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Background: Population aging is a pivotal trend observed globally, and the 
exposure to heavy metals can exacerbate the aging process and lead to kidney 
damage. However, the impact of combined heavy metal exposure on renal 
function among older individuals remains elusive. Our study employs machine 
learning techniques to delve into the effects and underlying mechanisms of 
mixed exposure to heavy metals on the renal function of the aging population.

Methods: This study extracted comprehensive data from the National Health 
and Nutrition Examination Survey (NHANES) conducted between 2015 and 
2020. A total of 3,175 participants aged 60  years and above, with complete 
information on six metals – lead, cadmium, manganese, cobalt, mercury, and 
selenium, along with relevant covariates, were included in the study. To assess 
the impact of single or mixed metal exposure on the renal function of older 
adult individuals, various statistical techniques were employed: multiple logistic 
regression, weighted quantitative sum (WQS) regression, Bayesian kernel 
machine regression (BKMR), and mediation effects analysis.

Results: Multiple logistic regression revealed that selenium and manganese 
were protective factors for chronic kidney disease (CKD). Cobalt was a risk factor 
for CKD. High concentrations of lead, cadmium, and cobalt were risk factors 
for urinary albumin creatinine ratio (ACR). WQS analyses revealed that mixed 
metal exposure was positively correlated with estimated glomerular filtration 
rate (eGFR) but negatively correlated with CKD. Selenium and manganese can 
neutralize the effects of other metals on eGFR. Mixed metal exposure was 
positively correlated with ACR, with lead and cadmium having a substantial 
effect. Mediation analysis showed that uric acid (UA) had a mediating effect 
of 9.7% and −19.7% in the association between mixed metals exposure and 
proteinuria and CKD, respectively.

Conclusion: The impact of heavy metals on renal function in the older adult 
differs from that of adolescents and adults. This study suggests that elevated 
levels of mixed metals exposure are linked to proteinuria and CKD, with UA 
serving as a mediating factor.
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1 Introduction

Population aging is a global concern. Globally, the population 
aged ≥60 years is estimated to be  9.01 million (12% of the total 
population); this number is expected to increase to 2 billion by 2050 
because of the rise in life expectancy (1). By 2040, the number of 
Americans aged ≥65 years will reach 80.8 million, accounting for 
approximately 21.6% of the total population. Among them, the 
population aged ≥85 years will reach 14.4 million by 2040, an increase 
of 123% from 6.5 million in 2017 (2). In Europe, by 2060, the 
population aged ≥65 years will account for 28% of the European 
population (3). In China, by 2050, the population aged ≥65 years will 
increase to 400 million, accounting for 26.9% of the total population, 
of which the population aged ≥80 years will reach 150 million (4). 
During the aging process, the kidneys undergo progressive functional 
decline and macroscopic and microscopic histological changes, 
especially after 70 years of age (5). Despite significant structural and 
physiological changes, healthy older individuals seem to retain 
normal kidney function. As their renal reserve is substantially 
decreased, their kidneys are more susceptible to physiological, 
pathological, and toxicological challenges (6). However, there is 
relatively little research on the effect of environmental toxin exposure 
on the kidney health of older adult people.

Heavy metals are prevalent in various environmental media, such 
as air, soil, drinking water, and food; kidneys are important targets of 
heavy metal attacks (7). Older people may be  exposed to toxic 
pollutants more frequently than in previous decades because of the 
extension of life expectancy and the increase in environmental 
pollution levels. They may also be exposed to higher levels of toxic 
pollutants, which increases the likelihood of kidney damage (8). 
Previous studies have found that metals and their combinations, 
including arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd), 
may affect kidney function in adolescents (9). Another study found 
that plasma levels of manganese (Mn), iron (Fe), and zinc (Zn) can 
prevent chronic kidney disease (CKD) in older people aged ≥90 years 
in long-lived areas (10). In individuals over 60 years of age, urinary 
copper (Cu) concentration is strongly positively correlated with ACR 
(11). The effect of heavy metals on renal function in older people 
might be significantly different from that in adults. However, research 
focusing on the effects of heavy metals on the renal function of older 
adult people is scarce. Furthermore, the role of metals in diseases often 
depends on their cooperation and interaction. A single metal is 
insufficient to comprehensively elucidate the occurrence and 
development of diseases. Therefore, it is worth exploring the effect of 
mixed metal exposure on the renal function of older adult people. In 
this study, we investigated the effects of six metals (Pb, Cd, Mn, cobalt 
(Co), Hg, and selenium (Se)) on renal function due to their known 
potential impacts on human health. These metals are commonly found 
in the environment and can be  introduced into the body through 
various pathways, such as ingestion, inhalation, or skin contact (12). 
Exposure to these metals has been associated with a range of adverse 
health effects, including kidney damage, neurological problems, and 
developmental issues (13, 14). The potential pathophysiological 
mechanisms between metal exposure and renal health can be complex 
and multifaceted. Here are some possible pathways: oxidative stress, 
inflammation, direct toxicity, enzyme inhibition (15–17).

