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The COVID-19 pandemic has highlighted the need to upgrade systems for 
infectious disease surveillance and forecasting and modeling of the spread of 
infection, both of which inform evidence-based public health guidance and 
policies. Here, we  discuss requirements for an effective surveillance system 
to support decision making during a pandemic, drawing on the lessons of 
COVID-19 in the U.S., while looking to jurisdictions in the U.S. and beyond to 
learn lessons about the value of specific data types. In this report, we define the 
range of decisions for which surveillance data are required, the data elements 
needed to inform these decisions and to calibrate inputs and outputs of 
transmission-dynamic models, and the types of data needed to inform decisions 

OPEN ACCESS

EDITED BY

Jie Huang,  
Southern University of Science and 
Technology, China

REVIEWED BY

Bin Zhu,  
Southern University of Science and 
Technology, China
Leshan Xiu,  
Shanghai Jiao Tong University, China
Xinxin Han,  
Southern University of Science and 
Technology, China

*CORRESPONDENCE

Marc Lipsitch  
 mlipsitc@hsph.harvard.edu

RECEIVED 27 March 2024
ACCEPTED 18 June 2024
PUBLISHED 15 July 2024

CITATION

Lipsitch M, Bassett MT, Brownstein JS, 
Elliott P, Eyre D, Grabowski MK, Hay JA, 
Johansson MA, Kissler SM, Larremore DB, 
Layden JE, Lessler J, Lynfield R, 
MacCannell D, Madoff LC, Metcalf CJE, 
Meyers LA, Ofori SK, Quinn C, Bento AI, 
Reich NG, Riley S, Rosenfeld R, Samore MH, 
Sampath R, Slayton RB, Swerdlow DL, 
Truelove S, Varma JK and Grad YH (2024) 
Infectious disease surveillance needs for the 
United States: lessons from Covid-19.
Front. Public Health 12:1408193.
doi: 10.3389/fpubh.2024.1408193

COPYRIGHT

© 2024 Lipsitch, Bassett, Brownstein, Elliott, 
Eyre, Grabowski, Hay, Johansson, Kissler, 
Larremore, Layden, Lessler, Lynfield, 
MacCannell, Madoff, Metcalf, Meyers, Ofori, 
Quinn, Bento, Reich, Riley, Rosenfeld, 
Samore, Sampath, Slayton, Swerdlow, 
Truelove, Varma and Grad. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 15 July 2024
DOI 10.3389/fpubh.2024.1408193

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1408193&domain=pdf&date_stamp=2024-07-15
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1408193/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1408193/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1408193/full
mailto:mlipsitc@hsph.harvard.edu
https://doi.org/10.3389/fpubh.2024.1408193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1408193


Lipsitch et al. 10.3389/fpubh.2024.1408193

Frontiers in Public Health 02 frontiersin.org

by state, territorial, local, and tribal health authorities. We define actions needed 
to ensure that such data will be available and consider the contribution of such 
efforts to improving health equity.

KEYWORDS

pandemic, COVID-19, surveillance and forecast system, public health, infectious 
diseases, mathematical model

Introduction and purpose

To monitor pandemic pathogens effectively, modern surveillance 
systems should make use of the growing wealth of routine data from 
the health sector and from a range of other sources with new 
applications to disease surveillance such as mobility, internet searches, 
and wastewater. Public health experts must integrate these data in new 
ways that increase their value. We  need purpose-built systems to 
detect new and evolving threats and to provide information as quickly 
as possible about those threats. What are the characteristics of the new 
pathogens or new variants of existing pathogens? What is their 
incidence and prevalence? What is the vulnerability of the population 
to infection and disease? What is the impact of our efforts to respond 
to these threats?

Systems to generate, integrate, and interpret these data should 
be designed and built with the explicit purpose of providing timely 
evidence to inform decisions about disease control and mitigation. 
First, they will provide direct input into decision making. For example, 
evidence of low vaccine effectiveness may prompt efforts to boost or 
change formulations or doses. As another example, real-time lab order 
data for diagnostic tests may prompt adjustments to resource 
allocation. Second, these data will parameterize scenario and 
forecasting models (1–3). For instance, estimates of per-case severity 
of a new variant, incorporated into forecasts or other models of case 
burden, may influence planning for hospital capacity and supply 
stockpiling and distribution.

This document reflects the framing ideas and the discussions held 
at a symposium organized by Harvard T.H. Chan School of Public 
Health entitled “Quantitative Tools and Data Opportunities for 
Pandemic Surveillance and Response,” held June 29–30, 2022, 
involving a range of public health and public officials, surveillance 
experts and other epidemiologists, and epidemic modelers. We first 
aim to identify the most important decisions for disease control and 
mitigation and the evidence that is needed to inform them. We then 
describe a set of surveillance activities designed to provide timely, 
reliable, and appropriately scaled data to inform these decisions. Our 
focus in this report is limited to domestic detection, characterization, 
and estimation of the burden of a pandemic pathogen in terms of 
direct health effects. Although we note the importance of monitoring 
economic, social, and indirect public health impacts of a disease 
control measures, we do not offer a comprehensive treatment of this 
element of pandemic monitoring and response activities. This paper 
builds on earlier efforts (4) while incorporating both the new 
possibilities that technology now provides, as well as the lessons of 
COVID-19.

We differentiate between two related but distinct goals of 
surveillance, as this document will focus on only one. The first goal is 

to provide early warning about a potential pandemic, and so this type 
of surveillance includes global monitoring and rapid identification of 
domestic introductions. The second goal is to provide support for 
decision making during an ongoing pandemic, including tracking 
incidence, prevalence, and the pathogen’s properties. While we will 
briefly remark on the former–surveillance for early warning–we will 
primarily focus on the latter–surveillance for decision making.

Detecting a jurisdiction’s first cases of 
a new disease

The first set of decisions faced by a domestic public health 
jurisdiction, following the appearance of a pandemic threat 
somewhere else in the world, concerns the questions of whether, how, 
and to what extent to scale up a response to reduce the risk of 
importation or, if importation has happened, to control its spread 
within the jurisdiction. Measures to reduce importation via restriction 
or testing of inbound travelers may buy limited time to prepare (5, 6), 
though such measures lose relevance once local transmission is 
established (7).

To inform decisions about how to balance scarce public health 
resources between preventing importation vs. controlling local spread, 
it is critical to assess the risk that the infection has already arrived and 
started spreading within the jurisdiction. Testing and sequencing of 
specimens from international travelers at airports and analysis of 
wastewater from international flights may provide evidence of 
pathogen importation (8). Early evidence of local spread may come 
from informal communications among health care providers, 
reporting systems such as ProMED-mail (9), and “pre-health care” 
data (e.g., absenteeism, internet search queries). Signals may arise 
from monitoring of syndromes compatible with infections, or the 
volume, distribution, and results from clinical laboratory tests. 
Increasingly, wastewater monitoring can be the site of early detection 
of new threats or variants (10) and from routine programs or 
enhanced efforts at sequencing of clinical samples (11). They may also 
come from anomalous findings in sentinel and research efforts [e.g., 
the Seattle Flu Study at the start of COVID-19 (12)].

