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Background: According to study on the under-estimation of COVID-19 cases 
in African countries, the average daily case reporting rate was only 5.37% in 
the initial phase of the outbreak when there was little or no control measures. 
In this work, we aimed to identify the determinants of the case reporting and 
classify the African countries using the case reporting rates and the significant 
determinants.

Methods: We used the COVID-19 daily case reporting rate estimated in the 
previous paper for 54 African countries as the response variable and 34 variables 
from demographics, socioeconomic, religion, education, and public health 
categories as the predictors. We  adopted a generalized additive model with 
cubic spline for continuous predictors and linear relationship for categorical 
predictors to identify the significant covariates. In addition, we  performed 
Hierarchical Clustering on Principal Components (HCPC) analysis on the 
reporting rates and significant continuous covariates of all countries.

Results: 21 covariates were identified as significantly associated with COVID-19 
case detection: total population, urban population, median age, life expectancy, 
GDP, democracy index, corruption, voice accountability, social media, internet 
filtering, air transport, human development index, literacy, Islam population, 
number of physicians, number of nurses, global health security, malaria 
incidence, diabetes incidence, lower respiratory and cardiovascular diseases 
prevalence. HCPC resulted in three major clusters for the 54 African countries: 
northern, southern and central essentially, with the northern having the best 
early case detection, followed by the southern and the central.

Conclusion: Overall, northern and southern Africa had better early COVID-19 
case identification compared to the central. There are a number of demographics, 
socioeconomic, public health factors that exhibited significant association with 
the early case detection.
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1 Introduction

The ongoing COVID-19 pandemic, triggered by the SARS-
CoV-2 virus (1), has spread globally with noticeable variations in 
reported cases and deaths across different regions. As of May 5, 
2022, the pandemic is affecting more than 220 countries and 
territories, with over 513 million cases and 6 million deaths 
worldwide (2). In particular, the spread of the virus and subsequent 
reporting of cases have shown a slower pace in African nations. 
Since the identification of the first case in Egypt on February 14, 
2020 (3), the growth of new infections within African countries 
remained relatively modest, with the WHO African region reporting 
over 8 million cases and 170,000 deaths (4), a stark contrast to the 
more severe morbidity and mortality rates observed in other world 
regions (2).

Several factors contribute to the under-estimation and under-
reporting of COVID-19 cases in Africa. The presence of asymptomatic 
infections, capable of transmitting the virus (5, 6), and a tendency of 
fewer clinical symptoms among the younger demographic (7), 
potentially lead to a significant under-estimation of the true case 
count, especially in regions with younger populations like Africa. 
Moreover, limited testing and public health resources, inadequate 
public awareness, cultural stigmatization, self-medication practices, 
and initially unestablished monitoring practices on the continent 
might have further contributed to the under-reporting of cases (8). 
Similarly, in some nations, political motives might influence data 
adjustment, impacting transparency, with certain governments 
altering their figures to project a particular narrative (8).

The WHO estimates that only one in seven cases was being 
detected in Africa (8), highlighting a substantial gap in data accuracy 
and completeness. Our previous investigation into the early phase of 
the COVID-19 outbreak across 54 African nations also revealed a 
significant under-reporting trend (9). Specifically, an average of only 
about 5.37% of all COVID-19 cases was duly reported. Strikingly, 
these numbers showed vast differences across nations, with Libya 
reporting a notably high rate of 30.41%, in contrast to São Tomé and 
Príncipe’s alarmingly low 0.02% (9).

These preceding observations highlight a pressing need to 
understand the underlying factors contributing to the reporting of 
COVID-19 cases in Africa. Our study aimed to explore the 
determinants influencing COVID-19 case detection and to classify 
African countries using these determinants. By identifying them, 
we aimed to provide insights that could be crucial for policymakers, 
health authorities, and lawmakers in crafting more adept public health 
strategies, refining resource allocation, and developing a more 
responsive and transparent system to confront the challenges 
presented by pandemics.

2 Methods

2.1 COVID-19 case reporting fractions

The fraction of overall COVID-19 cases reported was estimated 
for 54 African countries using a mathematical deterministic model 
with a Bayesian inference framework (9). In this study, we used these 
reporting rates as the response variable in the statistical analysis 
(Figure 1).