Moreover, the accumulation of uric acid (UA) in the body can lead 
to the occurrence of hyperuricemia or CKD (18). Moreover, there is a 

positive correlation between blood metal mixture and gout related 
results (19). However, there have been no studies reporting whether 
the effects of metal mixed exposure on the kidneys are mediated by 
UA. The aim of this study is to use cross-sectional survey data to 
elucidate the association between metal mixed exposure and kidney 
injury in the older adult, as well as the mediating role of UA.

2 Materials and methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is an ongoing nationwide cross-sectional survey with data 
available at the Centers for Disease Control and Prevention in the 
United States. This research protocol was approved by the Research 
Ethics Review Committee of the National Center for Health Statistics 
in the United States. All participants provided written consent during 
recruitment. We  included data from older adult participants aged 
≥60 years between March 2015 and March 2020 (N = 5,323). Next, 
we  excluded dialysis participants (N = 37) and individuals lacking 
information on all six metals (N = 1,458). We also excluded individuals 
with missing data on serum creatinine (Scr), urinary albumin 
creatinine ratio (ACR), age, body mass index (BMI), alcohol 
consumption, and UA (N = 653). Finally, we enrolled 3,175 patients, 
of whom 639 were diagnosed with CKD (Figure 1).

2.2 Renal function assessment

We used estimated glomerular filtration rate (eGFR) and ACR to 
evaluate renal function. eGFR is based on the Chronic Kidney Disease 
Epidemiological Collaboration equation (20). The CKD-EPI equation, 
expressed as a single equation, is GFR = 141 × min(Scr/κ,1) 
ɑ × max(Scr/κ, 1)−1.209 × 0.993Age × 1.018 [if female] × 1.159 [if 
black], where Scr is serum creatinine, κ is 0.7 for females and 0.9 for 
males, ɑ is −0.329 for females and −0.411 for males, min indicates the 
minimum of Scr/κ or 1, and max indicates the maximum of Scr/κ or 
1. We conducted continuous and binary result analyses on eGFR and 
ACR. As a binary result, eGFR below 60 mL/min/1.73 m2 was used to 
define CKD, and proteinuria was defined based on ACR ≥ 30 mg/g (21).

2.3 Measurement of blood chromium (Cr), 
cobalt (co), Pb, cd, Mn, selenium (se), and 
hg

All measurements of metal exposure were based on whole blood 
samples. All measurements were conducted at the National Center for 
Environmental Health and Centers for Disease Control and 
Prevention in Atlanta, Georgia. Cr and Co concentrations were 
measured using inductively coupled plasma mass spectrometry. 
However, Cr was not used in the analysis as Cr levels were below the 
minimum detection limit in 81.5% of the participants. Moreover, after 
the dilution sample preparation step, mass spectrometry was used to 
measure the concentrations of Pb, Cd, total Hg, Mn, and Se in whole 
blood. The detection rate and LLOD of the seven metals were 
presented in Table 1.
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2.4 Statistical analysis

2.4.1 Baseline statistical methods
All analyses were conducted using R (version 4.3.1). The 

demographic characteristics were compared between CKD status groups 
through chi-square test, t-test, and Mann–Whitney U test for categorical 
variables, normal continuous variables, and nonnormal continuous 
variables. Metal concentrations were categorized into four quartiles (Q1, 
Q2, Q3, and Q4) as categorical variables. Multivariate logistic regression 
was used to estimate the odds ratio (OR) and corresponding 95% 
confidence interval (CI) of metals related to CKD risk and ACR. All 
analyses were adjusted for age, gender, race/ethnicity, education, drinking 
status, BMI, smoking status, hypertension, and diabetes history.