With each type of monitoring, there is first the question of what 
defines the signal we  are looking for and then there is a tradeoff 
between having a highly sensitive and timely system capable of 
sounding an alarm early on one hand and producing too many false 
alarms on the other. In most situations, a high positive predictive value 
for such systems will be essential because the cost of responding to 
frequent false alarms is high. Much more work is needed to assess how 
to use and combine complementary monitoring signals to identify 
points at which an alarm should be escalated into a response.
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Surveillance for decision making 
during a pandemic

A comprehensive list of the decisions and guidance required in a 
pandemic would fill a much longer document than this. Still, based on 
the combined experience of the emergency response phase of 
COVID-19 (2020–2023) and H1N1 influenza (2009–10) pandemics, 
we propose a set of consistent themes that capture many of the major 
types of decisions arising both in the early days of each pandemic 
and throughout.

A brief, necessarily incomplete, list of such decisions follows, 
adapted from the list in (4):

 1 Public health goals of a response (elimination, control, 
protection of high-risk groups, protection of health care 
functioning, or a combination) and overall scale of response 
needed to meet these goals.

 2 Timing of scale-up and scale-down of response.
 3 Choice of nonpharmaceutical countermeasures (individual-

targeted such as quarantine, isolation, and personal protection; 
population-targeted such as closures). This includes decisions 
about the timing, magnitude, and geographic range of 
protective measures that may be socioeconomically costly. A 
related set of decisions concerns how such measures should 
be prioritized, i.e., who should receive protective equipment 
when it is scarce, and how closures should be targeted to reduce 
economic and social disruption.

 4 Choice of medical countermeasures, including diagnostics, 
therapeutics, and vaccines. This includes decisions about 
development, stockpiling, procurement, expanding capacity 
(e.g., building alternative care sites), and more. Here too, 
questions of allocation and prioritization are central. This also 
includes planning for potential surges.

 5 Specific policies for each of the issues above in special 
populations including vulnerable communities, and settings 
such as health care, schools, congregate settings, transport, etc. 
(See Centering Equity below)

 6 Balance between community countermeasures to reduce severe 
disease or reduce transmission (e.g., allocation of resources to 
those at high risk of complications or high risk of transmission).

 7 Design and implementation of staged alert systems to provide 
real-time risk awareness and trigger policy changes (13, 14).

 8 Imposition and removal of international travel screening 
and restrictions.

 9 Choice of public health communication strategies.

Each of these decisions requires specific data to decide how to 
improve health equitably, effectively, and efficiently while minimizing 
social and economic disruption. For example, decisions on testing, 
isolation, and quarantine policies require evidence on the natural 
history of infectiousness (or at least a proxy such as viral load), test 
sensitivity at different levels of viral shedding, the relationship between 
symptoms and infectiousness, and the potential economic and social 
consequences for various communities of the policies under 
consideration. In contrast, decisions about the timing of vaccine 
boosters require evidence on the effectiveness of existing vaccines 
against infection, transmission, and severe disease endpoints, stratified 
by such factors as pathogen variant, time since vaccination, and age, 

as well as understanding of how vaccine protection is distributed 
across demographic groups.

Decisions faced by state, territorial, 
local, and tribal authorities

In the federal system in the United  States, public health is 
decentralized and typically not coordinated among states. State, 
territorial, local, and tribal (STLT) governments are responsible for 
nearly all binding policy decisions in public health, with governance 
health structures varying by state (15). The purview of these bodies 
includes (16) prescribing and enforcing isolation, quarantine, mask 
mandates, and restrictions on businesses and gatherings; vaccine 
prioritization and distribution; and (to a degree) diagnostic testing. 
They also hold responsibility for closely related areas, such as public 
education. STLT governments all have a desire for similar types of 
data, but vary in how much they need, how quickly they need it, and 
how they use it.

Many decisions involve procurement and distribution of 
countermeasures. Because STLT authorities are making allocation 
decisions within their jurisdictions (e.g., for counties, cities, hospitals, 
schools), jurisdiction-wide measures of disease activity are rarely 
sufficient; instead, more geographically granular numbers are required 
(Table 1).

Data needs for decision support: the 
COVID-19 experience

A range of data sources could and, during the COVID-19 
pandemic, did provide evidence to support decisions by health 
authorities. Following initial social media reports of clusters of 
pneumonia, some of the earliest specific data to characterize the 
COVID-19 threat came from traditional sources, such as from case 
reports posted on Chinese public health department websites (17). A 
key challenge was the repeated change in the syndromic case 
definition in the early days (18). But other early data came from 
unexpected sources, such as cruise ships (19), restaurants (20), and 
fishing vessels (21), where conditions allowed inference of the path of 
transmission and thereby provided evidence about the degree and 
mechanisms of spread. Specifically, these provided some of the earliest 
evidence of asymptomatic and aerosol spread, which, when properly 
interpreted, aided in the design and prioritization of testing and other 
control measures. As had been true in the 2009 influenza pandemic 
(22, 23), sampling of travelers provided early estimates of the extent 
of global spread, growth rates, and likely under-detection (24, 25).

As the pandemic spread, the strengths and limitations of each data 
source became evident. Multiple data types were required to provide 
even an incomplete picture of trends in incidence and prevalence and 
behavior (26, 27). For example, case counts were used as an important 
indicator of disease burden. However, the relationship between new 
cases and true incidence varies as a function of numerous factors, 
including test availability, test reporting requirements by jurisdiction 
(which did not always include reports of negative tests), rates of testing 
through clinical facilities (which declined with the growth of rapid 
antigen testing), and incentives to get or avoid testing (Figure 1). Some 
of these limitations can be mitigated by breaking out case counts by 

https://doi.org/10.3389/fpubh.2024.1408193
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lipsitch et al. 10.3389/fpubh.2024.1408193

Frontiers in Public Health 04 frontiersin.org

the reason why an individual was tested (symptoms, travel, 
surveillance), but this was not consistently done in the US. As a result 
of these limitations, hospitalizations and even deaths were increasingly 
used as the more reliable indicators of case numbers, sacrificing some 
timeliness for a more consistent relationship to the underlying 
incidence of infection. Random sampling approaches (described 
below) can overcome these limitations and provide more consistent 
and reliable estimates of incidence and prevalence and how these 
change over time. Only the United Kingdom and Luxembourg used 
random sampling on a large scale, perhaps because of the cost and 
logistical challenges. Notwithstanding their limitations, case counts 
were the major early data source in the United States and provided 
critical evidence especially when linked to demographic information. 
Syndromic surveillance–done routinely as part of monitoring 

influenza trends–from emergency room visits and hospital admissions 
were also valuable data sources, particularly when testing was limited. 
However, interpretation of syndromic surveillance was complicated 
by changes in healthcare seeking behavior and the increased use 
of telemedicine.

Novel data streams provided confirmatory evidence as well as 
early warnings of trends that might not be evident in case counts. For 
example, wastewater surveillance for SARS-CoV-2 was adopted in 
numerous jurisdictions from 2020 to 2022 and provided evidence on 
local epidemic trends, although the precise relationship between 
wastewater abundance and the number of infected persons depends 
on the wastewater sampling scheme and on shedding patterns (among 
other issues), and thus difficult to quantify (28). Moreover, by its 
nature, wastewater cannot indicate who has been infected, thus 

FIGURE 1

Testing patterns that vary in space and time as a result of individual incentives (left) and barriers (right) determine a changing relationship between 
epidemiological quantities (top left) and reported case counts, making these counts an uncertain source of evidence for current case burden and for 
calibration of transmission models.

TABLE 1 summarizes key decisions and associated needs for jurisdiction-level data and analytics in COVID-19 cited by state and local leaders during 
the symposium.

