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Background: Obesity, characterized by excessive or abnormal fat accumulation, 
is a major public health concern. Air pollution is a significant potential obesogenic 
factor, but the clear direct and indirect correlations between air pollution 
and obesity remain unclear. This study aims to provide a comprehensive 
understanding of the relationship between air pollution and obesity by identifying 
both direct and indirect causal correlations.

Methods: We used nationally representative data from the China Family Panel 
Survey. Air pollution concentrations were quantified as the mass (μg) of air 
pollutants per cubic meter (m3) based on nationally representative statistical 
data. To minimize statistical bias inherent in traditional methods, the direct 
relationship between air pollution and obesity was estimated using a regression 
discontinuity model, while the potential underlying mechanisms were explored 
through structural equation modeling.

Results: Air pollution was generally positively associated with overweight/obesity 

( AQI
OWOR   =  1.109, [95%CI  =  1.027:1.305], AQI

OBOR   =  1.032, [95%CI  =  1.006:1.217], 

AQI
SOOR   =  1.069, [95%CI  =  1.014:1.208], PM2.5 and PM10 positively affected 

overweight/obesity ( 2.5PM
OWOR   =  1.173, [95%CI  =  1.094:1.252], 2.5PM

OBOR   =  1.022, 

[95%CI  =  1.016:1.028], 2.5PM
SOOR   =  1.035 [95%CI  =  1.015:1.055], 10PM

OWOR   =  1.053, 

[95%CI  =  1.030:1.076], 10PM
OBOR   =  1.008 [95%CI  =  1.006:1.010], 10PM

SOOR   =  1.013 
[95%CI  =  1.007:1.019]), and SO2 and CO posed negative impacts on 

overweight/obesity ( 2SO
OWOR   =  0.972, [95%CI  =  0.965:0.979], 2SO

OBOR   =  0.997, 

[95%CI  =  0.996:0.998], 2SO
SOOR   =  0.994, [95%CI  =  0.991:0.997], CO

OWOR   =  0.986, 
[95%CI  =  0.980:0.992], CO

OBOR   =  0.998, [95%CI  =  0.997:0.999], CO
SOOR   =  0.999, 

[95%CI  =  0.998:0.999]). The impact of air pollution on overweight/obesity 
was more significant among men, older individuals, and rural populations 
compared to women, younger individuals, and urban populations. Furthermore, 
the relationship between air pollution and overweight/obesity was mediated 
by social behavior determinants, including physical activity (β  =  0.18, 
[95%CI  =  0.04:0.29]), sedentary behavior (β  =  0.12, [95%CI  =  0.04:0.16]), sleep 
(β  =  0.06, [95%CI  =  0.02:0.13], smoking (β  =  0.07, [95%CI  =  0.02:0.15]), alcohol 
consumption (β  =  0.08, [95%CI  =  0.04:0.11]), and mental health (β  =  0.06, 
[95%CI  =  0.01:0.09]).
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Conclusion: Air pollution was generally associated with an increased risk 
of overweight and obesity, with PM2.5 and PM10 having a positive influence, 
while SO2 and CO had a negative impact. The effect of air pollution was more 
pronounced among men, older individuals, and rural populations compared to 
women, younger individuals, and urban populations. Additionally, social behavior 
factors, such as physical activity, sedentary behavior, sleep, smoking, alcohol 
consumption, and mental health, predominantly mediated the relationship 
between air pollution and obesity.

KEYWORDS

obesity, air pollutants, determinants, regression discontinuity, structural equation 
modeling

1 Introduction

Overweight and obesity (OW/OB), characterized by excessive and 
abnormal accumulation of fat, have become major threats to public 
health worldwide (1–4). The prevalence of OB has reached pandemic 
proportions, affecting over 650 million adults and 340 million 
adolescents globally (5–7). The strong correlation between OW/OB 
and chronic diseases like type 2 diabetes, hypertension, liver cancer, 
colon cancer and myocardial infarction has been widely proven (4, 
8–10). Moreover, OB is also associated with psychological factors such 
as self-esteem, depression, and weight-based stigma, negatively 
impacting life expectancy and general wellbeing (7, 11). Additionally, 
the global medical costs associated with OW/OB treatments are 
projected to rise to 300 billion dollars by 2030, accounting for a 
staggering 21.5% of total healthcare expenditures (7, 11, 12).

Given the significant impact of OW/OB on public health, 
identifying key determinants has become an urgent priority. While 
traditional factors such as diet, exercise, and sleep have been 
extensively studied (13–17), the relationship between air pollution and 
OW/OB remains underexplored.