2.2 Factors

Our choice of variables was largely informed by past research and 
insights surrounding the under-reporting of COVID-19 cases in 
Africa. Factors like the occurrence of asymptomatic infections which 
are capable of virus transmission (5, 6), and a lower incidence of 
clinical symptoms among the younger demographic (7), have been 
pointed out, especially in regions with younger populations like 
Africa. Additionally, the constraints on testing and public health 
resources, lack of widespread public awareness, cultural stigma, self-
medication practices, and initially unestablished monitoring practices 
on the continent are believed to have contributed to the under-
reporting of cases (8). These considerations mirror challenges faced in 
other regions; for instance, in Brazil, demographic-related challenges 
led to misclassification of COVID-19 cases, particularly among 
younger individuals, those with lower education levels, and rβural 
residents (10). Such challenges highlighted the significant issue of 
misidentifying COVID-19 cases as severe acute respiratory infections 
(SARI). Education has also been pointed out as being critical for 
Africa’s health outcomes (11). Hence, we  included the urban 
population, population literacy, female percentage, median age, 
percentage of Christians, and percentage of Muslims for each country 
to capture key demographic nuances.

Studies suggested variations in reported data due to a nation’s 
wealth, political climate, and inequalities (12). Notably, authoritarian 
governments were shown to skew data to appear competent and boost 
global reputation. Bureaucracies also modify data around elections to 
align with leadership’s wishes (13). Furthermore, democracy-related 
indicators, like the democracy index and world press freedom index, 
suggest countries with lower ranks, such as Turkey, China, Indonesia, 
and Iran, face greater COVID-19 under-reporting issues (14). To this 
end, for factors we also examined GINI index, GDP per capita, human 
development index, democracy index, press freedom index, political 
stability, government social media censorship, voice given to and 
accountability for citizens, corruption, ease of doing business, internet 
filtering, and air passenger volume.

Health-related factors, highlighted for their potential impact on 
reporting, were inspired from the results of study (15), which states 
that the number of tests conducted, global health security index, and 
average body mass index significantly correlated with reported 
COVID-19 cases per million population. These encompassed the 
number of nurses, number of physicians, public health expenditure in 
GDP, public health expenditure in total expenditure, body mass index, 
prevalence of cardiovascular diseases, prevalence of diabetes, global 
health security, cancer, prevalence of cholesterol, prevalence of lower 
respiratory infections, and malaria incidence.

All factors considered in this study are summarized in Table 1.

2.3 Statistical analysis

There are five missing values for malaria incidence (Lesotho, 
Libya, Mauritius, Seychelles, and Tunisia), three for GINI index 
(Equatorial Guinea, Eritrea, and Libya), two for GDP (Eritrea and 
South Sudan), and one for air transport (Mali), public health 
expenditure in GDP (Somalia), public health expenditure in total 
(Somalia), human development index and press freedom score (São 
Tomé and Príncipe). These missing values were imputed with mean 
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values of corresponding variables in order to keep the original variable 
distributions. The numerical variables were then standardized to 
enable direct effect comparison.

To select the covariates to be used for the generalized additive 
model (GAM), we identified pairs of covariates that have a Spearman 
correlation greater than 0.6 or less than−0.6. For one covariate that 
has Spearman correlation above/below the threshold with more than 
one other covariates, we checked correlation between them and the 
response variable: if most other independent variables correlate higher 
with the dependent variable, this covariate will be dropped. Through 
this process, 12 factors were identified to be included in the drop list: 
population aged 65+, literacy, GINI index, press freedom, public 
health expenditure in GDP, public health expenditure in total, 
business, number of nurses, BMI, cancer prevalence, internet filtering 
and Christian population.

We used a GAM for the effects of the covariates on the COVID-19 
daily case reporting rates. The general form of the model is

 
g y f xi

j

n
j ji i( ) = + ( ) +

=
∑β
1
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where yi is the response variable, xji j , , ,n= …( )1 2 are the 
predictors, i is identically and independently distributed as a normal 
random variable, g  is a monotonous link function and 
f j j , , ,n= …( )1 2  are nonparametric smoothing functions. Here 
we adopted cubic spline functions for continuous covariates and linear 
functions for categorical covariates. Compared to the data size, the 
GAM model has room for three more additional predictors after 

applying the drop list of aforementioned 12 factors. To get the best 
GAM, we added one predictor from the drop list at a time back to the 
GAM and kept the one that yields the largest deviance explained. 
Three rounds were run and internet filtering, number of nurses and 
literacy were added back to GAM after each round of selection.

