median 1.302 3.677 (0.954, 6.597) 0.058

6 MR-Egger 0.432 2.706 (0.701, 4.622) 0.186

PM2.5–10 COVID-19 21 IVW(re) 1.078 2.939 (1.350, 6.398) 0.007

21 IVW(fe) 1.078 2.940 (1.385, 6.239) 0.005

21 MR-PRESSO 1.078 2.938 (1.350, 6.399) 0.013

21 Weighted median 0.819 2.269 (0.697, 7.387) 0.173

21 MR-Egger 0.804 2.233 (0.456, 5.776) 0.333

Nitrogen oxides COVID-19 7 IVW(re) 0.641 1.898 (1.464, 2.311) 0.011

7 IVW(fe) 0.641 1.898 (1.318, 2.472) 0.01

7 MR-Egger 0.851 2.342 (0.739, 2.673) 0.339

7 MR-PRESSO 0.641 1.898 (1.034, 3.485) 0.002

7 Weighted median 0.702 2.342 (1.175, 3.502) 0.036

PM2.5 Bacterial pneumonia 6 IVW(re) 0.542 1.720 (1.008, 2.937) 0.046

6 IVW(fe) 0.542 1.720 (1.007, 2.937) 0.047

6 MR-Egger 0.329 1.389 (0.693, 2.781) 0.406

6 MR-PRESSO 0.490 1.632 (1.010, 2.237) 0.039

6 Weighted median 0.455 1.576 (0.867, 2.863) 0.136

PM2.5–10 Bacterial pneumonia 21 IVW(re) 0.642 1.899 (1.228, 2.938) 0.004

21 IVW(fe) 0.561 1.752 (1.111, 2.767) 0.016

21 MR-Egger 0.396 1.486 (0.775, 2.849) 0.248

20 MR-PRESSO 0.543 1.721 (1.042, 0.843) 0.027

21 Weighted median 0.466 1.594 (0.824, 3.084) 0.166

PM10 Bacterial pneumonia 17 IVW(re) 0.741 1.097 (1.045, 2.147) 0.037

17 IVW(fe) 0.741 2.097 (1.045, 4.208) 0.037

17 MR-Egger 0.258 1.295 (0.242, 6.930) 0.767

17 MR-PRESSO 0.387 1.473 (0.694, 3.125) 0.327

17 Weighted median 0.403 1.450 (0.581, 3.854) 0.404

Nitrogen oxides Bacterial pneumonia 7 IVW(re) 1.362 3.907 (2.224, 5.611) 0.023

7 IVW(fe) 1.362 3.907 (1.209, 5.987) 0.023

7 MR-Egger −2.610 0.073 (0.000, 1.126) 0.491

7 MR-PRESSO 1.362 3.904 (3.540, 4.306) 0.048

7 Weighted median 1.441 4.225 (1.156, 7.326) 0.012

Nitrogen dioxide Acute upper respiratory

infections

5 IVW(re) 0.912 2.486 (1.149, 5.378) 0.021

5 IVW(fe) 0.912 2.482 (1.149, 5.378) 0.021

5 MR-Egger 0.502 1.652 (0.390, 6.990) 0.245

5 MR-PRESSO 0.112 1.105 (0.595, 2.053) 0.044

5 Weighted median 0.931 2.537 (0.933, 6.894) 0.068

SNP, single nucleotide polymorphism; MR, Mendelian randomization; PM, particulate matter; COVID-19, Corona Virus Disease 2019; IVW, inverse variance weighted; fe, fixed effect; re,

random effect; MR-PRESSO, MR pleiotropy residual sum and outlier test; OR, odds ratio; CI, confidence interval.
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FIGURE 2

Causal relationship between air pollution and infections by IVW method. OR, odds ratio; PM, Particulate matter.

bacterial pneumonia (for PM2.5: PIVW(fe) = 0.047; for PM2.5–

10: P IVW(fe) = 0.016; for PM10: P IVW(fe) = 0.037; for Nitrogen

oxides: P IVW(fe) = 0.023, Table 3, Figure 2, Supplementary Table 3).

However, we did not observe evidence of causal association in

Bonferroni correction. In addition, the IVW method showed that

Nitrogen dioxide was not significantly associated with bacterial

pneumonia (P IVW(fe) = 0.208). The results were consistent

in complementary analyses (PMR−Egger = 0.858, PWeightedmedian

= 0.518, PMR−PRESSO = 0.518). There was no evidence of

heterogeneity or directional pleiotropy for the analysis (Table 2,

Supplementary Table 6). And the forest plots were displayed in

Figure 3.

3.4 Air pollution was not associated with
the risk of acute upper respiratory
infections and Intestinal infections except
Nitrogen dioxide

The IVW estimate support that Nitrogen dioxide was

associated with the risk of acute upper respiratory infections

which were consistent with the result by MR-PRESSO method

(PIVW(fe) = 0.021, PMR−PRESSO = 0.044, Table 3, Figure 2,

Supplementary Table 3). However, we did not observe evidence of

causal association in Bonferroni correction. All method did not

support that PM2.5, PM2.5–10, PM10, and nitrogen dioxide were

associated with Acute upper respiratory infections and intestinal

infections. There was no evidence of heterogeneity or directional

pleiotropy for the analysis of air pollution on acute upper

respiratory infections (Table 2, Supplementary Table 6). However,

Cochran’s Q test showed that there was heterogeneity for the

analysis of PM2.5, nitrogen oxides, and nitrogen dioxide on

intestinal infections. And the forest plots were displayed in

Figure 3.