Air pollution, which consists of harmful compounds in the 
atmosphere emitted by both natural and human sources, including 
particulate matter, carbon oxides, sulfur oxides, and nitrogen oxides, 
has been identified as a potentially important determinant of several 
diseases (5, 10, 13). According to the WHO, air pollution and OW/OB 
rank as the second and third most hazardous determinants of mortality 
(5). Given these alarming statistics, the joint prevention and control of 
air pollution and OW/OB has become a critical priority, particularly 
in line with the UN General Assembly High-Level Meeting’s political 
declaration on disease prevention and control efforts (5, 10, 13).

From an academic perspective, the causal relationship between air 
pollution and OW/OB has not been fully established (6, 18). Several 
empirical studies have demonstrated that improved air quality can 

contribute to weight loss by reducing the respiratory burden and 
mitigating endocrine disorders (5, 19, 20). However, some studies 
have found that air pollution has an insignificant influence on OW/
OB. For instance, Furlong and Klimentidis reported a statistically 
insignificant relationship between nitrogen oxides and obesity (21), 
and Yu concluded that PM exposures were unrelated to obesity (22). 
Similar findings were reported by other interdisciplinary scholars (19).

This conflicting evidence is further highlighted in a meta-analysis 
that examined the correlation between air pollutants and OW/OB, 
which found that 44% of the studies showed a positive correlation, 44% 
showed no correlation, and 12% showed a negative correlation (23). 
This controversy likely stems from the fact that prior research focused 
solely on correlations rather than causality, resulting in statistical biases 
such as sample self-selection, omitted variables, and reverse causation, 
which have affected the accuracy of the estimates (2, 4, 6).

Moreover, another significant academic gap in prior research is 
the unclear potential mechanisms linking air pollution and OW/
OB, especially from a social behavior perspective (2, 4, 6, 21, 24). 
Social behavior, defined as the “aggregate of behaviors produced by 
individuals based on their specific social class,” is recognized by 
sociologists as a key determinant of health disparities (25). 
Incorporating social behavior into obesity research aligns with the 
bio-socioecological framework for obesity analysis, as outlined in 
“The Lancet” (26). However, prior studies have largely overlooked 
the potential mechanisms through which air pollution impacts 
obesity, as mediated by social behavior factors. In the present study, 
we address this gap by including six mediators: physical activity, 
sleep duration, smoking, alcohol consumption, mental health, and 
sedentary behavior. These factors are not only influenced by air 
pollution but are also important determinants of obesity (11, 
27, 28).

Taken together, two major academic gaps have been identified in 
previous analyses of the relationship between air pollution and OW/
OB: the lack of accurate causal analyses and the limited exploration of 
potential mechanisms related to social behavior. To address these 
gaps, we isolate the net direct association between air pollution and 
OW/OB using a regression discontinuity (RD) model based on an 
arbitrary Chinese heating policy. Additionally, we explore the indirect 
relationship between air pollution and OW/OB through the mediation 
of social behavior factors. The following three questions are discussed: 
(1) What is the causal relationship between air pollution and obesity? 
(2) What is the indirect correlation between air pollution and obesity, 

Abbreviations: WHO, World Health Organization; PM, particular matter; PAHs, 

polycyclic aromatic hydrocarbons; RD, regression discontinuity; CFPS, China 

family panel survey; QHB, Qin Huai Boundary; APCs, Air pollutants concentrations; 

CESY, Chinese Environmental Statistical Yearbook; CCAQMR, Chinese City Air 

Quality Monthly Reports; IMRC, International Reference Method Criteria; OW, 

overweight; OB, obesity; SO, severe obesity; BMI, body mass index; PA, physical 

activity; MH, mental health; SB, sedentary behavior.
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mediated by social behavior factors? (3) How do these relationships 
vary across different subgroups?

We chose only Chinese adults aged 18–60 because they are more 
exposed to air pollution exposure due to outdoor work and represent 
the group most severely affected by obesity (11, 29).

2 Methodology

2.1 Study design and subjects

The present study utilized nationally representative large-scale 
data from the China Family Panel Survey (CFPS), a comprehensive 
database conducted by Peking University. The CFPS provides robust 
data on respondents’ geographic location, body features, and 
demographic characteristics, offering substantial evidence to analyze 
the relationship between air pollution and OW/OB. The 2016, 2018, 
and 2020 rounds of the CFPS were selected because they covered all 
31 Chinese provinces.

Initially, the dataset included 86,335 respondents. The following 
pre-processing steps were performed: First, respondents with missing 
geographic location, height, weight, or demographic characteristics 
were removed, yielding 37,825 respondents. Second, we retained only 
individuals aged 18–60 years, resulting in 32,711 respondents. Third, 
we  excluded respondents with incorrectly entered data (e.g., 
height ≤ 50 cm or ≥ 300 cm and weight ≤ 20 kg or ≥ 300 kg), leaving 
32,158 respondents for analysis. This study was approved by the 
Institutional Ethics Committee of Xi’an Jiaotong University.

