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Analyzing activity and injury risk 
in elite curling athletes: seven 
workload monitoring metrics 
from session-RPE
Junqi Wu 1*†, Fan Zhao 2† and Chunlei Li 1*
1 Beijing Sport University, Beijing, China, 2 Beijing Research Institute of Sports Science, Beijing, China

Objective: The study aimed to compare the differences in the performance 
of seven session-rating of perceived exertion (RPE)-derived metrics (coupled 
and uncoupled acute: chronic workload ratio (ACWR), weekly ratio of workload 
change, monotony, standard deviation of weekly workload change, exponentially 
weighted moving average (EWMA), and robust exponential decreasing index 
(REDI)) in classifying the performance of an injury prediction model after taking 
into account the time series (no latency, 5-day latency, and 10-day latency).

Design: The study documented the RPE of eight curlers in their daily training 
routine for 211  days prior to the Olympic Games.

Methods: Seven Session-RPE (sRPE)-derived metrics were used to build models 
at three time series nodes using logistic regression and multilayer perceptron. 
Receiver operating characteristic plots were plotted to evaluate the model’s 
performance.

Results: Among the seven sRPE-derived metrics multilayer perceptron models, 
the model without time delay (same-day load corresponding to same-day injury) 
exhibited the highest average classification performance (86.5%, AUC  =  0.773). 
EMWA and REDI demonstrated the best classification performance (84.4%, 
p  <  0.001). Notably, EMWA achieved the highest classifying accuracy in the no-
delay time series (90.0%, AUC  =  0.899), followed by the weekly load change rate 
under the 5-day delay time series (88.9%, AUC  =  0.841).

Conclusion: EWMA without delay is a more sensitive indicator for detecting 
injury risk.
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1 Introduction

RPE was first pioneered by Borg in the 1960s and 1970s to engage in research related to 
the perception of physical exertion, and he also proposed the 6–20 scale, the CR-10 scale, and 
the CR-100 scale (1). The study by Banister et al. proposed a stimulus-fatigue model on 
exercise load and the concept of training impulse (TRIMP) and quantified and monitored 
internal load characteristics in various competitive sports based on HR (2). Researcher Foster, 
influenced by the studies of the previous two scholars, optimized the CR-10 scale and proposed 
Foster’s modified version of the CR-10 RPE scale, which is currently the most widely used in 
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competitive sports (3). In the subsequent studies, he proposed the 
sRPE load monitoring method, which quantifies the training/
competition load by monitoring the duration of the training/
competition combined with the RPE after training/competition, in 
which session refers to the duration of training/competition, i.e., Work 
Load of training/competition = RPE × Session Duration(min), 
A.U. (Arbitrary Units) (4). sRPE is a method to monitor the average 
intensity of training/competition, which is of great practical value and 
provides conditions for the effective quantification of exercise load (5).

ACWR is the most commonly used indicator for assessing injury 
risk in the practice of sRPE, with ACWR between 0.8 and 1.3, athletes 
are at low risk of injury, and with ACWR above 1.5, the risk of injury 
is significantly increased (6), and Gabbett suggests that with ACWR 
between 0.8 and 1.3, athletes are at low risk of injury and are in a 
“green zone” (7), and with ACWR above 2, the non-contact injury rate 
increases by 5–6 times (7). Gabbett suggested that athletes with an 
ACWR of 0.8–1.3 have a low risk of injury and are in a “green health 
zone” (7). He also noted that the rate of non-contact injuries increases 
by a factor of 5–6 when the ACWR exceeds 2 (8) and that ACWR is 
significantly correlated with the risk of non-contact injuries, but that 
program variations make it impossible to determine the ACWR 
threshold for the smallest risk of injury (9).