2.4 Hierarchical clustering of principal 
components analysis

Using the COVID-19 daily reporting rates and the significant 
continuous factors from the statistical analysis, we clustered the 54 
African countries through Hierarchical Clustering of Principal 
Components Analysis (HCPC) performed by packages “FactoMineR” 
and “factoextra” in RStudio2023.06.1 + 524. The algorithm is done in 
two major steps: first it reduces the dimension of the data through 
principal component analysis (PCA), and second cluster analysis is 
conducted on the PCA results using the Ward’s criterion which 
minimizes the total within-cluster variance.

3 Results

The deviance explained for the best GAM model with identity link 
function is 97.4% (adjusted R-squared: 0.897), indicating a high 
explanatory power from the model. Among the 34 covariates, the 
significant factors with p-values less than 0.05 are: population, urban 
population, median age, life expectancy, Islam population, literacy 
rates, global health security, number of nurses, number of physicians, 

FIGURE 1

Daily COVID-19 reporting rates in percentage for 54 African countries in ascending order.
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malaria incidence, diabetes prevalence, lower respiratory infections 
prevalence, cardiovascular diseases prevalence, GDP, human 
development index, democracy index, corruption index, voice 
accountability, air transport, all levels of social media and level two of 
internet filtering. Their partial effects on the COVID-19 daily case 
reporting rates are shown in Figure 2. As in Figure 2, life expectancy, 
Islam population, global health security, number of physicians, 

malaria, cardiovascular diseases prevalence, GDP and voice 
accountability are positively correlated with higher COVID-19 
reporting, while total population, median age, number of nurses, 
diabetes prevalence and corruption index are negatively correlated 
with higher COVID-19 reporting. Intermediate levels of urban 
population and democracy index correlate with lower reporting rates, 
while intermediate levels of literary rates, lower respiratory infections 

TABLE 1 List of factors considered with descriptions and sources.

Category Variable Year Source

Demographics Sex (female % in total population) 2020* (16)

Urban population (% of total population) 2020* (17)

Total population 2020 (18)

Median age 2020 (19)

Life expectancy 2019 (20)

Population aged 65+ (% of total population) 2020 (21)

Socioeconomic GINI coefficient (score from 0 to 100) 2019 (22)

GDP per capita (gross domestic product divided by midyear population) 2020 (23)

Democracy index (score from 0 to 10) 2020 (24)

Human development index (score from 0 to 1) 2019 (25)

Business: ease of doing business rank. 2019 (26)

Air transport: passengers carried in thousands. 2019 (27)

Social media: government social media censorship with score from 0 to 4 (4 = lowest/no censorship). 2020 (28)

Internet: Government internet filtering with score from 0 to 4 (4 = lowest/no filtering). 2020 (28)

Corruption perceptions index: perceived levels of public sector corruption, according to experts and business people. 2019 (29)

Political stability and absence of violence or terrorism (standard normal distribution from approx.−2.5–2.5). 2019 (30)

Voice and accountability: extent to which a country’s citizens are able to participate in selecting their government, as 

well as freedom of expression, freedom of association, and a free media (standard normal distribution from 

approx.−2.5–2.5).

2019 (30)

Statistical capacity: overall country-level statistical capacity indicator (from 0 to 100, value of 100 indicating best 

capacity)

2019 (31)

Press freedom score: measure of violence against journalists (from 0 to 100). 2019 (32)

Religion Christianity (% of total population) 2010 (33)

Islam (% of total population) 2020 (34, 35)

Education Literacy rates: share of the population older than 14 years that is able to read and write. 2015† (36)

Public health Public health expenditure share of GDP (% of GDP) 2019 (37)

Public health expenditure (% of total healthcare expenditure) 2019 (38)

Cardiovascular diseases: death rate due to cardiovascular diseases (deaths per 100,000 population, both sexes, age-

standardized)

2019 (39)