2.2 Key variables

2.2.1 Air pollutants concentrations
Air pollutant concentrations (APCs) were measured as the mass 

(μg) of air pollutants per cubic meter (m3), including PM2.5, PM10, SO2, 
CO, NO2, and O3. To provide a comprehensive view of the relationship 
between air pollution and obesity, we also generated the Air Quality 
Index (AQI). We  determined the APC data for each respondent 
through the following steps:

(1) Identifying the respondent’s residence. Geographic 
information for respondents’ residences was obtained using the China 
Geographic Information Public Service Platform.1

(2) Constructing the APC database. We built an APC database for 
each respondent by integrating data from the Chinese Environmental 
Statistical Yearbook (CESY) and Chinese City Air Quality Monthly 
Reports (CCAQMR). APC information for each respondent was 
calculated on a city-by-city basis. Detailed steps for generating APCs 
can be found in the Supplementary Data 1.

(3) Balancing potential bias. APC data for PM2.5, PM10, SO2, NO2, 
and CO were weighted by their daily average values, while for O3, the 
8-h average daily maximum concentration was used. All six APCs 
were measured in strict accordance with the International Reference 
Method Criteria (IRMC) (30). To account for respondents who may 
have moved during the interview year, APC data were time-weighted 

1 www.tianditu.gov.cn

based on their different residences. To improve estimation accuracy, 
we  employed parcel-level data in an inverse distance-squared 
weighting algorithm, which spatially interpolated air quality data from 
up to four monitoring stations within a 50 km radius of each 
participant’s residence (18).

(4) Generating the AQI index. The AQI was calculated to assess 
the air pollution status in each region. The AQI determines whether 
the six APCs meet or exceed limit values, with higher scores indicating 
more severe air pollution (30, 31). Additional details on the AQI 
calculation process are shown in Supplementary Data 1 and 
Supplementary Table S2.

Notably, we  selected six APCs and the AQI to report 
simultaneously to capture a comprehensive view of the relationship 
between air pollution and OW/OB. We obtained daily information on 
the concentrations of the six pollutants for the CFPS-validated cities 
for the period 2016–2020. Pollutant concentrations averaged over the 
CFPS survey months (July of each year) were then calculated by 
averaging the mean values. The AQI calculations were based on the 
following time frames: (1) PM10: 24-h, (2) PM2.5: 24-h, (3) NO2: 1-h, 
(4) O3: 8-h, (5) SO2: 1-h, and (6) CO: 8-h (30, 31). More details are 
provided in the section Supplementary Data 1.

2.2.2 Obesity outcomes
We focused on three OW/OB categories: OW, OB, and severe 

obesity (SO). Body Mass Index (BMI) was used to assess these states, 
calculated as weight (kg) divided by height squared (m2). According 
to the recommendations of the WHO, we defined BMI ≥ 24 as OW, 
BMI ≥ 28 as OB, and BMI ≥ 30 as SO (13, 28, 32). In the full sample, 
there were 12,236 individuals with OW, 2,873 with OB, and 444 
with SO.

2.2.3 Covariates
The covariates in the present study included age, gender 

(0 = women, 1 = men), rural residence (0 = urban, 1 = rural), wage, 
education, employment status (0 = unemployed, 1 = employed), 
physical activity (PA), sleep duration, smoking status (0 = non-smoker, 
1 = smoker), alcohol consumption (0 = non-drinker, 1 = drinker), 
mental health (MH), sedentary behavior (SB), temperature, and wind. 
Additionally, PA, sleep, smoking, alcohol consumption, MH, and SB 
were considered mediators to capture the indirect correlation between 
air pollution and OW/OB from a social behavior perspective (25). All 
selected variables and their operationalizations are detailed in 
Supplementary Table S3.

2.3 Statistical analysis

First, the chi-square test (for categorical variables) and the t-test 
(for continuous variables) were used to identify disparities in 
respondents’ obesity outcomes, APC data, and other covariates across 
different samples.

Second, the RD model was used to explore the causal relationship 
between air pollution and OW/OB/SO. The RD model in the present 
study was based on an arbitrary Chinese heating policy, the Qin Huai 
boundary (QHB) policy. The QHB policy provided free heating for 
northern Chinese residents but not for those in the south, resulting in 
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significant fossil fuel combustion in the north, which resulted in 
substantial air pollution and associated health risks.