4 Discussion

In this two-sample MR study, we found that PM2.5, PM2.5–10,

and nitrogen oxides increase the risk of Coronavirus Disease 2019.

Furthermore, PM2.5, PM2.5–10, PM10, and nitrogen oxides are

associated with an increased risk of bacterial pneumonia. However,

our analysis did not reveal a suggestively association between air

pollution and the risk of acute upper respiratory infections and

intestinal infections, except for nitrogen dioxide.

As mentioned, exposure to PM is associated with upper

and lower respiratory tract infections. The COVID-19 pandemic,

caused by the novel severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), has resulted in historic numbers of infections

and deaths worldwide over the last 3 years (2022). Consequently,

an increasing number of studies have investigated associations

between PM and COVID-19 infection in China, Italy, and the

USA (7–9, 38). The mechanism of COVID-19 infection related

to PM can be summarized as follows. (1) PM may be involved

in different life cycle stages of COVID-19, including alteration of

SARS-CoV-2 viral receptors and proteases required for entry (e.g.,

angiotensin-converting enzyme 2 (ACE2) and transmembrane
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FIGURE 3

The forest plots for the e�ect of air pollution on the infections. (A) PM2.5 and bacterial pheumonia; (B) Nitrogen oxides and bacterial pheumonia; (C)

PM2.5 and COVID-19; (D) Nitrogen oxides and COVID-19.

protease serine type 2 (TMPRSS2), proteins and protease critical

to SARS-CoV-2 entry into host cells) (39), inhibition of mucosal

ciliary clearance, alteration of antiviral interferon production and

viral replication (40). (2) PM may impair the immune system. PM-

induced pro-inflammatory cytokine production, oxidative stress,

and impaired airway immune function may lead to increased
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susceptibility to respiratory pathogens, which can increase the

risk of COVID-19 pneumonia (41). For example, exposure to

chemicals in PM damages lung epithelial cells, interferes with

tight junctions between epithelial cells, increases permeability of

airway and lung epithelial cells, and decreases protection against

viral infections (42). Furthermore, substances such as heavy metals

and polycyclic aromatic hydrocarbons promote the production of

reactive oxygen species in lung cells (40), increasing susceptibility

to further oxidative damage due to oxidative stress. Interestingly,

our results, consistent with findings by Bontempi (43), revealed a

closer correlation between PM2.5 and COVID-19 than with PM10.

This may be because PM10 larger than 5µm is unlikely to reach

type II alveolar cells, where the ACE2 receptor for cellular entry is

primarily located (44).

The relationship between NO2 and COVID-19 has been

reported as positive in China, Europe, and the United States

(9). However, contrasting evidence suggesting a negative or

insignificant association between NO2 and COVID-19 also exists

(45, 46). The potential effect of NO2 exposure remains uncertain.

Studies on nitrogen oxides (NOx) and COVID-19 are scarce. We

demonstrated that there is a significant association between NOx

and COVID-19. This may be determined by the next mentioned

physicochemical properties of NOx that are not readily soluble in

water. In addition, a study by Pfeffer et al. discovered that higher

environmental NOx levels were linked to exacerbated viral lung

infections, which increases the susceptibility to concurrent bacterial

infections and enhances its severity (47).

Pneumonia has been a cause of morbidity and mortality

throughout human history (48). Bacterial pneumonia represents

the most prevalent manifestation of pneumonia, characterized

by inflammation affecting the terminal airways, alveoli, or

interstitial spaces because of pathogenic microorganism infections

(49). Pathogenetic investigations have indicated Streptococcus

pneumoniae as potentially the most widespread bacterial agent

responsible for pneumonia on a global scale (50). Over the past

few decades, the rise in mortality rates associated with bacterial

pneumonia has been attributed, in part, to worsening air quality

and the proliferation of environmental hazards. These factors

facilitate pathogen transmission, often synergizing with particulate

matter (PM) (51). Air pollution poses a significant challenge to

public health, exacerbating the potential for pathogen epidemics.

Our study establishes a potential causal relationship between

PM2.5, PM2.5–10, PM10, and nitrogen oxides (mainly nitric

oxide), all of which exhibit associations with bacterial pneumonia.

It is widely acknowledged that respirable particles encompass

a complex amalgamation of ions, organic compounds, metals,

carbonaceous matter, and other constituents (52). The composition

and relative abundance of these components are primarily

contingent upon factors such as source origin, climatic conditions,

topography, and other environmental variables (53). Consequently,

respirable particles may exhibit varying degrees of solubility,

ranging from partial solubility to complete insolubility (54).