Diabetes prevalence (% of population ages 20 to 79) 2017 (40)

Lower respiratory infections rate (infections per 100,000 population) 2019 (41)

Nurses: number of nurses and midwives per 1,000 population 2020 (42)

Physicians: number of physicians per 1,000 population 2020 (43)

BMI: mean body mass index of adults (in Kg/m2) 2016 (44)

Global health security index (scale from 0–100) 2019 (45)

Cancer: number of cases of neoplasms per 100 people in both sexes (%, age-standardized) 2019 (46)

Malaria: number of new cases of malaria per 100,000 people, in both sexes 2019 (47)

Cholesterol: mean Total Cholesterol (age-standardized) 2018 (48)

*Except for Eritrea, of which data is from 2011. †Except for Djibouti and Somalia, of which data is from 2003 and 2001.
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prevalence, human development index and air transport correlate 
with higher reporting rates.

HCPC analysis resulted in three major clusters as shown in the 
dendrogram in Figure 3A, indicated by different colors. The mean 
Silhouette score for the clustering using the coordinates in the factor 
map is 0.485. Their geographical locations are shown in Figure 3B 
with corresponding colors for each resultant cluster. Basically, Cluster 
1 (gray) includes the central African region with the largest number 
of countries. Cluster 2 (red) includes the northern African region 
with Morocco, Tunisia, Alegria, Libya and Egypt (Gabon as an 
exception). Cluster 3 (blue) includes essentially the southern African 
region with Namibia, Botswana, South  Africa (Ghana as an 
exception), plus Mauritius, Seychelles, Cabo Verde and São Tomé 
and Príncipe.

Among all continuous covariates and the COVID-19 daily case 
reporting rate used for the clustering, the reporting rate (p = 0 048. ), 
median age (p = × −1 7 10 10. ), urban population (p = × −1 10 6), life 

expectancy (p = × −7 7 10 7. ), Islam population (p = 0 0093. ), literacy 
rate (p = × −3 9 10 5. ), number of physicians (p = × −5 4 10 6. ), number 
of nurses (p = × −3 6 10 5. ), malaria incidence (p = 0 0092. ), diabetes 
prevalence (p = 0 00078. ), lower respiratory infections prevalence 
(p = 0 0018. ), cardiovascular diseases prevalence (p = 0 005. ), GDP 
(p = × −1 3 10 9. ), corruption index (p = × −4 9 10 8. ), democracy index 
(p = × −2 5 10 9. ), human development index (p = × −4 10 11) and voice 
accountability (p = × −4 6 10 9. ) are significantly different across 
clusters from the ANOVA test, as is shown in Figure 4. According to 
Figure  4, Cluster 2 (red) has the best COVID-19 reporting 
performance, followed by Cluster 3 (blue) and then Cluster 1 (gray). 
Among the three major clusters, Cluster 2 and 3 on average exhibit 
higher median age, life expectancy, urban population size, human 
development index, GDP, number of physicians, number of nurses 
and literacy rates and lower malaria incidence. However, Cluster 2 and 
3 on average also have higher corruption index, diabetes and 
cardiovascular diseases prevalence. Cluster 1 shows intermediate 

A B C D E

F G H I J

K L M N O

P Q R S T

U

FIGURE 2

Partial effects of statistically significant predictors (A–U) on COVID-19 daily case reporting rate (%) with p-values from generalized additive model 
(Deviance explained = 97.4%). p-values<0.05 were considered statistically significant.
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average values with Cluster 2 and 3 polarized in democracy index, 
voice accountability, lower respiratory infections prevalence and 
Islamic population size.

4 Discussion

We identified four demographic factors: total population, urban 
population, median age and life expectancy; seven public health 

related factors: global health security, number of physicians, number 
of nurses, malaria, diabetes, lower respiratory diseases and 
cardiovascular diseases prevalence; eight socioeconomic factors: GDP, 
human development index, democracy index, corruption index, voice 
accountability, air transport, social media and internet filtering; one 
religious factor Islamic population and one education factor literacy 
rates as significantly associated with COVID-19 case identification 
during the early stage of the pandemic in Africa. Based on these 
determinants and the estimated daily case reporting rate, the African 

FIGURE 3

(A) Dendrogram showing three major clusters from HCPC; (B) Geographical locations of the three clusters.
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countries can be  essentially categorized into three major clusters: 
northern, southern and central, where the northern region has the 
highest COVID-19 case detection, followed by the southern region, 
while the central region has the poorest performance in case detection.