The value of the coupled ACWR for use during training is worth 
determining, but its reliability has been questioned. The coupled 
ACWR is a ratio of activity loads and is not a measure of change, while 
simply going through the ratio to normalize acute loads into chronic 
loads is mathematically inaccurate and is required to be predicated 
based on the existence of a linear relationship between the numerator 
and denominator in the ratio (10). The essence of this is that acute 
load is higher than past chronic load and injury risk increases, and 
excessively lower than chronic load and injury risk increases. However, 
there are limitations in that the coupled ACWR creates a spurious 
correlation between acute and chronic loads, resulting in a reduction 
in interval workload variability. Many athletes will adjust their athletic 
status and recover from high-intensity training by decreasing the 
amount of training prior to the competition. The performance of 
ACWR will differ significantly from the actual situation; there are a 
large number of confounding factors, similar to the pre-competition 
reduction in the actual process, which results in a forced decrease in 
load, causing a rapid change in the tendency of the ACWR, but there 
is no risk of injury (11). Otherwise, there is sometimes a lag in the 
occurrence of injury, i.e., an injury from an overloaded training 
session in the current week may occur in the following week, and this 
injury is calculated into the load of the following week in the algorithm 
of the coupled ACWR, resulting in a decrease in sensitivity (12). In 
addition, the average loading calculation ignores intensity stimuli 
during the loading effect and reduces the effect of training intensity 
peaks on the loading effect over time. Conversely, the weighted 
loading approach, which increases the weight of recent training 
through the weighting factor, has the disadvantage of being 
particularly sensitive to missing data halfway through the process (13).

Therefore, different researchers have proposed different coping 
strategies based on their studies to address the above-mentioned 
problems. Researcher Lolli supports the effectiveness of uncoupled 
ACWR in improving variability, i.e., not including acute loads in rolling 
loads to increase their variability (14). Researcher Williams refined the 
problem of load time series accumulation by proposing an algorithm 
for load weighting of sRPE decaying over time, EWMA (11). Researcher 

Montini, based on Williams’ study, added a lag perspective to 
correspond the previous week’s damage to the current week’s load, and 
the findings affirmed the correlation between lagged damage and load 
(12). Researcher Moussa introduced a natural logarithmic weight, the 
REDI, to optimize the negative impact of missing data on the overall 
data analysis (13). Researchers Lazarus and Tysoe, on the other hand, 
used a new tool, the rate of change of weekly load and the standard 
deviation of weekly load change, to study the relationship between load 
and injury risk, and the results concluded that when the load increases 
by 1 standard deviation, it will cause the risk of injury, and when it 
increases by 2 standard deviations, it will cause a high risk of injury (15, 
16). Meanwhile, for the traditional means of risk correlation analysis, 
the use of artificial neural networks in machine learning to analyze will 
achieve better results (17). However, there are still many controversies 
about the effectiveness of the optimization means of ACWR, and 
coupled and uncoupled ACWR do not seem to have much difference 
in estimating injury risk (18). The findings of some other researchers 
affirm that EWMA is more sensitive than ACWR in injury risk 
association. There are also studies that show REDI captures injury risk 
better than ACWR and EWMA (19), but REDI’s findings are based on 
simulated data, and its real-world application is still questioned.

Curling is a sport dominated by technical and tactical skills. On 
the international stage, the injury rate and severity in curling are 
relatively low, and the athletic lifespan of curlers is long, making injury 
management crucial (20). As curlers age in their sport, their 
experience grows richer, which is critical for a non-contact sport. 
Injuries in curling are predominantly chronic, often stemming from 
fatigue accumulation and prolonged abnormal movement patterns 
(21). The sport’s workload encompasses both psychological and 
physiological dimensions, making the sources of this load complex 
and ambiguous, which complicates injury prevention for coaches and 
team doctors. The integration of computer science into sports science 
is a direction for the development of competitive sports. Numerous 
studies currently use machine learning to identify risk factors for 
injuries. sRPE is a straightforward method for monitoring workload, 
and if combined with machine learning to optimize its shortcomings, 
it could better help control injury risks. In Palmer’s research (22), 
machine learning and sRPE were used to identify sensitive factors for 
injury risk, but the study did not explore various derivative algorithms 
of ACWR. Maintaining long-term physical health is vital for curlers. 
Given their extended athletic lifespan, curling requires a simpler, more 
convenient, and cost-effective method for workload monitoring, 
which sRPE can effectively provide.

This study aimed to explore the sensitivity of coupled ACWR, 
uncoupled ACWR, weekly load change rate, monotony, standard 
deviation of weekly load change, EWMA, and REDI to capture injury 
risk at different lags after logistic regression and neural network 
modeling, and to search for the best ACWR optimization under one 
optimal lag period means to correlate injury risk, to help the trainer’s 
training program development and revision process.