Importantly, residents on either side of the QHB, within a 
relatively close distance, shared similar socioeconomic characteristics. 
This created quasi-randomized groups: the control group, located in 
the south with lower air pollution, and the treatment group, located 
in the north with higher pollution levels. Both groups were otherwise 
consistent in key socioeconomic determinants of OW/OB (33). More 
details about the QHB policy can be found in Supplementary Data 2. 
The RD model used in the analysis is represented as shown in 
Equations 1 and 2:

 

( ) ( ), 0 1 2 3

, ,

α α α α
δ ν

= + + + ∗
+ +

i t i i i i

i t i t

APCs D f L D f L
COVs  (1)

 

( ) ( ), 0 1 2 3

, , ,
β β β β

ϕ µ
= + + + ∗

+ +
i t i i i i

i t i t

O APCs f L D f L
COVs  (2)

where APCsi,t was APCs for individual i in region t. Oi,t denoted 
the situation of OB/OB for individual i  in region t, which took a 
value of 1 to indicate the OW/OB, while a value of 0 indicated none. 
Di was a dummy variable indicating the relative position of the 
individual to QHB (=1 for located QHB north, = 0 for south). f(Li) 
denoted the fitting polynomial order. Di*f(Li) was an interaction 
term that balanced the heterogeneous influence in QHB North–
South by the polynomial, ,i tν , ,i tµ  denoted residuals. Each residence 
and its QHB distance (100 KM) information are shown in 
Supplementary Table S1.

Third, we analyzed the potential mechanisms using structural 
equation modeling (SEM), where the dependent variables were OW/
OB/SO, the independent variable was AQI, and the mediators 
included PA, sleep, smoke, alcohol, MH, and SB. The initial SEM 
model is shown in Supplementary Figure S1. A modification index 
was utilized to optimize the models, and bootstrap sampling was 
repeated 5,000 times to ensure robustness. Potential bias was 
addressed through RD analysis.

The RD model was used to assess the causal association 
between air pollution and OW/OB, while the SEM model was used 
to reveal the potential mechanism between air pollution and OW/
OB. All analyses were conducted using R version 4.2 and Mplus 
version 8.2.

3 Results

3.1 Data description

Table  1 systematically presents the distribution of variables 
across the full sample (first column), the northern sample (second 
column), the southern sample (third column), the subgroup 
differences (fourth column), the subgroup differences after 
adjusting for the QHB distance cubed (fifth column), and the 
significance test of these differences (sixth column). The following 
descriptive conclusions can be drawn: (1) the prevalence of OW, 

OB, and SO, as well as the AQI and different pollutant 
concentrations, differed significantly between South and North 
China, regardless of whether they were adjusted by the QHB 
distance; (2) the covariates differed significantly across subgroups 
before balancing the QHB distance but became insignificant after 
the QHB distance adjustment.

3.2 The direct relation estimation: RD 
analysis

3.2.1 Pre-testing: RDplot
The “RDpolt” procedure was used to examine whether there were 

discontinuous changes in OW, OB, SB, and APCs around the QHB and 
to verify the suitability of the selected sample for RD analysis. The results 
are shown in Figure 1. According to the “Akaike Information Criterion 
(AIC) principle,” we chose to report the results for polynomial order = 4. 
Additional information is shown in Supplementary Figures S2–S4.

Figures 1a–g show the discontinuous variations in AQI, PM2.5, 
PM10, SO2, CO, NO2, and O3, with respective differences of 0.28, 
4.823 μg/m3, 28.744 μg/m3, 41.024 μg/m3, 19.752 μg/m3, 1.366 μg/m3, 
and 26.355 μg/m3 at the QHB. Figures  1h–j reveal statistically 
significant discontinuous changes of 7.32, 3.14, and 0.06% in the 
prevalence of OW, OB, and SB, respectively, at the QHB. Taken 
together, these results confirm that the data meet the conditions for 
RD analysis, as statistically significant discontinuous changes in both 
the independent and dependent variables were observed at the 
QHB breakpoint.

3.2.2 The direct relation estimation: RD analysis
Table 2 presents the direct causal relationship between APCs and 

OW/OB/SO based on RD analysis. According to the “AIC principle,” 
we  report the RD model results with a bandwidth of 2 and a 
polynomial order of 4. Additional details are available in 
Supplementary Table S4. Overall, air pollution was positively 
correlated with the prevalence of OW/OB/SO. Specifically, a 1-unit 
increase in AQI was associated with statistically significant increases 
of 10.9% (OR = 1.109, 95%CI = 1.027–1.305) in OW, 3.2% (OR = 1.032, 
95%CI = 1.006–1.217) in OB, and 6.9% (OR = 1.069, 95%CI = 1.014–
1.208) in SO morbidity.

The influence of specific air pollutants varied as follows:
PM2.5 and PM10 positively influenced OW/OB/SO. More 

specifically, a 1 μg/m3 increase in PM2.5 was associated with increases 
in OW (17.3%, OR = 1.173, 95% CI = 1.094–1.252), OB (2.2%, 
OR = 1.022, 95% CI = 1.016–1.028), and SO (3.4%, OR = 1.035, 95% 
CI = 1.015–1.055). Similarly, a 1 μg/m3 increase in PM10 led to 
significant increases in OW (5.3%, OR = 1.053, 95% CI = 1.030–1.076), 
OB (0.8%, OR = 1.008, 95% CI = 1.006–1.010), and SO (2%, OR = 1.013, 
95% CI = 1.007–1.019).