Decision Data/analytics need

Size of response needed Rapid threat characterization

Choice of community countermeasures County-level disease burden and transmission measures

How to ensure adequate supply of hospital beds, ventilators, personal protective 

equipment

Forecasts of demand for these items

School and congregate setting policies (closure of schools, infection control measures 

in jails, prisons, nursing homes, etc.)

Understanding of rates of transmission into, within, and from each of these settings 

and impact of testing and infection control on these rates as well as population 

specific health-risks

Countermeasure deployment within a jurisdiction Age, racial, ethnic, and geographic patterns of transmission and disease burden. 

Note: these are often crude proxies for social determinants of infection and outcome 

risk, not adequate for scientific understanding of why particular groups are at risk, 

but nonetheless potentially useful for focusing prevention and treatment efforts on 

those with high vulnerability.

Efforts to distribute and promote vaccination Variant prevalence, vaccine coverage, and vaccine effectiveness against dominant and 

emerging variants
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leaving the demographic profile of infected persons uncertain. Finally, 
wastewater surveillance as currently applied will miss infections in 
areas with high reliance on septic systems, which serve roughly one 
fifth of the households in the U.S. with heavy concentrations in certain 
geographies, inducing inequities in whose infections are tracked by 
this approach (29).

Another novel data stream is the use of population-wide 
distributions of viral load measured from PCR testing, which, in the 
aggregate, can provide information on the trajectory of the epidemic, 
even from a single cross-sectional analysis (30). This approach has 
reached proof of concept and has the advantage that it may be less 
sensitive to trends in testing behaviors than measures of incidence 
based on case counts, and unlike wastewater surveillance, it can 
provide some information on the demography and precise location of 
cases. However, further work is needed to see how a transition to 
non-PCR testing for many new cases, the halting of pre-procedural 
and asymptomatic testing, and the shifts in viral kinetics that come 
with immunity (from vaccination and infection) affects the nature of 
this signal (31–33). Moreover, the identifiability of time-since-
infection from viral load, which is needed for the approach to work, 
depends on the asymmetry in viral load over time [fast rise, slower 
decline (30)], which may or may not be  a feature of future 
infectious diseases.

Digital data can also be used for surveillance and to inform on 
epidemic trajectory. ProMED-mail (9) and HealthMap (34) are 
valuable for flagging and disseminating reporting and information on 
events known or suspected to be infections and outbreaks. Data from 
search engines, social media, and news reports data can also inform 
epidemic dynamics and for forecasting (35–37).

Finally, testing for antibodies in sera collected either for the 
purpose of serologic surveillance or in convenience samples (e.g., 
blood banks, discarded clinical samples) was used to characterize both 
the landscape of population immunity (i.e., who was and wasn’t 
vulnerable to reinfection) and to distinguish between those who had 
acquired immunity via vaccination vs. infection (38). Secondary 
analyses of COVID-19 vaccine studies identified complexities in 
answering the latter question, finding that infection does not reliably 
induce antibodies to non-vaccine antigens in vaccinated 
individuals (39).

An important conclusion is that no one data source or surveillance 
tactic is sufficient. In a setting like the U.S., multiple surveillance 
approaches are needed at scale. Beyond the obvious need to combine 
data sources, several points stand out.

The first is the value of data completeness and of linking data types 
to produce evidence that is greater than the sum of the parts. For 
instance, while counts of cases and hospitalizations are valuable, 
missing race/ethnicity, geographic, and other patient characteristics 
have impeded efforts to improve services to groups that are 
underserved or experience high disease burden and to improve equity 
in health-related outcomes. Similarly, meticulously linking sequence 
data from patient isolates with demographic and clinical predictors of 
severe outcomes, including vaccination history, and clinical outcomes 
can help to evaluate the threat posed by novel variants (40). 
Unfortunately, despite prodigious amounts of SARS-CoV-2 
sequencing in the U.S., this form of linkage has been relatively rare 
to date.

Second is the value of clear and accessible data dashboards with 
transparent data sources to make the state of the epidemic locally 

evident to the public. The same data should also be available to analysts 
in public health departments, academia, and other sectors via 
application programming interfaces (APIs) to facilitate rapid data 
analysis. This can facilitate shared decision making and help to increase 
public support for control measures. For example, the city of Austin, 
Texas developed a COVID-19 staged alert system that guided local 
policy between May 2020 and March 2022 (13, 14). The public-facing 
dashboard featured a single graph that tracked COVID-19 hospital 
admissions and clearly indicated thresholds between the red, orange, 
yellow, green, and blue risk levels that were linked to specific actions. 
The county judge, city mayor, and public health authority cited the 
dashboard almost daily to communicate risks, explain changes in policy, 
and cultivate adherence via news outlets and social media. This system 
was only possible because local authorities required area hospitals to 
report daily admissions beginning in April 2020, long before such data 
were generally available.

Finally, discussion at the Symposium emphasized the value of 
metrics that could be  compared across jurisdictions. Decision-
makers expressed a desire for objective criteria by which their 
performance can be judged. Comparisons across states, for example, 
were hampered by differential testing rates that affected case counts 
in ways not reflecting actual prevalence. A CDC-supported 
academic effort called covidestim (41) used Bayesian evidence 
synthesis to harmonize estimates of current and cumulative 
infections across states and counties, providing an example of what 
could be done by health authorities. However, this effort was also 
hampered by unanticipated changes in reporting tempo, as well as 
‘data dumps’ and data backfilling. Different definitions of 
COVID-19 hospitalization across states and over time impeded 
comparisons of outcomes that would have provided indications to 
elected leaders of the quality of their responses and informed 
improved responses.

Surveillance inputs to forecasts, 
scenario projections, and analytic 
models

As noted above, many aspects of pandemic decision-making can 
directly incorporate evidence from surveillance, and will also 
make use of

 • Nowcasts: estimates of current burden of cases, hospitalizations, 
deaths, and other quantities that account for delays in 
reporting (42);

 • Forecasts: relatively short-term projections using time-series and 
other statistical modeling techniques, sometimes supplemented 
with transmission-dynamic approaches to estimate future case, 
morbidity, and mortality burden, typically on the scale of days to 
weeks (1, 3);

 • Scenario models: longer-term estimates of pandemic dynamics 
using transmission-dynamic modeling approaches to anticipate 
multiple possible futures under stated assumptions about 
behavior, viral evolution, vaccine durability, etc., typically on the 
scale of months to years (43);

 • Results from analytic models: estimates about different 
characteristics of the pathogen or a population of concern that 
are specifically designed to inform a decision or guidance, such 
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as school- or nursing-home-based testing policies (44), border 
restrictions or contact tracing procedures (45), or quarantine 
approaches (46).

These categories of decision-support tools require estimates of 
input quantities that represent the assumptions of the models–for 
example, in scenario models, estimates of per-case severity or vaccine 
effectiveness. These estimates need to be timely, representative, and 
specific to the pathogen or variants circulating or anticipated to 
circulate (for example, due to importation). In addition, scenario and 
forecast model output must be calibrated to existing measurements of 
disease burden: incidence of infection, diagnosed cases, 
hospitalizations, deaths, and other relevant metrics, as well as against 
cumulative measures such as seroprevalence. The categories of input 
and output are somewhat fluid, as a model with sufficient data to 
calibrate outputs may be able to estimate the values of some of the 
quantities described here as inputs. In a fully Bayesian framework, 
both external estimates (as priors) and calibration to output data may 
contribute to posterior parameter estimates.