2 Methods

2.1 Participants

The subjects were eight members of the Chinese National Men’s 
Curling Training Team preparing for the Winter Olympic Games, with 
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an average age of 26.8 years (22–31 years), an average height of 
181.1 ± 10.7 years, an average body weight of 77.2 ± 5.5 years, and an 
average number of years of training of 8.6 ± 2.4 years. All athletes 
provided an informed consent form. The collection period was 211 
consecutive days (Table 1).

2.2 RPE collection

The training duration and RPE of the athletes for field training 
and physical training were collected 15–30 min after the end of 
training using the Borg CR-10 scale (5). Athletes who had an injury 
stoppage were scored as 0 A.U. on that day if there was no other form 
of practice. Training duration was defined in this study as the period 
from the start of training to the end of training. The “start of training” 
was defined in this study as the “start of training” when the athletes 
entered the field to start the official training program developed by the 
coaches after the uniform standardized warm-up. The “end of 
training” is defined as the athlete completing the formal training tasks 
formulated by the coaches and leaving the main training site, which is 
the end of training, excluding the process of relaxation and stretching 
after training. Combined with the actual situation of training, the 
training week is 5 days, the first 4 days for a number of field training 
and physical training, and the fifth day for rest.

2.3 Index calculation

RPE was used in this study using Foster’s modified version of the 
CR-10 RPE scale (3), and workload (4) was calculated as follows:

 Workload RPE training duration A U Arbitrary Units� � � � � �min , . .

In ACWR, acute load was recorded as the sum of the daily 
workload during the last 1 week, and chronic load was recorded as the 

weekly average of the sum of workload during the last 4 weeks (7). The 
ACWR was calculated as follows:

 
Coupled ACWR

Workload
Workload

week

Average week
= 1

4 s

In the uncoupled ACWR, acute load was recorded as the sum of 
the daily workload during the last 1 week, and chronic load was 
recorded as the weekly average of the sum of the workload during the 
last 3 weeks (14). The ACWR was calculated as follows:

 
Uncoupled ACWR

Workload
Workload

week

Average weeks
= 1

3

The weekly ratio of workload change is the ratio of the sum of the 
workload of the last week to the sum of the workload of the previous 
1 week (16). The Diff was calculated as follows:

 
Diff

Workload
Workload

last week

previous week
=

Monotony is the ratio of the most recent 1-week workload to the 
standard deviation of the weekly workload (23). The monotony was 
calculated as follows:

 
Monotony

Workload
WeeklyWorkload

last week

SD
=

The standard deviation of weekly workload change is the 
difference between the most recent 1-week workload and the average 
weekly workload, vs. the variance of the weekly workload (15). The 
SDΔ was calculated as follows:

 
SD

eek
� �

�Workload Week Workload
W Workload
last week average

ianvar cce

EWMA is based on Williams’ study (11) and the actual training 
period design in this study, with a decay time of N = 5. The EWMA 
ACWR was calculated as follows:

 EWMA Workload EWMAtoday today� � �� ��� �1 � yesterday

 
� ��

�
�� �2

1
0 1

N
, ,

 
ACWR

EWMA
EMWAEWMA

week

week
= 1

4average

REDI based on Moussa’s study (13), in this study, taking into 
account the problem of actual rest days for training and maintaining 

TABLE 1 Basic information table of participants in the experiment.

Position first 
and second 

(n =  4)

Position 
third and 

fourth (n =  4)

All (n =  8)

Age (year), 

mean (range)
25.5 (22–25) 28 (25–31) 26.8 (22–31)

height (cm), 

mean (SD)
182.8 (5.9) 179.5 (3.7) 181.1 (4.9)

weight (kg), 

mean (SD)
81.3 (1.7) 73.1 (4.8) 77.2 (5.5)

BMI (kg/m2), 

mean (SD)
24.4 (1.2) 22.6 (0.7) 23.5 (1.3)

Skeletal muscle 

(kg), mean (SD)
40.7 (1.5) 36.4 (2.6) 38.6 (3.0)

Body fat (%), 

mean (SD)
12.5 (2.1) 12.7 (1.3) 12.6 (1.6)

Training year 

(year), mean 

(SD)