2.4.2 WQS
Weighted quantile sum (WQS) regression was used to explore the 

overall effect of metals on CKD and ACR, as it performs well in 
characterizing environmental mixtures. The R package gWQS ver 3.0.5 

was used to calculate the WQS index, which comprises the weighted 
sum of individual metal concentrations based on experience. The WQS 
index (ranging from 0 to 1) represents the mixed exposure level of 
metals, and the components of interest are determined by non-negligible 
weights. The final result was explained as the synchronous effect of 
adding one quartile to the mixed metal on CKD and ACR.

2.4.3 BKMR
Considering the potential nonlinear and nonadditive relationships 

among metals, Bayesian kernel machine regression (BKMR) was used 
to evaluate the mixed effects of all metals and the dose–response 
relationship between a single metal and CKD and ACR risks when 
fixing other metal concentrations (22). We mainly used the BKMR 
model to explore and visualize the following three exposure-response 
functions. (1) The univariate exposure-response function of single 
heavy metal exposure on CKD and ACR risk while fixing the other five 
metals at their corresponding median concentrations; (2) cumulative 
effects of metal mixtures at different quantiles on CKD and ACR risk 
compared to setting all mixtures at median concentrations; and (3) the 
posterior inclusion probability (PIP) of each metal in the mixture to 
determine the metal with the most significant effect on CKD risk.

We implemented a BKMR variable selection model with 10,000 
iterations using the Markov Chain Monte Carlo algorithm. We then 
studied the convergence of the model by visually examining the trajectory 
map. The BKMR model was analyzed using the R package bkmr ver 0.2.2.

2.4.4 Mediation analysis
Finally, mediation analysis allows us to calculate how many 

mediated effects are produced by other factors. In addition to 
providing statistical evidence for mechanistic analyses, this strategy is 
ideal for revealing pathways. The direct effect indicates the association 

FIGURE 1

Flow chart of the inclusion subjects. Scr, serum creatinine; ACR, urinary albumin creatinine ratio; BMI, body mass index; CKD, chronic kidney disease.

TABLE 1 The detection rate and LLOD of the seven metals.

Analyte description LLOD The detection rate

Cd, blood 0.10 μg/L 97.2%

Pb, blood 0.07 ug/dL 100.0%

Mn, blood 0.99 μg/L 100.0%

Hg, total, blood 0.28 ug/dL 84.1%

Se, blood 24.48 ug/dL 100.0%

Cr, blood 0.41 μg/L 18.5%

Co, blood 0.06 μg/L 96.7%
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between mixed metals and eGFR or ACR. The indirect effect indicates 
the association is mediated by other factors. The mediation ratio 
indicates the percentage of mediated effects. The WQS is a method for 
evaluating a mixture-outcome association by calculating a summary 
score for the mixture. If we consider the mixed metal exposure as a 
score, it becomes straightforward to treat it as any other variable. 
There are studies adopting similar methodologies, such as Wu et al. 
investigating the mediator between volatile organic compound 
co-exposure and kidney stones (23). Mediation analysis was 
performed using the R package mediation ver 4.5.0.

3 Results

3.1 Demographic characteristics

Of 3,175 older adult people, 639 were diagnosed with CKD (Table 2). 
The demographic characteristics of study participants with or without 

CKD. There were significant differences in age, race, BMI, education level, 
ACR, uric acid, hypertension, and diabetes history between the CKD and 
non-CKD groups.

3.2 Distribution and correlation of metals in 
the blood

There were significant differences in the serum concentrations of 
Pb, Cd, Hg, Se, Mn, and Co between the CKD and non-CKD groups. 
The CKD group had significantly higher concentrations of Pb, Cd, and 
Co than the non-CKD group. Spearman correlation analysis showed 
that the correlation coefficients of Cd and Pb, Cd and Co were 0.29 
and 0.22, respectively (Figure 2).

3.3 Multiple logistic regression analysis

Multiple logistic regression analysis revealed significant 
correlation between the concentrations of Se (Q3 vs. Q1; OR, 0.68; 

TABLE 2 Characteristics of the study population.