Furthermore, nitrogen oxides (mainly nitric oxide) possess limited

solubility and does not undergo reactions with water. These

physical properties, to some extent, contribute to the characteristics

of these air pollutants in the context of lower respiratory

tract infections. Currently, a plethora of epidemiological and

mechanistic studies lends support to our conclusion. Notably,

a meta-analysis has demonstrated a causal relationship between

PM2.5 exposure and acute lower respiratory tract infections (55).

In the case of Chile, respirable particles have been associated

with an elevated frequency of emergency room visits among

children under the age of 2 experiencing lower respiratory

symptoms (56). Conversely, no significant association has been

observed between indoor NO2 concentrations and the incidence

or severity of respiratory illnesses in infants (57). Furthermore,

urban PM exposure can promote bacterial adherence to human

respiratory epithelial cells by impairing mucus cilia activity in

airway mucosa (58, 59), as well as promoting bacterial adherence

to human respiratory epithelial cells (60) to enhance bacterial

colonization of the host lower respiratory tract.

On the other hand, our findings indicate that only NO2

suggestively constitutes a risk factor for upper respiratory tract

infections, with its soluble nature dictating the characteristics of

this air pollutant, primarily impacting the upper respiratory tract

(54). In a study conducted by Arbex et al. (61), it was observed that

a mere 10µg/m3 rise in NO2 concentration correlated with a 0.63%

increase in visits for upper respiratory tract infections. Likewise,

two researches conducted in China (62, 63) reported that each 10

µg/m3 increment in NO2 levels corresponded to a 1.00% increase

in emergency room visits for upper respiratory tract infections,

along with a substantial 11.27% surge in pediatric emergency

room visits related to upper respiratory tract infections. However,

it is important to note that while NO2 may not directly enter

the pulmonary system, its potent oxidizing properties trigger an

inflammatory response, subsequently activating the body’s immune

system and affecting the entire respiratory system (64).

The SNP rs12203592, located in the IRF4 gene intron, is

linked to pigmentation traits, hematological traits, squamous

cell carcinoma, and smoking cessation. A multi-ethnic GWAS

identified it as a novel lung cancer locus. It also increases the risk of

invasive aspergillosis post-hematopoietic stem cell transplantation

by modulating IRF4 mRNA expression and immune responses

(65, 66). Another SNP, rs1537371, in the CDKN2B-AS1 gene,

is linked to cardiovascular diseases like coronary artery disease

(67, 68). SNPs in the 9p21 region, such as rs1537371 and

rs1333049, are significantly associated with an increased risk

of cardiovascular disease (69). This study finds rs1537371 and

rs12203592 significantly associated with air pollution-related

COVID-19 and bacterial pneumonia risks, suggesting pleiotropic

effects (70).

These findings offer potential causal relationship between air

pollutant exposure and the incidence of respiratory infections.

Notably, it is of concern that a staggering 91% of the world’s

population resides in regions where air pollution exceeds the

limits recommended by the World Health Organization (WHO)

(source: https://www.who.int/news-room/fact-sheets/detail/

ambient-(outdoor)-air-quality-and-health). Therefore, taking

steps to curtail air pollution has the potential to yield significant

reductions in the global burden of respiratory infectious diseases.

Consequently, our data underscore the importance of advocating

for worldwide initiatives aimed at reducing air pollution and

transitioning to more sustainable energy sources that yield

cleaner air.
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There are some strengths should be mentioned as following:

Firstly, this is the first MR analysis to examine the casual

effect of air pollution on infections using large-scale GWAS

data. Comparing to the observational studies, MR analysis can

largely overcome the confounders with random assignment of

an individual’s genetic variants at conception. Moreover, the

risk of reverse causation could also be minimized. Secondly,

we conducted sensitivity analysis both with and without outliers

to detect any coincidental effects, and all models exhibited no

directional pleiotropy. Finally, F statistics were consistently >10,

indicating a robust correlation between SNPs and exposures with

the sufficient statistical power and minimizing the possibility of

weak instrumental variable bias.

There are some shortcomings in this MR study. Firstly, there

was heterogeneity among our results. Due to the GWAS data,

any potential non-linear relationships or stratification effects which

varies by health status, age or sex cannot be examined which

may be the resource of heterogeneity. Secondly, our study could

not rule out the effect of canalization (i.e., dilution of the gene-

exposure association) and thus the estimate might be inflated

(71). Thirdly, the association between air pollution and different

infections subtypes was not explored. Additionally, instances

where air pollution levels exceed the standard cannot be entirely

discounted, as such occurrences may introduce confounding

factors that could bias our MR estimates. Finally, our datasets

included the European populations, limiting the applicability of our

results to non-European populations. Further studies are needed

to verify the applicability of these results in other populations

and ethnicities.

5 Conclusion

In conclusion, we demonstrated a causal association

between PM2.5, PM2.5–10, and nitrogen oxides on Corona

Virus Disease 2019. Additionally, PM2.5, PM2.5–10, PM10,

and Nitrogen oxides will increase the risk of bacterial

pneumonia. However, air pollution, except for nitrogen

dioxide, was not associated with the risk of acute upper

respiratory infections. Overall, more work is needed for policy

formulation to reduce air pollution and the emission of toxic and

harmful gases.
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