Beginning with demographics, we  note that areas with a low 
urban population might see more contained and easier-to-track 
spread, while highly urbanized areas could boast better health 
infrastructure and reporting systems (Figure 2B). Middle urban areas 
may face reporting challenges as rapidly growing populations outpace 
healthcare facilities’ development (49). Countries with a higher 
median age (Figure 2C) might experience a higher COVID-19 case 
fatality rate due to increased risk in older individuals (7, 50), 
significantly straining healthcare systems. Higher life expectancy 
(Figure 2D) could indicate superior overall healthcare systems (51, 
52), potentially leading to more efficient COVID-19 detection and 
reporting. The negative association with population size (Figure 2A) 
(53) suggests that larger populations face lower reporting rates due to 
the challenges of scaling up testing and reporting infrastructure (54, 
55) or the greater likelihood of under-detection in densely 
populated areas.

Socioeconomically, a higher GDP (Figure 2N) might correlate with 
better healthcare infrastructure (56, 57), thus enhancing testing and 
reporting capacity. The democracy index (Figure  2P) suggests that 
countries with very high (58) or very low (59) scores exhibit higher 
reporting rates, possibly reflecting transparency in democratic countries 
and international scrutiny or aid in less democratic countries (60). In 
general, during the COVID-19 pandemic, many countries experienced 
declines in their democracy scores, particularly those with authoritarian 
regimes (61, 62). Increased corruption (Figure  2Q) is linked to 
decreased reporting rates, suggesting that corruption may hinder 
accurate reporting (63) due to factors like mismanagement of 
information and resources. Countries where citizens have more voice 
and accountability (Figure 2R) may report better, likely due to greater 
transparency and public demand for accurate information. This could 
also be  seen in social media censorship (Figure  2T), but beyond a 
certain level, the improvement on case reporting becomes less 
pronounced. The sharp decline at the lower end of the health 
development index (HDI) (Figure  2O) scale might suggest that 
countries with lower development levels have much lower COVID-19 
reporting rates, possibly due to limited healthcare infrastructure and 

FIGURE 4

Significant covariates characterizing the three major clusters from HCPC.
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fewer resources for testing and reporting. As countries attain a moderate 
level of human development, the reporting rate’s decrease slows, 
potentially indicating that beyond a certain threshold of development, 
improvements in reporting rates become less pronounced, possibly due 
to the establishment of basic reporting systems. Countries with 
moderate levels of air transport have the highest reporting rates 
(Figure 2S), which could be tied to better connectivity and infrastructure 
that also supports health reporting systems.

Interestingly, a higher proportion of the Muslim population 
(Figure  2E) correlates with increased reporting rates, prompting 
consideration of the complex interplay between religious practices, 
community engagement, and public health policies. This finding 
warrants further investigation to understand the underlying social 
mechanisms at play. The inverse U-shaped curve observed for literacy 
rates (Figure  2F) suggests that moderate literacy aligns with the 
highest reporting rates, likely due to the intersection of disease 
prevalence and public health awareness. Countries with high literacy 
rates might have lower incidence due to preventative measures and 
thus fewer under-reporting, while low literacy might impede disease 
recognition and reporting.