Overall Non-CKD CKD p

Number 3,175 2,536 639

Albumin creatinine ratio (mg/g) 10.20 (6.11, 22.38) 9.36 (5.88, 19.06) 14.89 (7.72, 54.84) <0.001

Gender (female,%) 1,508 (47.5) 1,199 (47.3) 309 (48.4) 0.658

Age (year) 69.47 (6.82) 68.42 (6.48) 73.63 (6.54) <0.001

Race (%) <0.001

 Mexican American 333 (10.5) 295 (11.6) 38 (5.9)

 Other Hispanic 363 (11.4) 322 (12.7) 41 (6.4)

 Non-Hispanic White 1,387 (43.7) 1,017 (40.1) 370 (57.9)

 Non-Hispanic Black 747 (23.5) 612 (24.1) 135 (21.1)

 Non-Hispanic Asian 244 (7.7) 210 (8.3) 34 (5.3)

 Other Race – including multi-racial 101 (3.2) 80 (3.2) 21 (3.3)

Education (%) 0.002

 Less than 9th grade 357 (11.2) 299 (11.8) 58 (9.1)

 9–11th grade (Includes 12th grade with no diploma) 360 (11.3) 288 (11.4) 72 (11.3)

 High school graduate/GED or equivalent 791 (24.9) 594 (23.4) 197 (30.8)

 Some college or AA degree 933 (29.4) 747 (29.5) 186 (29.1)

 College graduate or above 734 (23.1) 608 (24.0) 126 (19.7)

Body mass index (kg/m2) 29.71 (6.45) 29.52 (6.43) 30.45 (6.48) 0.001

Uric acid (umol/L) 337.52 (86.59) 324.08 (79.84) 390.85 (91.69) <0.001

Alcohol user (%) 2,680 (84.4) 2,143 (84.5) 537 (84.0) 0.819

Smoker (%) 1,560 (49.1) 1,234 (48.7) 326 (51.0) 0.307

Hypertension (%) 1,188 (37.4) 923 (36.4) 265 (41.5) 0.02

Diabetes (%) 819 (25.8) 605 (23.9) 214 (33.5) <0.001

Lead (ug/L) 1.23 (0.84, 1.85) 1.20 (0.82, 1.81) 1.32 (0.93, 1.99) <0.001

Cadmium (ug/L) 0.34 (0.22, 0.55) 0.33 (0.21, 0.54) 0.37 (0.24, 0.58) 0.003

Mercury (ug/L) 0.74 (0.38, 1.54) 0.76 (0.39, 1.58) 0.64 (0.34, 1.32) <0.001

Selenium (ug/L) 185.13 (169.55, 202.37) 185.96 (170.70, 202.96) 181.34 (165.66, 199.96) <0.001

Manganese (ug/L) 8.72 (7.04, 10.75) 8.82 (7.09, 10.88) 8.42 (6.78, 10.34) 0.001

Cobalt (ug/L) 0.14 (0.11, 0.18) 0.14 (0.11, 0.17) 0.16 (0.12, 0.22) <0.001
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95% CI, 0.51–0.91; p = 0.010), Mn (Q4 vs. Q1; OR, 0.62; 95% CI, 0.45–
0.83; p = 0.002), and Co (Q4 vs. Q1; OR, 1.58; 95% CI, 1.19–2.12; 
p = 0.002) and the incidence of CKD (Figure 3A). Meanwhile, high 
concentrations of Pb (Q4 vs. Q1; OR, 1.70; 95% CI, 1.27–2.27; 
p < 0.001), Cd (Q4 vs. Q1; OR, 1.39; 95% CI, 1.04–1.87; p = 0.029), and 
Co (Q3 vs. Q1; OR, 1.33; 95% CI, 1.02–1.74; p = 0.037) were identified 
as risk factors for proteinuria (Figure 3B). Continuous outcome results 
also be provided in Figures 3C,D.

3.4 WQS analysis

We preliminarily studied the effects of mixed serum heavy metal 
exposure on eGFR, ACR continuous variables, and CKD and 
proteinuria binary variables (Figure 4). Mixed metal exposure was 
positively correlated with eGFR but negatively correlated with 
CKD. Se, Hg, and Mn had significant effects on eGFR and CKD. Mixed 
metal exposure was positively correlated with ACR and proteinuria, 
and the weights of Pb, Cd, and Co metals were relatively high, 
consistent with logistic regression results.