SO2 and CO had a negative impact on the prevalence of OW/OB/
SO. A 1 μg/m3 increase in SO2 was associated with decreases in OW 
(2.8%, OR = 0.972, 95% CI = 0.965–0.979), OB (0.3%, OR = 0.997, 95% 
CI = 0.996–0.998), and SO (0.6%, OR = 0.994, 95% CI = 0.991–0.997). 
Additionally, a 1 μg/m3 increase in CO was linked to reductions in 
OW (1.4%, OR = 0.986, 95% CI = 0.980–0.992), OB (0.2%, OR = 0.998, 
95% CI = 0.997–0.999), and SO (0.1%, OR = 0.999, 95% CI = 0.998–
0.999), all statistically significant.

https://doi.org/10.3389/fpubh.2024.1403197
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2024.1403197

Frontiers in Public Health 05 frontiersin.org

3.2.3 Heterogeneity analysis
Table 3 present the heterogeneous relationship between APCs and 

obesity outcomes across different subgroups. The five valid APCs 
(AQI, PM2.5, PM10, SO2, and CO) had a more pronounced impact on 
men than women, on older individuals (Age ≥ 40) compared to young 
individuals (Age ≤ 40), and in rural areas compared to urban areas.

3.3 The potential mechanism between air 
pollutants and obesity outcomes: SEM 
model

Using the SEM approach, we  employed multiple parallel 
mediators, including PA, sleep, smoking, alcohol consumption, 

MH, and SB, to explore the potential mechanisms between air 
pollution and OW/OB/SO from a social behavior perspective. For 
a clearer explanation, we  focused solely on AQI; the results are 
shown in Table  4 and Figure  2a-c. The following results 
were captured:

 1 Social behavior factors significantly mediated the relationship 
between air pollution and OB, accounting for 64.71% of the 
mediating effect in OW (β = 0.88, 95%CI = 0.27–1.15), 65.17% 
in OB (β  = 0.58, 95%CI = 0.14–1.09), and 62.17% in SO 
(β = 0.74, 95%CI = 0.27–1.36). These proportions were notably 
higher than the direct effects, indicating that social behavior 
factors are the primary lens through which the obesogenic 
environment should be understood.

TABLE 1 Overweight, obesity, and severe obesity outcomes, air pollutants information and other characteristics of the Chinese adults in the China 
Family Panel Survey.a,b,c

Variables Full sample
(32,158)

North 
sample
(13,632)

South 
sample
(18,526)