For forecasts, evaluation can be performed quickly due to the 
short-term horizon of the predictions made, with results that can 
provide feedback to modelers about places where models are 
mis-specified. Evaluating scenario projections is more complicated, as 
multiple sets of counterfactual projections are made under different 
assumptions about how a pandemic situation will evolve over the 
course of months or years (47). Most (or perhaps all) of the scenarios 
will not be  realized exactly as assumed, making evaluation 
less straightforward.

Together the quality and timeliness of these input parameters 
and output calibrations are important determinants of how useful 
a model is for decision making. While there are techniques to 
adjust for incomplete or lagged information, the absence of certain 
ingredients–especially model output calibration targets such as 
numbers of cases or hospitalizations–can critically compromise 
the ability to generate models that reflect reality to the point of 
hampering basic situational awareness. Data systems that support 
modeling and in turn decision-making during pandemics should 
be  considered vital national security capabilities and 
prioritized accordingly.

A list of the key needs for model inputs is as follows, many of 
which may change as a pathogen evolves (referred to below by 
their letters):

 a Pathogen kinetics/epidemiological parameters (e.g., incubation 
period, latent period, infectious period, infection fatality ratio). 
Estimation of these inputs may itself require simple models, 
particularly at the early stages of a pandemic [ref: Gostic paper].

 b Transmissibility and efficiency of various transmission  
mechanisms

 c Risk factors for infection and severity
 d Individual and population immunity (including effects of 

infection, vaccination, and waning)
 e Diagnostic test characteristics, including specificity and 

sensitivity for active (acute) and past infection
 f Vaccine effectiveness and waning of effectiveness, for infection, 

severe disease, and mortality endpoints.
 g Treatment effectiveness

 h Policies, uptake, and effectiveness of nonpharmaceutical  
interventions

 i Population mobility and interactions: contact networks and 
patterns by setting

 j Importation risk
 k Other co-circulating pathogens of concern (e.g., if concurrent 

with significant influenza transmission)
 l Capacity and utilization of healthcare resources (including 

hospital beds, therapeutics, and vaccines)

Key additional data requirements for fitting models– as well as for 
general situational awareness – include:

 m Geographically and demographically stratified incidence, 
duration and prevalence of infection, hospitalization, ICU 
admission, death, and other relevant metrics associated with 
the pathogen, ideally by variant.

 n Strain-specific incidence.

Meeting these needs

This draft framework is a preliminary attempt to scope a system 
that could meet the needs listed above for situational awareness, 
decision support, and inputs and outputs for modeling and analytics 
for a new variant or a new pandemic. Capacity to achieve these would 
also be  applicable to other pathogens, especially, but not only, 
respiratory ones.

A. Estimating model inputs

System 1: high-frequency sampling for pathogen 
kinetics and diagnostic sensitivity (quantities a,e)

Possible Mechanism: Surveillance would be established to obtain 
repeated samples (for COVID-19, respiratory samples) from 
individuals exposed to a pathogen of interest (now, SARS-CoV-2) 
from the time of exposure through infection to the time of clearance. 
High-frequency sampling will provide detailed profiles of pathogen 
kinetics, which could be  subgrouped by prior infection history, 
vaccination status, pathogen variant, demographics, and other 
predictors. Simultaneous use of nucleic acid amplification (NAAT), 
culture, and antigen-based testing on these specimens would provide 
detailed estimates of the sensitivity of each as a function of symptoms, 
pathogen load, pathogen infectious capacity, variant, and time since 
exposure/first-positive to inform choice of diagnostics and isolation/
test/quarantine policy.

Performers might be  research/surveillance networks or STLT 
health departments (recognizing that the health departments may 
have limited bandwidth in the context of an outbreak). The ability to 
scale up is critical. While pathogen kinetics are not likely to vary from 
place to place, geographic diversity in sites capable of performing 
these investigations will increase the timeliness of results in case one 
region is hit much earlier than others.

Settings may include households, universities, day cares and 
schools; intensely monitored cohorts such as sports leagues or health 
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care workers, congregate settings such as homeless shelters, 
correctional and detention facilities, or nursing homes.

Precedents: United  Kingdom Household study (48) and 
United States National Basketball Association studies (32, 49).

System 2: integrating routine sequencing with 
detailed clinical data (quantities b,c,d,f,g,n)

Possible Mechanism: A payer-provider network with diverse 
geographic and demographic representation (alternatively, a private 
sector entity or consortium of public health departments and 
laboratories capable of merging clinical data with sequence data) 
would track individuals as a cohort (not necessarily defined by long-
term follow-up but perhaps with exposure or a positive test as an entry 
criterion) with known vaccine and prior infection history through 
diagnosis (outpatient or inpatient) and through the cascade of care to 
estimate the probability and severity of infection as a function of this 
history (vaccine effectiveness and infection-acquired immunity) and 
variant. Sequencing of positive clinical specimens would enable the 
variant-specific estimates. This system would provide a reliable 
infrastructure for assessing severity, vaccine effectiveness, and 
treatment effectiveness linked to infection and vaccination history for 
each new variant/virus. It would be crucial to link electronic health 
record (EHR) within the network to key external sources of data such 
as immunization registries. Improving completeness of such registries 
is also a high priority to improve the quality of these inferences. 
Strategies for linking pathogen genome sequencing with EHRs will 
depend on whether these data are from clinically validated systems 
and, if not, will require consideration to ensure use for research and 
not clinical purposes.

It would be valuable to explore to what extent such studies could 
be done in networks such as PCORNet (50) or the Vaccine Safety 
Datalink (51) that assemble EHRs from multiple health systems into 
a common data model; questions include how rapidly this could 
be done and whether sequence data could be linked to these records.

In addition to payer-providers, robust testing, reporting, and data 
collection capabilities should be considered for congregate settings at 
high-risk for transmission such as skilled nursing facilities, 
correctional facilities, detention facilities, and homeless shelters that 
can follow individuals from positive tests through outcomes.

Precedents: Cohort studies on variant-specific relative severity (52), 
relative vaccine effectiveness (53) and absolute vaccine effectiveness (54) 
have been performed during the COVID-19 pandemic. None of these 
included genomic sequencing or serological profiling integrated with 
clinical data collection, in part due to the issues of linking with EHRs as 
mentioned above. Integration of sequencing in particular is essential for 
the likely future scenario where one cannot rely on proxies for genetic 
variant that have been exceptionally convenient in COVID-19, notably 
the failure of the S-gene PCR target in certain polymerase chain 
reaction-based diagnostic tests.

In the US, this work could build upon or integrate with existing 
platforms such as VISION and Investigating Respiratory Viruses in 
the Acutely Ill (IVY) (55). Key additions would be sequencing and 
more comprehensive estimates of severity.

System 3: behavioral surveillance and other 
routine data collection (quantities h,i,j,l)

Goals of behavioral surveillance are to provide real-time estimates 
of mobility, work-from-home frequency, proportion of schools open 

or closed, use of other nonpharmaceutical interventions such as 
masks, and vaccine behavior/hesitancy. Data useful during COVID-19 
included vaccine coverage from HHS Protect (56)and Census Pulse 
(57) and other surveys on vaccine intentions, mask use, work-from-
home, and school opening/closure. Private sector [e.g., mobility (58)] 
and publicly available data [e.g. (59)], exist that measure many 
quantities of interest. These include self-reported mask use, 
absenteeism data from school and work, internet search queries, and 
much more. Further work needs to be done in several areas to enhance 
the value of these data streams:

 • identify cost-effective sources of such data;
 • quantify the degrees of representativeness in measurement from 

these different data sources by such factors geography, race/
ethnicity, and social determinants of health;

 • improve our mechanistic understanding of how these measures 
of mobility relate to transmission behavior, which will likely 
differ by social factors, pathogen transmission routes, and 
epidemic stage, among other factors (27)

A particular example of one such data stream is air travel and 
other travel data to estimate importation risk.