3.5 BKMR analysis

We further investigated the relationship between the co-exposure 
to six blood heavy metals and eGFR, CKD, ACR, and proteinuria 
using the BKMR model (Figures 5, 6). The Figure 5 shows a negative 
correlation between mixed exposure to six metals and CKD. Co, Se, 
and Mn had the highest weight proportion in mixed metal exposure. 
The exposure level of other blood heavy metals was set at the median 
to evaluate the effect of a single metal exposure reaction function. Co 
was positively correlated with CKD, Mn was negatively correlated 
with CKD, and Se was positively U-shaped correlated with 
CKD. Mixed exposure to six metals was positively correlated with 
proteinuria in the older adult participants, with Cd, Pb, and Se 
weighing the highest. Figure 6 shows the correlation between each 
metal and ACR.

3.6 Mediation of UA

We have performed mediation analyses to assess whether UA 
mediates the association between metals and the occurrence of 
proteinuria and CKD. The model and pathway for the mediation 
analysis are shown in Figure  7. After adjusting for all potential 
confounders, the results showed approximately 9.7% ([95% CI, 
3.5–29.1%]; p = 0.003) of the effect of mixed metals exposure on 
proteinuria was mediated by UA. Approximately −19.7% ([95% CI, 
−64.2 – −1.9%]; p = 0.03) of the effect of mixed metals exposure on 
CKD was mediated by UA. The mediating effect of UA between mixed 
metals and eGFR and ACR is also presented in Figure 7.

4 Discussion

The study firstly found that mixed exposure to six metals was 
positively correlated with proteinuria in older adult participants, with 
UA acting as a mediating factor. Se and Mn were identified as 
protective factors against CKD, while Co was determined to be a risk 
factor for the development of CKD. However, this is a cross-sectional 
study, which cannot conclude the casual relationship between metals 
and renal function. Longitudinal studies should further evaluate 
whether the mixed effects of metals and other nephrotoxic substances 
may be a risk factor for renal injury in older adult people.

Cd, Pb, and Hg are toxic metals generated both naturally and 
through human activities; these metals can chemically pollute products 
that enter the human food chain (24, 25). Cd, Pb, and Hg are associated 
with an increased risk of various age-related chronic diseases, including 
cardiovascular disease, CKD, and osteoporosis (26–28). Hg, Cd, and Pb 
ions in the blood bind to thiol-containing biomolecules such as albumin, 
glutathione, and cysteine to some extent, leading to kidney damage (29). 
Inflammation is also an important mechanism by which cadmium and 
other substances cause kidney damage (30, 31). Even low levels of Cd in 
the kidneys during renal biopsy can induce mild tubular atrophy, and a 
positive correlation has been reported between renal Hg and renal 
arteriosclerosis (32, 33). A study from South Korea found no association 
between Pb, Hg, and Cd levels in the blood of adolescents and eGFR 
(34). However, a study from China found that both single and mixed 
exposure to Cd and Pb in adults is associated with renal dysfunction 
(35). A study from the United States also found that, in adults, excessive 
exposure to Pb, as well as any level of Cd and total Hg, can have adverse 
effects on kidney function and health (36). Therefore, the effects of Cd, 
Pb, and Hg on renal function may vary among age groups. The present 
study found that Pb, Hg, and Cd were not associated with CKD in the 
older adult participants, whereas Pb and Cd were associated with 
proteinuria in the older adult participants. Co—an essential element and 
a well-known component of cobalamin (vitamin B ₁₂)—has recently 
been proven to be a mimic of hypoxia and a stimulant for reactive 
oxygen species production, but it is toxic at high concentrations (37). 
This study found a close correlation between Co and proteinuria.