Subgroup 
differencese

Adjust subgroup 
differencesd,e

P-valueb

Panel 1: Physical characteristics

OWc 38.05% 42.08% 32.57% 9.5%*** 7.32%*** <0.01/<0.01

OBc 8.93% 10.63% 6.63% 4%*** 3.55%*** <0.01/<0.01

SOc 1.38% 1.72% 0.92% 0.8%*** 0.68%*** <0.01/<0.01

Panel 2: Air pollution information

AQI 4.20 (0.01) 4.82 (0.01) 3.34 (0.01) 1.48*** 1.22*** <0.01/<0.01

PM2.5 37.39 (0.08) 44.46 (0.09) 27.26 (0.07) 17.15*** 15.17*** <0.01/<0.01

PM10 49.49 (0.13) 56.63 (0.18) 39.24 (0.14) 17.05*** 14.48*** <0.01/<0.01

SO2 38.03 (0.23) 51.89 (0.34) 18.13 (0.13) 33.77*** 28.26*** <0.01/<0.01

CO 1.83 (0.01) 2.22 (0.01) 1.27 (0.01) 0.95*** 0.74*** <0.01/<0.01

NO2 42.32 (0.11) 47.73 (0.15) 34.56 (0.15) 13.17*** 11.25*** <0.01/<0.01

O3 100.79 (0.31) 94.75 (0.44) 109.47 (0.42) 14.72*** 12.36*** <0.01/<0.01

Panel 3: Demographic characteristics

Age 38.28 (0.16) 38.63 (0.21) 38.05 (0.23) 0.83*** 0.12 <0.01/0.33

Men 51.08% 51.44% 50.43% 1.01% 0.44% 0.07/0.68

Rural 25.52% 25.12% 26.07% −0.95% −0.27% <0.01/0.75

Wage 10.68 (6.26) 10.24 (0.02) 10.48 (0.02) −0.19*** −0.08 <0.01/0.78

Edu 11.84 (0.05) 11.91 (0.07) 11.77 (0.08) 0.11** 0.04 0.04/0.84

Employed 83.83% 82.87% 85.14% −2.27%*** −1.09% <0.01/0.69

Smoke 28.89% 29.73% 27.76% 1.97%*** 0.52% <0.01/0.77

Alcohol 11.61% 13.27% 12.85% 1.31% 0.79% <0.01/0.82

PA 95.97 (2.01) 100.11 (2.69) 89.93 (2.99) 1.48 0.65 0.57/0.89

Sleep duration 7.47 (0.01) 7.12 (0.04) 7.95 (0.07) 0.24*** 0.01 <0.01/0.33

MH 2.22 (0.01) 2.21 (0.01) 2.24 (0.01) 0.029 0.013 0.13/0.49

SB 3.66 (0.01) 3.67 (0.01) 3.61 (0.02) 0.055*** 0.011 <0.01/0.19

Tem 1.61 (0.12) −3.81 (0.14) 7.94 (0.11) 12.16*** 4.28 <0.01/0.63

Wind 2.76 (0.01) 2.61 (0.02) 2.93 (0.02) −0.29*** −0.08 <0.01/0.72

aThe χ2 test and t-test were used for categorical variables (overweight (OW), obesity (OB), severe obesity (SO), female (0 = female, 1 = male), rural (0 = urban, 1 = rural), smoking (0 = non-
smoking, 1 = smoking), alcohol (0 = non-alcohol, 1 = alcohol) and continuous variables (air quality index (AQI), PM2.5, PM10, SO2, CO, NO2, O3, age, wage, education, sleep duration, mental 
health (MH), sedentary behavior (SB), temperature, wind), respectively. b*p < 0.05, **p < 0.01, ***p < 0.001. cIndividuals were defined as OW, OB, and SO if their BMI ≥ 24, BMI ≥28, and BMI 
≥30, respectively. dSubgroup difference was the northern sample mean minus the southern sample mean for a given variable, e.g., the subgroup difference for OW is the OW north (42.08%) - 
OW south (32.57%) = 9.5%. The significance was the different distribution of a given variable in the South and the North. eAdjust difference was referred to as the adjustment of subgroup 
difference by the cubic of QHB distance. The significance was the different distribution of a given variable in the South and the North.
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 2 All six specific social behavior factors (PA, sleep, smoking, 
alcohol consumption, MH, and SB) significantly mediated 
the effects of air pollution on OB. Among these, PA and SB 
had relatively higher mediating influences, while sleep, 
smoking, alcohol, and MH had relatively lower 
mediating effects.

3.4 Robustness

We primarily examined the robustness of the direct correlation, 
given that the SEM fit was satisfactory. To test robustness, 
we employed a special testing tool in RD analysis known as the donut-
hole test, which operates on the principle that “the closer the sample 

FIGURE 1

RD plot: discontinuous changes of selection variables on both sides of the QHB. The result was shown through the ‘RD plot’ command in the STATA 
16.0; the significance of differences was tested through the t-test, P4 denoted polynomial  =  4.

TABLE 2 Causal direct correlation (odds ratio and 95% CI) between air pollutants and the morbidity of overweight, obesity, and severe obesitya: RD 
estimates.b

Variables AQI PM2.5 PM10 SO2 CO NO2 O3

Panel 1: Air pollutants on overweight (d = 2, polynomial = 3)c

OR(OW) 1.109*** 1.173*** 1.053*** 0.972*** 0.986*** 1.052 1.026

95%CI 1.027–1.315 1.094–1.252 1.030–1.076 0.965–0.979 0.980–0.992 0.982–1.092 0.989–1.043

Panel 2: Air pollutants on obesity (d = 2, polynomial = 3)c

OR(OB) 1.032*** 1.022*** 1.008*** 0.997*** 0.998*** 1.000 1.001

95%CI 1.006–1.217 1.016–1.028 1.006–1.010 0.996–0.998 0.997–0.999 0.998–1.002 0.997–1.002

Panel 3: Air pollutants on severe obesity (d = 2, polynomial = 3)c

OR(SO) 1.069*** 1.035*** 1.013*** 0.994*** 0.999*** 1.005 1.004

95%CI 1.014–1.208 1.015–1.055 1.007–1.019 0.991–0.997 0.998–0.999 0.998–1.012 0.996–1.007

a Individuals were defined as OW, OB, and SO if their BMI ≥ 24, BMI ≥28, and BMI ≥30, respectively. AQI was air quality index, OW was overweight, OB was obesity, and SO was severe 
obesity. b Selected the sample where d = 2, polynomial = 3 to report. All the covariates were controlled by command ‘covs’ in the ‘rdrobust,’ using a fuzzy RD model with an instrumental 
variable of whether the individual was located north of the QHB. c*p < 0.05, **p < 0.01, ***p < 0.001.
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to the breakpoints, the more likely it is to be  manipulated.” 
We sequentially removed 5, 10, 15, and 20% of the samples closest to 
the breakpoints, and the results are presented in Figure  3. The 
estimated causal relationship remained significant after removing 5, 
10, 15, and 20% of the samples around the QHB. Therefore, the 
findings of direct correlation in the present study were robust. 
Additional information on the donut-hole test is provided in 
Supplementary Table S5.