Precedent: Census Pulse and other surveys exist. Many local 
jurisdictions have used mobility data from private providers, often via 
academic intermediaries1 to assess local trends. Vaccine coverage data 
exist with some limitations. The Center for Disease Control and 
Prevention’s (CDC) Division of Global Migration and Quarantine 
maintains access to timely estimates of air travel volume.

B. Fitting model outputs

System 4: repeated testing for infection and 
immunity in a random sample of the population 
(m)

Mechanism: An academic, government (e.g., CDC or a coalition 
of state health departments), or private sector entity would identify a 
longitudinal sample and/or repeated cross-sections representative of 
the U.S. population for monthly testing for infection and immunity as 
evidence of prior infection. In the COVID-19 case, this would be PCR 
testing of respiratory samples and antibody measurement in blood; 
testing approaches might differ for future pathogens. Samples would 
be obtained by home visit or mail/courier. Specimens testing positive 
for one or more respiratory viruses would be sequenced. The initial 
sample would be powered to detect US-level trends; scale-up in a 
pandemic would enable regional/state-level and demographic-specific 
(e.g., age, race, sex-specific) estimates of virus prevalence and 
seroprevalence irrespective of symptoms and at the level of variant/
subtype/species/type (depending on the pathogen).

In pathogens with antibody-based immunity, blood samples 
would be  tested for multiple antibodies including vaccine and 
nonvaccine antigens of the novel pathogen. These would provide a 
population-based denominator for severity estimates, enable 
calibration of scenario and forecast models, track trends in viral 

1 e.g., https://www.covid19mobility.org/
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species/variants in an unbiased way, and estimate the magnitudes of 
health inequities to better prioritize prevention measures (60).

Addition of serologic testing of a random, representative sample of 
the population would supplement existing passive serosurveillance 
approaches such as from blood donors (38), newborn heel sticks (61), 
or discarded specimens (62, 63). Longitudinal sampling would enable 
more precise estimates of rates of waning of antibody concentrations 
(64, 65) and the consequences for estimation of cumulative incidence 
using particular assays.

An alternative approach would be to use healthcare-based testing 
of individuals requiring admission for conditions not directly related 
to the pandemic, using weighting to standardize the population 
seeking health care to the background population (66, 67), though the 
quality of such data would need continuing validation.

Other alternatives would include the use of voluntary testing 
results, such as those gathered by test-proctoring telehealth services, 
retail pharmacies, or the like. CDC/FDA requirements to ask the 
reason for a test would facilitate interpretation (symptomatic vs. travel 
vs. exposure, for example).

Precedents: The main proposal could be roughly modeled on the 
United Kingdom COVID-19 Infection Survey and REACT-1 studies. 
One of the alternative approaches–universal testing of individuals 
requiring admission for non-pandemic reasons–was used in New York 
City early in the COVID-19 pandemic (68) and has been used in 
Indiana with reported high value (66, 67) for both prevalence 
and seroprevalence.

System 5: maintain hospitalization surveillance 
data (l,m)

Hospitals have been required to report COVID-19 and influenza 
hospitalizations to HHS, and these formed the backbone of multiple 
forecasting and scenario modeling efforts in the US. It is critical to 
maintain the generation, interpretation, timeliness, and accuracy of 
these data to inform forecasts. In addition to the forecasting products, 
these data underlie hospital capacity and burden situational awareness, 
the ability to monitor outbreaks, and community burden indicators.

Precedents: Exists as of September 2023 but needs to 
be maintained at a base level outside of emergencies and be able to 
ramp up quickly at a time of new emergency (69).

C. Actions needed

Administrative and reporting preparedness
The response to COVID-19 required collaborations across 

sectors–public, private, and academic–but these collaborations were 
often forced to work through administrative frameworks that were not 
designed with speed and flexibility in mind. In turn, such mis-specified 
frameworks ultimately slowed or limited some critical public health 
projects and prevented others from being undertaken entirely. To 
address this class of problem, we propose six ideas below that would 
update, recast, or create key frameworks that establish links across 
sectors and that facilitate the urgent work of pandemics, while 
maintaining safeguards and oversight.

 1 Emergency data use agreements and formats. Data use 
agreements (DUAs) are core elements to collaborative work 
across institutions, but they pose two types of challenges. First, 

the process for negotiating an agreement acceptable to the 
institutions providing and receiving the data is often slow. The 
staff on each side tasked with reviewing and signing off on 
these agreements may have many competing priorities or 
be overwhelmed as an outbreak or pandemic may dramatically 
increase the volume of DUAs. Work on a sensitive or high-
profile project, such as associated with an outbreak of infectious 
disease or a pandemic, generates additional scrutiny and often 
further lengthens the review process. Second, conflicting 
limitations can stall progress or even undermine a project 
before it starts. For example, in a partnership between 
academics and government public health institutions, academic 
institutions may deem the freedom to publish without 
interference to be non-negotiable. Public health institutions, 
however, may require veto power over what, if anything, is 
published, due to the sensitivity of the institution’s data and 
ownership thereof. To address these problems, one solution is 
to establish Emergency Use Data Authorizations (EUDAs) for 
public health data with a standing framework vetted and 
updated regularly (e.g., annually), perhaps at the individual 
state level. Such EUDAs would catalyze collaborations and 
enable investigators at both institutions to shift the balance of 
effort up front from administrative to research tasks. As these 
are put in place, discussions about data formats can take place, 
ideally also in advance, to ensure that when data are delivered 
they are as ready-to-use as possible.

 2 Surveillance versus research: updating the Common Rule. 
Projects designated as human subjects research require 
institutional review board (IRB) review, whereas those 
designated as public health surveillance are deemed not to 
be  research, and thus do not require IRB review. This 
surveillance-research dichotomy has substantial implications 
for timeliness and speed of work, because writing, reviewing, 
and adjudicating IRB reviews–while vitally important for 
protecting the rights, welfare, and well-being of human 
subjects–may take days to weeks. The boundaries between 
surveillance and research are governed by the Common Rule, 
which states that public health surveillance activities “include 
those associated with providing timely situational awareness 
and priority setting during the course of an event or crisis that 
threatens public health (including natural or man-made 
disasters)” [45 CFR 46.102(l)(2)] (70). Unfortunately, these 
boundaries lacked clarity and standardization as questions 
arose during the COVID-19 pandemic. For example, while 
case monitoring is clearly surveillance and a routine public 
health activity, one could make a strong argument that 
“situational awareness and priority setting” includes assessing 
vaccine effectiveness and disease severity for new variants. 
However, analysis of variants requires pathogen genome 
sequencing, which is viewed by some as constituting research, 
as is evaluation of vaccine effectiveness, another critical public 
health function which is not exclusively a research objective. 
Modifying the text of the Common Rule to explicitly include 
examples such as these or providing an interpretation of the 
surveillance/situational awareness exemption that includes 
these activities would considerably improve the ability for 
public health agencies to maintain situational awareness and 
set priorities, quite in line with the spirit of the exemption.
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 3 Streamlined IRBs. Where projects fall under human subjects 
research designation and require IRB review, generic, 
pathogen-agnostic study protocols for specific populations 
would accelerate research by decreasing the time to first data. 
Preapproval of a range of well-defined studies targeted at 
emergency response and using specific data sets would retain 
critical protections for human subjects, while allowing high-
urgency protocols to be “on the shelf ” and ready for fast rollout. 
As an additional feature, such preapproved protocols would 
also free up valuable researcher and IRB reviewer time, having 
converted per-submission efforts during a pandemic into fixed-
cost efforts ahead of time. Moreover, designing consent 
processes for normal “peacetime” studies to allow use of data 
and specimens in public health emergencies could avoid some 
of the delays experienced during COVID-19 with, for example, 
use of the Seattle Flu Study’s specimens to understand early 
transmission of the virus in the United States (12).