There are many studies about the effects and mechanisms of Se 
and Mn on renal function and proteinuria in participants. Among all 
human organs, the kidneys and thyroid have the highest Se content 
(38). Se can enhance antioxidant capacity, primarily by increasing the 
activity of antioxidant enzymes, such as glutathione peroxidase (39). 
A placebo-controlled study targeting the older adult population in 
Sweden demonstrated that low Se status is associated with age-related 

FIGURE 2

Spearman correlation plot of concentrations of individual metals.
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decline in kidney function. In this study, dietary supplements were 
administered for 4 years with a Se content of 200 μg. Compared with 
the functional indicators of the placebo group, there was a significant 
improvement in renal function with Se and coenzyme Q10 (40). A 
study on the Se status and CKD of 5,381 middle-aged and older adult 
people suggests that adequate Se intake may have a positive effect on 
CKD (41). Our study found that Se has a protective effect on 
proteinuria and CKD. Mn is crucial for the normal operation of 
various metabolic enzymes and cofactors. It is also an essential trace 
element for maintaining normal bodily functions, a cofactor of many 
enzymes, crucial for substance and energy metabolism, immune 
function, and blood glucose regulation, and has antioxidant effects 
(42). Studying plasma levels of Mn, Fe, and Zn can prevent the risk of 

CKD in older adult people (≥ 90 years) in long-lived areas (10). This 
study also found that Mn was negatively correlated with the incidence 
rate of CKD. Another study showed that blood Cu levels are 
significantly associated with CKD risk, showing a positive dose–
response relationship in the Chinese older adult population. Exposure 
to Mn can antagonize the toxicity of Cu on renal function (43).

The analyses of mixtures, rather than of single metals, may provide 
a real-world perspective on the relationship between metals and kidney 
function (44). Previous studies have found that mixed exposure to three 
nephrotoxic metals (Cd, Pb, and Hg) in the blood is unrelated to eGFR 
and urinary protein in adolescents (9). Another study reported that 
exposure to coexisting heavy metal mixtures (Co, Cr, Hg, and Pb) is 
associated with indicators of poor kidney function in adults (45). Our 

FIGURE 3

OR (95% CI) in eGFR, CKD, ACR, and proteinuria associated with single metals levels. OR, odds ratio; CI, confidence interval; CKD, chronic kidney disease.
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study found that there is a positive correlation between mixed exposure 
to six metals and ACR, with higher concentrations leading to greater 
proteinuria risk, among which Pb and Cr have a larger weight. 

Moreover, in the univariate analysis, Pb and Cd were identified as risk 
factors for proteinuria. However, mixed exposure to six metals was 
positively correlated with CKD, possibly because Pb, Hg, and Cd were 

FIGURE 4

Identification of blood heavy metals in the mixture using the WQS model. WQS, weighted quantile sum.

FIGURE 5

Combined effects of the metals as a mixture on eGFR and CKD in older adult people. eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease.
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not associated with CKD in older adult participants. Although Co was 
negatively correlated with CKD, Se and Mn accounted for a significant 
proportion, which could neutralize the kidney damage caused by Co.

Increased serum levels of UA have been associated with the onset 
and development of CKD, through several molecular pathogenetic 
mechanisms, such as inflammation and oxidative stress (46). Multiple 
studies have found a close correlation between heavy metals and high 
UA levels (19, 47). Our study reveals for the first time that heavy 

metals can not only directly affect the kidneys, but also regulate renal 
function by mediating UA levels.

5 Conclusion

To our knowledge, the study is the first to investigate the 
relationship between mixed exposure to six metals (Pb, Cd, Hg, Se, 

FIGURE 6

Combined effects of the metals as a mixture on ACR and proteinuria in older adult people. ACR, urinary albumin creatinine ratio.

FIGURE 7

Path diagram of the mediation analysis model. In the mediation analysis, mixed metals are defined as the exposure factor; proteinuria, ACR, eGFR, and 
CKD are defined as the outcome; and UA is defined as the mediator. CKD, chronic kidney disease; UA, uric acid.
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Mn, and Co) and renal function measured in the blood of older adult 
people, and UA serving as a mediating factor. Our results indicate that 
both single and mixed metal exposure may affect renal function, 
although potential reverse causal relationships cannot be ruled out 
because of the cross-sectional study design. Our results show that the 
heavy metals in the blood (Pb, Cd, Hg, and Co) are associated with 
renal function damage, whereas Se and Mn have a protective effect on 
renal function in older adult people. When exposed to a metal 
mixture, Se and Mn may counteract the renal damage caused by other 
metal ions. Longitudinal studies should further evaluate whether the 
mixed effects of metals and other nephrotoxic substances may be a 
risk factor for renal injury in older adult people.
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