7.8 (1.5) 9.5 (1.9) 8.6 (2.4)
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consistency with the EWMA time-decrement weighting form, the 
natural logarithmic time-decrement in this study was performed only 
during the week, without weighting the full training day, and for the 
rest days occurring due to objectively uncontrollable factors in the 
training process, the same time-decrement clearing is performed, and 
time-decrement weighting is reapplied on the following day 
operations. The REDI ACWR was calculated as follows:

 

REDI WorkloadN
i i

N
i todaytoday

i

� � �

� ��
�1

1
0�
�

 � �i
i

ie� ��
; ,if workload is missing 0

 
ACWR REDI

REDIREDI
age week

= 1

4

week

aver

2.4 Definition of injury

The present study was based on the International Olympic 
Committee Joint Statement (24), which statistically defines injury and 
illness as one complete injury or illness from the time it occurs to the 
time of full recovery after receiving medical treatment. Injury 
definition, classification (site, severity, type, etc.), and mechanism were 
referred to high-confidence statistical studies of sports injuries or the 
latest official consensus statement (24), and the decision was ultimately 
made by two physicians with more than 3 years of clinical experience 
and qualified as clinicians. It is important to note that the same injury 
or disease that persists without full recovery is still recognized as one 
injury; the same injury or disease that recurs after full recovery is 
recognized as two injuries. The injury assessments in this study were 
conducted by experienced physicians serving the national team, who 
evaluated the prevalence and causes of injuries without using any 
scales or questionnaires.

2.5 Statistical analysis

The experimental data were subjected to data computation 
through Octave 4.0.0, and secondary processed data were analyzed 
through SPSS 26.0 and plotted through GraphPad Prism 9.5.1. The 
data of the study were measured and expressed as mean ± standard 
deviation (mean ± SD). The injury-to-non-injury sample ratio in 
this study was 38:174. Impairments during the analysis were in the 
form of least squares classification (impairments were recorded as 
1 and non-impairments as 0). The problem of the difference in 
magnitude between different data was taken into account during the 
analysis, thus all data except injury data were standardized before 
logistic regression and neural network modeling. In the neural 
network modeling process, the hidden layer activation function is 
a hyperbolic tangent function; the output layer activation function 
is SoftMax; and the error function is cross-entropy. The training set 
was uniformly randomly selected as 70% of the data set to train the 
model, and the remaining 30% of the data set was used as the test 

set to test the model performance and generalization ability, and the 
data in the test set were not involved in the process of training the 
model. The neural network model’s architecture and termination 
criteria were automated, with a minimum of 1 and a maximum of 
50 units in the hidden layers. The model used the scaled conjugate 
gradient algorithm, with an initial Lambda value of 0.0000005 and 
an initial Sigma value of 0.00005. The area under the ROC curve 
(AUC) was used to evaluate the model’s performance (16). The 
confidence intervals for the models involved in the study are 
all 95%.

3 Results

3.1 Logistic regression

When comparing the results of 7 means logistic regression under 
different lag periods, the logistic regression results under no-lag 
period are better in terms of correct rate and significance, but this is 
due to the increase of non-injury samples caused by the algorithm 
under the lag period, and the source of the correct rate is the 
non-injury classification of the non-injury samples, implying that all 
non-injury sample predictions are correct. For the damaged samples, 
the correct classification rate is extremely low, with only 5 cases (out 
of 38) correctly classified under no lag, 1 in coupled ACWR and 2 each 
in EWMA and REDI; 1 case correctly classified under 5-day lag, in 
monotony; and 1 case correctly classified under 10-day lag, in 
uncoupled ACWR. The reason for this is considered more as a result 
of chance than model performance. Therefore, logistic regression does 
not perform well in the actual classification of injury and non-injury 
samples. This is due to the fact that there is a bias between injury and 
non-injury samples in the actual process, and the actual training 
process will reduce the appearance of injury samples through a variety 
of external interventions, and the logistic regression is not sensitive to 
the data characteristics of capturing a limited number of samples 
(Tables 2–4).