 4 Case reporting standardization. Tracking and understanding 
outbreaks, particularly at their beginnings, rely on case 
reporting. Ideally, public health efforts would follow case 
trends over time and across regions, compare and monitor 
clinical features including disease progression, resolution, and 
response to interventions, and track demographics of infected 
individuals. But lack of standardization of case report protocols, 
parallel or overlapping surveillance systems that result in 
duplication (often with varyingly completed fields for the same 
case), and inadequate systems for incorporating updates as 
further information about a case accumulates after the initial 
report, among other issues, result in case report data that 
require much time and effort to sort through. Worse, these 
issues may render some fraction of case reports unreliable. 
Improving national surveillance systems to be more uniform, 
timely, and flexible could serve both local and national 
surveillance needs would help address these issues (60).

 5 Dataset accessibility. In the absence of a United States national 
healthcare system, research into the distribution and burden of 
clinical conditions depends on academic or private data 
streams, including surveys and surveillance systems 
constructed to address specific questions, and databases of 
insurance claims which represent utilization of the healthcare 
system. Insurance claims datasets include those from (i) 
employer-based insurance companies (e.g., MarketScan) (ii) 
all-payer claims databases available in some states (which, since 
a 2016 Supreme Court decision (71), are no longer necessarily 
‘all payers’), (iii) Medicare for individuals over 65 years of age, 
(iv) Medicaid, which provides coverage to over 18% of the 
United States; and (v) data bases for other specific populations, 
such as those of the Veterans Affairs Health System, the Indian 
Health Service, and the Department of Defense. While these 
datasets can provide an important window into healthcare use 
across demographics and geography, access to these datasets 
can be expensive and time and labor intensive. Gaining access 
to Medicaid data, for example, presents a substantial burden, 
since this has to be  acquired on a state-by-state basis. 
Establishing standing flexible DUAs for these datasets, with a 
single agreement across states for Medicaid and other state-
controlled data, could enable both routine surveillance-type 
analysis to identify trends (such as disease outbreaks or 

patterns of disease spread) and to evaluate the impact of clinical 
and public health interventions.

 6 Public health-health care partnerships: While the United States 
does not have a national health system for all, it has a wealth of 
data in the health care sector that can inform public health 
decision making. Multiple studies at the Centers for Disease 
Control and Prevention (CDC) and other institutions 
harnessed such data to provide estimates of key quantities such 
as vaccine effectiveness (72, 73), variant severity (74), and 
antiviral effectiveness (75), as well as for surveillance of disease 
burden and its correlates (76). Building public health 
partnerships with the health care sector in advance to set in 
place the administrative, information technology, and financial 
arrangements to make possible high-quality analyses of this 
sort rapidly (and automated where possible) would greatly 
increase the timeliness and value of such efforts (77).

Strengthening personnel and research 
ties, including globally

In response to the COVID-19 emergency and the need for 
expertise to gather, analyze, and interpret evidence around the 
pandemic and the clinical and public health responses, many 
academics put aside their usual research programs to engage directly 
in public health activities and research. The close interactions between 
academics and local, state, and national public health officials were 
often productive and important for guiding the pandemic response 
but raised issues that should be addressed before the next pandemic. 
These include the ad hoc way in which these academic-public health 
collaborations came into being, the lack of uniformity of access to 
academics with appropriate expertise across states, and the 
misalignment of incentives between public health and academic work.

Ideally, academia-public health collaborations can be  rapidly 
scaled up in times of need through established pathways. One idea is 
to create a “rotator” program, in which academics (and potentially 
those in training, including doctoral students and postdoctoral 
fellows) are embedded within public health agencies–and similarly 
public health officials are embedded within academic groups–for 
intervals (such as 3 or 6 months) that build familiarity, collegiality, and 
accessibility. The LEAP fellowship through the Infectious Disease 
Society of America (78) and the joint Infectious Diseases/EIS 
fellowship (79) programs are efforts in this direction. Another 
approach is to establish an academic career path in which some 
fraction of time and effort are based in public health activities, 
analogous to academic medicine paths in which researchers spend 
some fraction of their time doing clinical work. Cooperative 
agreements established in 2023 between the CDC’s Center for 
Forecasting and Outbreak Analytics (CFA) and academic and other 
groups include a surge provision whereby the performers on these 
agreements would provide scientific assistance in times of crisis. 
Relatedly, an official “public health reserve corps” of analysts and 
modelers could provide a workforce available to be  called up to 
prepare for and respond to emergencies. Formal recognition of these 
paths as prestigious and vital, and placing value on these activities 
within the academic systems of rewards and incentives, will be key to 
success (Box 1).
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Often tools developed for one public health jurisdiction solve 
common problems and could be  readily implemented in other 
jurisdictions, underscoring the importance of making code open access 
and ideally making tools generalizable. This would have the benefits of 
“not reinventing the wheel” and allowing those jurisdictions lacking 
local expertise access to useful tools. A curated clearinghouse of such 
tools, organized by research problem and perhaps hosted by CFA offers 
one strategy for providing access. Broad efforts to create and maintain 
state-of-the-art tools for epidemiologic modeling, such as Epiverse (82) 
and Recon are encouraging developments in this space (83).

We have focused on domestic systems in the United States, but 
that international cooperation is essential for multiple reasons. 
Maintaining systems to de new pathogens at multiple locations in a 
globalized world will speed detection, facilitating timely responses 
including development of countermeasures (25) and providing early 
warning to other jurisdictions (84). For pathogen characterization, as 
we note in Box 2, each jurisdiction can benefit from findings in other 
jurisdictions on quantities that are relatively similar across 
populations, including for example the effectiveness of vaccines and 
treatments, as well as certain features of infection natural history (e.g., 
viral load kinetics). Strengthening these capacities globally means that 
locations that have exceptional data and study infrastructure and/or 
early experience with a pathogen or variant, can contribute to the 
global store of knowledge of pathogen characteristics (49, 54, 85–87).

Educating the consumers

Tools are best deployed by those who understand how they work, 
how they are limited, and how they can be modified to improve their 
applicability to specific situations. Workforce development mandates 
to build subject matter expertise within public health departments, 
such as through CDC efforts via the Office of Science and the Office 
of Advanced Molecular Detection and through fellowships such as the 
CDC/Association of Public Health Laboratories (APHL) program, are 
critical efforts. While waiting for these workforce programs to get up 
and running, and since public health officials may not stay current 
with the frontiers of analytical and modeling methods, opportunities 
for regular formal trainings should be  developed. For example, 
meetings such as the Council of State and Territorial Epidemiologists 
Annual Conference could provide a forum for workshops on advances 
in modeling, genomic epidemiology, and other fields. Relatedly, 
encouraging public health officials to attend field-specific meetings 
(e.g., Epidemics, Applied Bioinformatics in Public Health 
Microbiology) could provide opportunities for knowledge sharing, 
relationship building, and networking across sectors and disciplines.