Public health insights indicate varying impacts of healthcare 
resources on COVID-19 reporting rates. Higher malaria incidence 
(Figure 2J) (64) may indicate robust disease tracking systems (65). 
Interestingly, the number of nurses per capita (Figure  2H) has a 
negative association with reporting rates, suggesting more nurses 
might not directly translate to higher reporting, potentially due to 
efficient disease management or other unaccounted factors. Conversely, 
a higher number of physicians (Figure 2I) correlates with increased 
reporting rates, possibly indicating better diagnostic and surveillance 
capacity. It could also reflect broader healthcare system quality, where 
more physicians per capita mean more comprehensive care, including 
chronic disease management, and a heightened awareness and ability 
to report infectious diseases like COVID-19. The global health security 
index’s positive association (Figure 2G) implies that countries prepared 
for health crises report more efficiently (66). This result would imply 
that countries with higher scores in global health security, which 
encompasses factors like disease detection, response, health system 
quality, and the risk environment, are likely to report COVID-19 cases 
more efficiently and accurately. This is consistent with what would 
be  expected, as a higher global health security index indicates a 
stronger healthcare infrastructure capable of dealing with pandemics. 
For diabetes prevalence (Figure  2K), a negative association would 
suggest that as the prevalence of diabetes in the population increases, 
the COVID-19 reporting rates actually decrease. This could be due to 
several potential factors. For example, countries with higher prevalence 
of diabetes may have healthcare systems that are more burdened by 
chronic disease management (67), possibly leading to less capacity for 
effective infectious disease surveillance and reporting. Alternatively, it 
could reflect socio-economic factors (68), where high diabetes 
prevalence is associated with other factors that might impede effective 
reporting, such as limited access to healthcare services or lower health 
literacy regarding infectious diseases. The inverse U-shaped 
relationship between lower respiratory infection (LRI) rates and 
COVID-19 reporting (Figure  2L) suggests that countries with 
extremely high or low LRI rates tend to have lower COVID-19 
reporting rates, while those with moderate LRI rates report more cases. 
High LRI rates may strain health resources, leading to under-reporting 
of COVID-19, whereas countries with low LRI rates might lack the 

necessary infrastructure or experience to detect and report COVID-19 
effectively. Optimal reporting is observed in countries with moderate 
LRI prevalence, possibly due to balanced health system vigilance and 
capacity. Notable exceptions, such as Libya with low LRI but high 
COVID-19 reporting rates, indicate that other factors also significantly 
influence reporting. The positive association seen with cardiovascular 
disease death rates (Figure 2M) suggests that countries with a greater 
number of reported deaths from cardiovascular diseases have a greater 
COVID-19 reporting rate. As cardiovascular related diseases are the 
leading cause of death in Africa (69), countries with a higher number 
of reported deaths from such diseases would also possess enhanced 
disease surveillance and reporting practices and thus have a higher 
COVID-19 reporting rate.

Studies have been conducted to find possible reasons for the low 
numbers of cases and deaths in Africa. The proportion of older adult 
people (≥60 years old) was identified to be the major factor to explain low 
case number, and the health systems capacities was identified to 
be responsible for the case under-estimation in one study (70). In another 
study, international flights, testing capacity, population density, young 
population, Vitamin D levels, cross-immunity from other infections, 
temperature and UV light and humidity were listed as potential reasons 
for Africa’s low case number (71). However, it is worth note that our 
study is different as the subject of this study is the reporting/under-
reporting rate, rather than the overall case number. To our knowledge, 
there have not been investigations on the determinants of COVID-19 
case reporting in Africa. The dependent variable of COVID-19 daily case 
reporting fraction was estimated using the same mechanistic 
mathematical model for all African countries and therefore provide a 
reliable and fair comparison among them (9). Our study also considered 
a wider range of potential factors than those in existing literature (10, 
12–15). Interestingly, some factors do not show the same relationship 
with total case number and case reporting ratio. For example, higher air 
transport rate and human development index are contemplated to 
associate with higher COVID-19 case number (71), but they demonstrate 
an inverse U-shaped rather than monotonic association with the 
reporting ratio (Figure 2). And while larger median age implies more 
cases, its relationship with reporting ratio is negative (Figure 2D). That 
could provoke further thinking on how the factors affect the case 
reporting system. The clustering results from our HCPC analysis are in 
general agreement with other studies. For example, previous emerging 
infectious diseases epidemics revealed the vulnerability of Western and 
Central Africa in facing both known and unknown pathogens due to a 
growing urban population with insufficient public health infrastructure 
(72), and moreover, Northern and Southern Africa show higher 
capacities in health systems (70). However, it should be  noted that 
reporting practice varies as the outbreak progresses, and the case 
reporting rate used here is only the estimate for the initial phase of the 
pandemic. Therefore, these determinants could be interpretated as the 
preparedness in face of a novel emerging communicable disease outbreak 
but cannot be extended to subsequent efforts made by the nations or the 
overall case identification performance over the entire course.
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