3.2 Multilayer perceptron

Comparing the results of the seven means of artificial neural 
networks under different lags, the seven sRPE-derived metrics 
multilayer perceptron models showed good classification performance 
in all three time series nodes (average classification accuracy: no delay 
>5-day delay >10-day delay, 86.5% > 79.1% > 76.6%); average AUC: no 
delay >5-day delay >10-day delay (0.773 > 0.645 > 0.627). In the no-lag 
period, the highest correct classification rate was for the coupled 
ACWR, but its AUC was not high, and model screening revealed that 
the reason originating from the excessively high number of non-injury 
samples in the randomized test set caused it to appear high despite its 
low AUC, whereas the EWMA maintained a high rate of correct 
classification (90%) despite its high AUC (AUC = 0.899). In the 5-day 
lag period, the weekly load change rate performed best, maintaining 
a high rate of correct classification (88.9%) despite a high AUC 
(AUC = 0.841). In the 10-day lag period, the overall classification 
model performed poorly, with monotony, a standard deviation of 
weekly load change, and EWMA having an AUC close to 0.5, and its 
classification performance was not satisfactory (Tables 5–7).
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TABLE 2 Logistic regression results without delay.

B SD Wald p Exp(B) EXP(B) 95%CI Accuracy

Lower Upper

ACWRa 4.565 1.091 17.517 0.000 96.093 11.329 815.042 82.5%

UnACWRb −2.432 0.859 8.024 0.005 0.088 0.016 0.473 82.1%

Diffc 0.811 0.459 3.130 0.077 2.251 0.916 5.528 82.1%

Monotonyd −0.035 0.028 1.561 0.212 0.966 0.914 1.020 82.1%

SDe 0.809 0.210 14.851 0.000 2.246 1.488 3.389 82.1%

EWMAf 5.653 1.252 20.403 0.000 285.198 24.538 3314.824 84.4%

REDIg 4.664 1.182 15.580 0.000 106.102 10.468 1075.432 84.4%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.

TABLE 3 Logistic regression results with a 5-day delay.

B SD Wald p Exp(B) EXP(B) 95%CI Accuracy

Lower Upper

ACWRa 1.789 0.902 3.934 0.047 5.983 1.021 35.045 81.9%

UnACWRb −1.049 0.665 2.488 0.115 0.350 0.095 1.290 81.9%

Diffc 1.522 0.489 9.681 0.002 4.581 1.756 11.949 81.9%

Monotonyd 0.025 0.013 3.852 0.050 1.025 1.000 1.052 82.8%

SDe 0.364 0.180 4.064 0.044 1.438 1.010 2.048 81.9%

EWMAf 0.998 0.918 1.183 0.277 2.714 0.449 16.396 81.9%

REDIg 1.565 0.914 2.932 0.087 4.782 0.798 28.668 81.9%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.

TABLE 4 Logistic regression results with a 10-day delay.

B SD Wald p Exp(B) EXP(B) 95%CI Accuracy

Lower Upper

ACWRa −1.553 0.841 3.407 0.065 0.212 0.041 1.101 80.7%

UnACWRb 0.826 0.408 4.104 0.043 2.283 1.027 5.075 81.7%

Diffc −0.230 0.497 0.214 0.644 0.795 0.300 2.103 80.7%

Monotonyd −0.300 0.025 1.394 0.238 0.971 0.924 1.020 80.7%

SDe −0.283 0.169 2.790 0.095 0.753 0.541 1.050 80.7%

EWMAf −1.302 0.864 2.269 0.132 0.272 0.050 1.480 80.7%

REDIg −1.112 0.816 1.860 0.173 0.329 0.066 1.626 80.7%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.
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TABLE 5 Multilayer perceptron results without delay.

Cross-entropy error AUC Accuracy

Training set Test set Injury Non-injury

ACWRa 72.495 14.620 0.714 0.714 91.3%

UnACWRb 60.989 13.893 0.815 0.815 87.2%

Diffc 49.812 16.491 0.862 0.862 79.1%

Monotonyd 62.575 27.331 0.715 0.715 82.5%

SDe 69.578 19.527 0.687 0.687 88.1%

EWMAf 42.075 13.104 0.899 0.899 90.0%

REDIg 73.951 18.405 0.721 0.721 87.2%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.

TABLE 6 Multilayer perceptron results with a 5-day delay.