Improving knowledge flow

Successful communication of a health agency’s current 
understanding of a pandemic and outlook for its future requires a 
combination of approaches to communicate different kinds of data 
and outlooks, for different audiences. It has been suggested that 
principles for such communications include: thematic structure 
related to informing key decisions, synthesis of evidence from multiple 
sources, quantification of uncertainty, inclusion of visualizations as 
well as text and tables, and inclusion of forward-looking material 

(outlooks for the future) (91); another important principle is open 
access to the data underlying figures in these reports. CDC’s Technical 
Reports on the Mpox epidemic in 2022 (92) sought to put these 
principles into practice, explicitly emulating aspects of the 
United  Kingdom Health Security Agency (UKHSA) Technical 
Briefings from COVID-19 (93). Creating a regular cadence for such 
reports during an emergency, as was the case in the United Kingdom 
during the height of the COVID-19 pandemic, may help develop an 
audience and facilitate knowledge flow.

Centering equity

The World Health Organization has stated that “Countries have 
an obligation to develop appropriate, feasible, sustainable public 
health surveillance systems” to ensure that the health needs of 
populations are quantified so that they can be addressed. While there 
has been a disproportionate impact of COVID-19 on racial and ethnic 
minorities and on socioeconomically disadvantaged populations in 
the United States (94) and elsewhere (95, 96), a persistent problem is 
that race/ethnicity data are too often missing from surveillance data. 
Under the plausible hypothesis that those with missing data on race/
ethnicity are among the most disadvantaged, these missing data could 
lead to attenuated estimates of the degree of inequities; whether or not 
this is the case, it reduces the quality of the estimates by adding 
uncertainty. Improving the completeness of race-ethnicity reporting 
is an urgent priority to maximize the value of surveillance data to 
enhance health equity. Some symposium participants, while agreeing 
with the need for better reporting of such data, argued that in the 
presence of ongoing racial segregation, ZIP code or other geographic 
tags can be a useful proxy when such data are unavailable. Early maps 
of COVID-19  in New  York City showed a higher prevalence of 
COVID-19 diagnoses in areas that were home to largely Black and 
Hispanic populations, as well as some areas where most residents were 
White and many believed to be  first-responders (68). This was 
reflected in elevated COVID-19 mortality rates among Black, 
Hispanic, and Native American populations compared to White 
populations throughout the United States, particularly in the early 
waves of the pandemic (97).

The Presidential COVID-19 Health Equity Task Force final report 
from 2021 (98) recommends strategies for enhancing equity in data, 
analytics, and research. These recommendations include standardizing 
demographic and socioeconomic categories, supporting equity-
centered data collection, tracking and reporting on health outcomes 
for people in congregate and high-risk settings, and research and 
analysis on behavioral health. In a similar spirit, for any clinical or 
public health intervention, one should ask in what ways the 
intervention exacerbates or alleviates inequities. To put this into 
practice, one goal is the development of real-time metrics that inform 
municipalities and states on the equity of interventions and health 
outcomes, enabling adjustments and responses to keep equity at the 
forefront of intervention decisions.

Other important examples of the links between surveillance and 
health equity were discussed during the symposium. While documenting 
disparate impacts is a necessary starting point, identifying appropriate 
measures to rectify these inequities will often require understanding 
where, why, when, and how they arise (99). An early example in the 
U.S. was a documentation that higher SARS-CoV-2 prevalence among 
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mothers admitted for labor and delivery in New York City was associated 
with residence in boroughs with smaller reductions in mobility, suggesting 
inability to work from home as a potential driver of risk (68). Subsequent 

modeling work explained racial disparities in infection rates in U.S. cities 
as a consequence of higher exposure by minority groups not only to 
infection generally, but particularly to more crowded venues with higher 

BOX 1 Modeling and analytic support for STLT jurisdictions: the role of academic groups.

COVID-19 stimulated numerous collaborations between STLT health authorities and university and other research institutions to support decision making with modeling, 

analytics, and forecasts. These took multiple forms, ranging from the establishment of advisory councils to mayors and governors, to bilateral collaborations (80, 81) and formal 

consortia (https://modelingconsortium.ucsf.edu/). However, there are stark differences among jurisdictions in the number of such academic groups within the jurisdiction 

and/or with existing or prior links with the jurisdiction’s health department, creating inequities in access to this kind of advice. The benefits of working with academic partners 

can include local knowledge and the capacity to surge efforts in an emergency. Potential barriers to such collaborations that should be addressed up front where possible include 

academics’ need and incentives to publish, which may compete for time with their role in decision support, as well as the demands of academic schedules, whereby, for example, 

a key analyst on a project may have to devote effort to exams at times when they are needed for decision support. Administrative preparedness in the form of preexisting data 

use agreements can vastly accelerate these efforts.

Establishment of trust is essential to the success of academic – STLT collaborations. Elected and health officials at the symposium noted the repeated challenges of figuring 

out which models and modelers to trust, both locally and nationally. Participants observed that academic collaborations were most effective when there was a pre-existing 

relationship between the groups and the jurisdictions, and noted the benefits to both parties of cultivating these relationships in “peacetime” through collaboration on 

non-pandemic activities. Academic groups’ ability to speak freely can lend credibility and objectivity to their analyses; however, trust can be undermined if academic groups 

with access to limited, publicly available data release analyses in publications or preprints that may be inconsistent with more complete data that are available to health 

departments but not publicly available. Frequent contact to share tentative conclusions and compare them against the evolving understanding of health officials can enhance 

the quality of analyses by incorporating more complete data, if these can be shared, and can enhance the trust between the parties, improving future interactions. When such 

interactions work well, they do not stifle the conclusions of academic groups but rather ensure that these conclusions are based on the best current understanding and to ensure 

that health officials are aware of what is being published about data from their jurisdictions. Academic incentives and structures are particularly not suited for routinely repeated 

analyses, such as reproductive number estimation, nowcasting, and forecasting, although academic centers have played key roles in these areas for over 2 years during COVID-

19. Automation, as in the California consortium’s dashboard, is one solution. CDC’s Center for Forecasting and Outbreak Analytics is beginning to take on some of these tasks 

and will increasingly serve as a focal point for such repeated, real-time analyses.

BOX 2 National insight from local evidence.

Implementation of public health policies is a state/territorial/tribal and local responsibility in the U.S., as we noted above. Infectious disease surveillance is also decentralized, 

often with two levels of reporting (local/county and state/territorial) below the national level. From the perspective of national decision makers seeking a clear picture of an 

unfolding pandemic, decentralized surveillance has obvious limitations, particularly in a setting where data systems and data use agreements vary across jurisdictions. Efforts 

are underway, and should be expanded, to improve the speed, completeness, and accuracy of data flowing from states, localities, and health care systems to the CDC and other 

federal actors. Such efforts are essential for timely situational awareness and for calibrating the outputs of scenarios and forecasts to granular (state or county-level) data to form 

a national picture.