4 Discussion

This large-scale cohort study, based on nationally representative 
data, provides a comprehensive analysis of the direct and indirect 
relationships between air pollution and OW/OB/SO. Our findings 
address an existing academic gap and contribute to a deeper 
understanding of the obesogenic environment. The following 
conclusions were drawn:

 1 Air pollution is generally positively associated with BMI. The AQI 
index was found to have a positive relationship with BMI, with a 
1-unit increase in AQI correlating with a 10.9, 3.2, and 6.9% 
increase in the prevalence of OW, OB, and SO, respectively. 
We provided causal evidence for the effects of air pollution on 

obesity using a more rigorous statistical method, which is 
consistent with several cross-country analyses (1, 2, 6). Our study, 
however, estimated a stronger influence, which may be attributed 
to two factors: (1) our estimation was based on a Chinese sample, 
where air pollution and obesity are more severe, and (2) our 
results were based on causal estimation, which isolated the net 
relationship between air pollution and individual BMI.

 2 PM2.5 and PM10 positively affected BMI, while SO2 and CO had 
a negative effect. In contrast, the results suggested a positive 
influence of a 1 μg/m3 increase in PM2.5 concentration on the 
morbidity of OW, OB, and SO by 17.3, 2.2, and 3.5%, 
respectively, and positive influences of a 1 μg/m3 increase in 
PM10 concentration related to the rise of morbidity of OW, OB, 
and SO by 5.3, 0.8, and 1.3%, respectively. PM is composed of 
various chemicals, with polycyclic aromatic hydrocarbons 
(PAHs) being the most harmful component for obesity (5, 
27, 29).

 2 PAHs were clinically proven to increase β-2 microglobulin, 
leading to impaired glomerular filtration, renal dysfunction, and 
metabolic system disorder (8). On the other hand, the RD model 
revealed that a 1 μg/m3 increase in SO2 concentration was 
significantly associated with a 2, 0.3, and 0.6% decrease in OW, 
OB, and SO morbidity, respectively, and a 1 μg/m3 increase in 
CO concentration was significantly associated with a 1.4, 0.2, 

TABLE 3 Heterogeneous causal direct relationship (odds ratio and 95% CI) between air pollution (AQIs) and BMIa across genderb, agec and registrationd: 
RD estimates.e