Cross-entropy error AUC Accuracy

Training set Test set Injury Non-injury

ACWRa 63.194 20.846 0.700 0.700 78.0%

UnACWRb 67.987 21.147 0.613 0.613 76.9%

Diffc 55.881 11.559 0.841 0.841 88.9%

Monotonyd 58.756 33.116 0.619 0.619 78.1%

SDe 63.234 31.830 0.592 0.592 75.9%

EWMAf 63.908 24.061 0.630 0.630 78.7%

REDIg 67.470 25.753 0.520 0.520 77.1%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.

TABLE 7 Multilayer perceptron results with a 10-day delay.

Cross-entropy error AUC Accuracy

Training set Test set Injury Non-injury

ACWRa 55.991 25.719 0.789 0.789 75.0%

UnACWRb 51.034 24.041 0.785 0.785 80.8%

Diffc 59.327 21.722 0.581 0.581 73.7%

Monotonyd 69.811 26.063 0.553 0.553 79.2%

SDe 64.637 32.456 0.516 0.516 76.3%

EWMAf 59.171 28.781 0.503 0.503 77.8%

REDIg 58.129 28.768 0.659 0.659 73.5%

aCoupled acute:chronic workload ratio.
bUncoupled acute:chronic workload ratio.
cWeekly ratio of workload change (%).
dMonotony.
eStandard deviation of weekly workload change.
fExponentially weighted moving average.
gRobust exponential decreasing index.
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Combining the performance of AUC and accuracy, the optimal two 
means are selected for comparison (no-lag EWMA and the 5-day lag 
weekly ratio of workload change), both of which have good clustering 
quality and perform well in capturing non-injury samples, as shown in 
the classification box plot. The 5-day lag weekly rate of change is better 
than the no-lag EWMA in capturing injury samples; however, the mean 
value case of the no-lag EWMA performance is slightly better than the 
5-day lag weekly rate of change, but affected by the extreme values, 
resulting in the overall injury sample capture worse than the 5-day lag 
weekly ratio of workload change. For samples with abnormal load 
changes, it is possible that the 5-day lag weekly rate of change is more 
sensitive than the no-lag EWMA, probably due to the fact that EMWA 
has taken into account the problem of weighting the load of the time 
series, and still weighted the samples with abnormal load changes, 
reducing its sensitivity (13). However, such a practical situation often 
involves low injury risk, and coaches can completely combine the actual 
situation to make a judgment, thus for the abnormal performance of the 
no-lag EWMA at extreme values, this study is considered to be negligible.

Comparing the two ROC curves, the no-lag EWMA outperforms 
the 5-day lag weekly ratio of workload change in both the non-injury 

sample and the injury capture, but both perform better. Comparing 
the gain and benefit plots of the two they are similar in the non-injury 
samples, but in the injury samples, the no-lag EWMA shows better 
gain and benefit performance, the no-lag EWMA has already reached 
100% gain compared to the no-modeled case in 50% of the data, while 
the 5-day lag weekly ratio of workload change has only reached 100% 
gain compared to the no-modeled case in 80% of the data. The no-lag 
EWMA achieves a 4.0-fold benefit over the no-model case at 10% of 
the data, while the 5-day lag weekly ratio of workload change is lower 
than the 4.0-fold benefit over the no-model case at 10% of the data, 
and at 50% of the data, the no-lag EWMA maintains a 2.0-fold benefit, 
while the 5-day lag weekly rate of change is already lower than the 
2.0-fold benefit.

4 Discussion

Based on previous research, the algorithm that is theoretically 
most sensitive to injury risk is REDI (13). This is because the load 
accumulation method with natural logarithmic weighting, which 
REDI uses, is superior to the load accumulation method used by 
EWMA. Moreover, REDI also considers the issue of missing data. By 
correlating the next week’s injury with the load of the current week at 
different time lags, the correlation between injury and load can 
be increased (12). This is because the occurrence of injury is delayed 
and there is an incubation period. Therefore, this study hypothesizes 
that correlating the next week’s injury with the load of the current 
week (with a 5-day lag) using REDI’s ACWR calculation method 
would yield the highest correlation between injury and load. However, 
the research results of this study are different from the 
expected hypothesis.