While incidence, prevalence, and health care burden are intrinsically local quantities that need to be estimated everywhere and over time, many aspects of surveillance and 

associated epidemiology are generalizable, such that findings in one local jurisdiction can inform control measures everywhere. These include characteristics of the pathogen, 

such as severity and natural history; and characteristics of countermeasures, such as test sensitivity and the effectiveness of drugs and vaccines. For these purposes, local 

conditions can facilitate detailed characterization that may not be possible, but also may not be necessary, on a larger geographic scale.

Some of the earliest evidence of low severity for the 2009 H1N1 influenza pandemic came from a study at the University of Delaware, where a comparatively self-contained 

population could be studied in detail (88). We noted in a postmortem of that pandemic that the findings from that study were not widely known until months later because of 

limited dissemination (4), arguably prolonging the state of alarm unnecessarily during that pandemic. In COVID-19, early findings of asymptomatic/presymptomatic infection 

and likely transmission from studies in a nursing home and a cruise ship, respectively (19, 89), were documented very early and widely disseminated, but still did not fully 

inform control measures.

In many other cases, detailed surveillance and epidemiology in local jurisdictions or health systems provided evidence of national and international importance. A few 

examples included:

 • Evidence from the Yukon-Kuskokwim (Alaska) Health Corporation about the persistence of antigen test positivity 5 or more days after initial positive test or symptom 

onset during the early Omicron era (90)

 • Evidence from the Kaiser Permanente Southern California health system about the relative clinical severity of Omicron BA.1 variant compared to Delta before it and 

BA.2 after (74)

 • others

Each of these provided evidence that could be generalized beyond the location where it was generated, because it concerned generalizable features of the infection or 

countermeasures based on its biology. The degree to which these investigations informed policy and guidelines varied, indicating a need for a systematic approach to 

disseminating findings of wide importance and updating guidance in a way that reflects the totality of data.
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infection risk (58). The age distribution of mortality by race/ethnicity 
(100), with its skew to younger ages among Black, Hispanic, and 
Indigenous individuals, also pointed to an increased exposure risk. The 
United Kingdom Government’s Race Disparity Unit published a series of 
reports through the first 2 years of the pandemic enumerating hypotheses 
for mechanisms to explain disparate impacts, stating the current evidence 
related to these hypotheses, and recommending actions to address these 
drivers of higher incidence and severity in racial and ethnic minorities 
(60). In the United States, such studies may require linkage of disparate 
data bases to identify where disparities arise during the cascade of care 
(101), a strategy that has long been useful in HIV/AIDS surveillance to 
understand loss points in the continuum of care (102, 103). For COVID, 
a full cascade would require an estimate of the actual number of infected 
individuals, the number of people who have been identified by testing 
(reflecting under-diagnosis), the number treated when treatment became 
available (reflecting under-treatment), the number hospitalized (reflecting 
access to care and disease severity), and the number of fatalities, jointly 
stratified by race and ethnicity, age group and sex. Ascertaining these 
would require both modeling-based estimates and data from multiple 
sources (e.g., clinical laboratories and vital registries). For example, an 
analysis from a New York City hospital suggested no racial difference in 
case fatality among hospitalized patients, supporting the idea that racial 
differences in exposure (more infections) rather than racial differences in 
outcome contributed to racial differences in overall mortality (104).

Other sources of inequity can affect case ascertainment and thus 
identification of opportunities for intervention. Geographic and temporal 
variation in testing effort in the U.S. was very large, resulting in difficulties 
in comparing incidence across jurisdictions. Rural areas were often the 
least able to access testing, though there were important exceptions (90). 
Notably, the use of random sampling stratified by geography mitigated 
this problem significantly in the United Kingdom (85), though it did not 
solve it entirely because participation was of necessity voluntary. Equity 
considerations may change as public health authorities rely on new data 
sources; for example, mobility estimates may depend on smartphone 
ownership, while wastewater surveillance for pathogen abundance will 
be unavailable in areas using septic systems (29, 105).

Expanding the range of data types

As described above, any health system, but particularly one as 
decentralized as that of the U.S., benefits from the ability to ingest 
and synthesize multiple types of data. Increased use of wastewater 
data (106, 107) has contributed to early warning of rising infection 
incidence and to surveillance for new variants. Further work to 
standardize collection and better define the quantitative 
relationships between true infection incidence and total and 
variant-specific concentrations of viral genomes in wastewater is 
needed to improve the value of such data, as well as a clear 
mapping of where it will not be informative, such as areas using 
septic systems. Likewise, mobility data from various sources (58) 
can be useful in informing strategies for disease monitoring and 
surveillance, modeling disease spread, and guiding interventions. 
Immune measures from serology provide a window onto past 
infection and a lens onto the landscape of risk (108). Here, further 
work is needed to ensure data standardization and accuracy as 
well as routine and frequent updating to capture important 
temporal variations. Such new forms of data may also raise 

privacy considerations that have not entirely been solved 
(109, 110).

Crowdsourced and survey data (111, 112) can provide important 
insights into behaviors that affect the interpretations of other data; for 
example, the increasing prevalence of self-testing using antigen tests 
for COVID-19 reduces the utility of PCR-positive case counts.

A key to making use of this expanded range of data types is solving 
the problem of how to synthesize multiple data types into a single estimate 
of a quantity of interest, accounting for the different properties of each 
data type (76), including understanding the different biases that will affect 
each data stream. Significant further work is needed to advance the ability 
to do this in real time. A related but distinct problem is how to link data 
across data systems to understand the continuum of care and otherwise 
improve inference about the course of individual cases.

Expanding the range of data sources

The use of claims data from health care payers (insurers) and 
electronic medical records from providers has exploded in many areas 
of health services research. There have been some notable examples of 
such data for surveillance to address the questions described in this 
report (53, 72–74), but in the United States there remains untapped 
potential to expand such efforts and improve their timeliness. This will 
require building relationships between public health entities and 
health care systems in their jurisdictions, including relationships 
between scientific investigators in each sector with regular discussions 
for bidirectional learning. In the spirit of administrative preparedness 
above, this will require up-front planning of master agreements to 
move resources in a timely fashion to address pressing questions. 
Health providers and public health have suffered from a “two cultures” 
challenge that results in the need to expand public health training of 
investigators and other personnel in health systems, acknowledge the 
contributions of health systems to community benefits, and find ways 
to produce incentives so that contributing to public health surveillance 
aligns with the business interests of health systems. Medical examiners 
and coroners are another group that has been disconnected from 
public health but with whom cooperation can enhance and help to 
calibrate surveillance for pathogen-specific deaths, as illustrated by 
some examples both domestically (113) and abroad (114).

As we  described above, new data sources become useful in 
proportion to our understanding of their “normal” behavior. As 
we expand the range of data types, it will be essential to monitor new 
data streams and continue to monitor old ones outside of epidemic 
periods to establish a baseline that can be used to calibrate signals of 
new outbreaks and estimate the exceedance caused by the ongoing 
transmission of novel pathogens (115).

Conclusion

Data and modeling needs change over the course of a 
pandemic and vary by the jurisdictional dimensions, requiring 
anticipatory, rapid, dynamic, and locally adapted and scaled 
activities to optimize pandemic management and population 
health. Here, we  have sought to describe concepts, tools, and 
strategies to address those needs, building on those enacted 
during the COVID-19 pandemic and those that could have 
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facilitated this work. While not a comprehensive list, we hope that 
the ideas we propose and envision serve as a useful resource and 
guide in efforts to manage ongoing infectious diseases challenges 
and preparedness for the inevitable next pandemic.
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