Among the different models (logistic regression vs. neural 
network) at different time lags (no lag vs. 5-day lag vs. 10-day lag), 
EWMA without any time lag was found to be  the most sensitive 
indicator for detecting injury risk. According to the results of logistic 
regression, only EWMA and REDI without any time lag showed ideal 
classification performance (AccuracyEWMA&REDI = 84.4%, p < 0.001). The 
results of the neural network showed that EWMA and REDI without 
any time lag exhibited ideal classification performance 
(AccuracyEWMA = 90.0%, AccuracyREDI = 87.2%, ROCEWMA = 0.899, 
ROCREDI = 0.721). These results are consistent with previous studies. 
Under the same model, the results without any time lag were superior 
to those with other time lags (5-day lag and 10-day lag), which differs 
from previous research. We  speculate that this discrepancy may 
be due to project differences. There were also differences between the 
results of different models (logistic regression vs. neural network). A 
common finding is that the accuracy of model classification decreases 
with longer time lags. However, the ACWR calculation method differs 
at different time lag nodes. Additionally, the results of logistic 
regression were more stable, while the neural network showed the best 
performance without any time lag, but its performance was worse 
than logistic regression at other time lag nodes. The reason for this 
may be related to the proportion of injuries, which will be explained 
in detail later in the text.

From Figures 1–5, it can be observed that the two models with the 
best injury classification performance have extremely high accuracy 
in classifying non-injury cases, but the classification accuracy for 
injury cases is between 30 and 40%. The accuracy of EWMA without 

FIGURE 1

Sorted box plot from EMWA without delay.

FIGURE 2

ROC curve plot from EMWA without delay.
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any time lag is slightly better than that with a 5-day lag. This result 
indicates that curling athletes do indeed have a problem of load 
accumulation in their training, which needs to be considered in load 
monitoring (Figure 6).

4.1 Data bias

Logistic regression and generalized estimating equations have 
been used in most of the studies on ACWR, and quadratic 

regression and generalized linear models have been used in a few 
studies. In the analysis of damage classification, the significant 
challenges are damage data bias, a large amount of non-damage 
data, and a small amount of damage data. This puts higher 
demands on data analysis and requires that the analysis method 
captures the features of damaged data more accurately. In 
conjunction with the findings of this study, the results of the neural 
network were overall better than those of logistic regression, 
supporting the results that the adoption of deep learning for deep 
data mining and capturing data features in the field of sports 

FIGURE 3

Gain plot from EMWA without delay.

FIGURE 4

Benefit plot from EMWA without delay.
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science has been a driving force for progress in practice (17) 
(Figure 7).

4.2 Workload accumulation

The problem of load time series superposition, the effect of past 
loads on current loads, has been neglected in past load monitoring 
studies. Although it is not necessary to take this into account in some 
load monitoring tools, especially immediate state evaluation, it is 
necessary to take this into account in the use of sRPE. The results of this 
study support that EMWA’s load-weighting approach is the optimal 
result (11). Moussa proposed the REDI approach to solving the problem 

of missing load time series (rest day loads are recorded as 0 A.U.) (13) 
and argued that REDI would outperform the EWMA in the presence of 
missing data but the results of the present study do not support this view. 
Despite the presence of missing data, the performance of EWMA with 
different lags outperforms the performance of REDI (Figure 8).

4.3 Hysteresis period

Previous researchers have argued that there is a lag in the 
emergence of load (12), and it is true that for the weekly ratio of 
workload change, the consideration of the lag period is valuable, and 

FIGURE 5

Sorted box plot from Diff with a 5-day delay.
FIGURE 6

ROC curve plot from Diff with a 5-day delay.

FIGURE 7

Gain plot from Diff with a 5-day delay.
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among no lag, 5-day lag, and 10-day lag, a weekly ratio of workload 
change with a 5-day lag performs the best, but the results of the 
analysis of other means with no lag were better than the results of the 
5-day and 10-day lag. Therefore, for the other means, the risk of injury 
is studied in the relationship with loading before, there is no need to 
consider the lag period.

5 Conclusion

In capturing load risk by sRPE, EWMA without delay is a more 
sensitive indicator for detecting damage risk, which has practical 
significance by taking into account the load time series weights and 
the lag period of damage occurrence. It is suggested that the time 
decay of load time series weights and the lag time of damage 
occurrence should be considered according to the actual situation 
when sRPE is used for load monitoring in the future.
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Benefit plot from Diff with a 5-day delay.
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