Variables AQI PM2.5 PM10 SO2 CO NO2 O3

Panel 1: Air pollutants on overweight (d = 2, polynomial = 3)f

Male 1.245*** 1.261*** 1.062*** 0.947*** 0.971*** 1.051 1.031

Female 1.103*** 1.089** 1.049* 0.987 0.995 1.039 1.014

Youth 1.008*** 1.064*** 1.015* 0.999 0.999 1.006 1.002

Aged 1.126*** 1.073*** 1.131*** 0.969*** 0.975*** 1.050 1.040

Rural 1.104*** 1.146*** 1.065*** 0.997*** 0.999*** 1.003 1.000

Urban 1.219*** 1.261*** 1.062* 0.947 0.971 1.051 1.031

Panel 2: Air pollutants on obesity (d = 2, polynomial = 3)f

Male 1.198*** 1.351*** 1.043*** 0.996*** 1.012*** 1.038 1.008

Female 0.912 1.011* 1.003* 1.009 0.984 1.006 1.002

Youth 1.073*** 1.043** 1.016 1.011 1.014 1.011 1.000

Aged 1.095*** 1.051** 1.046** 0.963*** 0.966*** 1.075 1.021

Rural 1.212*** 1.017** 1.039*** 0.975*** 0.969*** 0.999 0.990

Urban 0.932 1.010 1.015 0.999 0.999 1.027 1.009

Panel 3: Air pollutants on severe obesity (d = 2, polynomial = 3)f

Male 1.217*** 1.115*** 1.014*** 0.997** 0.985** 1.012 1.004

Female 0.996 1.009 1.008 0.999 0.999 0.998 1.001

Youth 0.994 1.010 1.010 0.999 0.999 1.002 1.003

Aged 1.073*** 1.022** 1.028** 0.986** 0.977** 1.011 1.007

Rural 0.995 1.021** 1.024** 0.998* 0.975** 1.028 1.013

Urban 1.126*** 1.013* 1.009 0.999 0.999 0.995 1.001

aIndividuals were defined as OW, OB, and SO if their BMI ≥ 24, BMI ≥28, and BMI ≥30, respectively. AQI was air quality index, OW was overweight, OB was obesity, and SO was severe 
obesity. bWhere gender = 1 is male and gender = 0 is female. cWhere age = 1 is aged group and age = 0 is young group. dWhere registration = 1 is rural group and registration = 0 is urban group. 
eSelected the sample where d = 2, polynomial = 3 to report. All the covariates were controlled by command ‘covs’ in the ‘rdrobust,’ using a fuzzy RD model with an instrumental variable of 
whether the individual was located north of the QHB. f*p < 0.05, **p < 0.01, ***p < 0.001.
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and 0.1% decrease in the OW, OB, and SO morbidity, 
respectively. Several prior clinical studies provided the 
pathological insight that SO2 was composed of substantial sulfur 
elements, a major component of amino acids, which may have 
contributed to the maintenance of oxygen supply balance, 
promoted metabolism, and increased daily calorie consumption 
(34). Meanwhile, moderate amounts of CO could have regulated 
vascular tension, eliminated vascular inflammation, and reduced 
fat accumulation in the blood (7). Notably, previous research on 
the correlation between SO2, CO, and obesity was limited; only 
two out of a representative meta-analysis of 18 studies 
investigated the influence of SO2 and CO on OW/OB (35).

 3 The influence of air pollution on obesity outcomes was more 
significant in male, older, and rural groups compared to their 

female, younger, and urban counterparts. First, the results of 
the subgroup analysis revealed that males were more likely to 
gain weight due to air pollution compared to females. Females 
are systematically less exposed to outdoor work due to physical 
disadvantages, which, in turn, create disparities in air pollution 
exposure between males and females, further exacerbating 
gender inequality in BMI (36). Second, aged individuals were 
more susceptible to gaining weight from air pollution 
compared to younger individuals. Exposures to air pollution 
induced a greater inflammatory response in the adipose tissue 
of aged individuals, as their respiratory system deteriorated, 
and were more likely to bind to polycyclic aromatic 
hydrocarbons (PAHs) in air pollution, which led to severe 
metabolic degradation and, ultimately, systemic adipose tissue 
growth and gain weight (37). Third, the rural group was more 
likely to gain weight due to air pollution compared to the urban 
group. Rural China tended to lag behind in urbanization and 
economic development with lower air pollution, but the impact 
of air pollution on obesity was higher among rural than urban 
residents. This had been previously assessed and validated by 
researchers using satellite-based Random Forest Models 
(RFMs) for causal assessment (38). The scenario suggested that 
rural residents in China were not resilient to the adverse health 
outcomes of air pollution. Considering that rural populations 
already live in a more hazardous obesogenic environment, 
specialized economic, psychosocial, and medical interventions 
are needed to enhance their resilience to the risk of BMI.

 4 The potential mechanism between air pollution and obesity was 
systematically mediated by social behavior determinants. The 
six social behavior factors collectively mediated more than 60% 
of the association between air pollution and BMI consistently 
across the OW/OB/SO samples. This finding suggests that social 
behavior is the predominant determinant in shaping adverse 
health outcomes. Cockerham’s seminal health lifestyle theory is 
useful in explaining the influence of social behavior on obesity, 
as it posits that collective patterns of social behavior are shaped 
by the norms, values, and material resources consistent with an 
individual’s living situation or life chances, connecting them 
with others in similar social strata (25).

After adjusting the width and polynomial order in the RD 
estimation, the direct association between air pollution and OW/OB 
remained robust, even when subjected to the donut sensitivity test. 
The good fit of the SEM model further supports the robustness of the 
potential mechanisms linking air pollution to OW/OB identified in 
this study.

Based on the results of the present study, we propose the following 
policy recommendations:

 1 Building a joint prevention and control policy framework that 
addresses both air pollution and BMI: The present study 
identified air pollution as a significant obesogenic factor, 
highlighting the necessity of jointly preventing obesity and air 
pollution. We urge all stakeholders to collaboratively develop a 
comprehensive policy framework to mitigate the risks associated 
with both obesity and air pollution. This framework should 
include the use of air quality monitors, the implementation of 
scientifically based environmental prevention methods, and the 

FIGURE 2

The indirect correlation between air pollution and BMI. The 
endogeneity problem generated by statistical bias was balanced by 
RD. The endogeneity problem generated by statistical bias was 
balanced by RD, and the SEM model was constructed using MPlus 
8.9. RMSEA = 0.037, GFI = 0.962, CFI = 0.864, ACFI = 0.951 and  
PGFI = 0.736. [*  = p <  0.05, **  = p <  0.01, ***  = p <  0.001, 
(−)  = p >  0.05].
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enforcement of air quality standards in accordance with WHO 
guidelines and national policies (2, 11, 21, 40).

 2 Focusing on BMI disparities influenced by social determinants: 
We recommend that governments develop policy frameworks 
that integrate biological susceptibility and socioeconomic factors 
to effectively address overweight and obesity. Particular attention 
should be given to protecting vulnerable populations, such as 
low-income, rural, and older adult individuals (18, 38, 39).

The current study presents a comprehensive analysis of the 
relationship between air pollution and BMI; however, several 
limitations should be carefully considered:

 1 Statistical ecological bias: This investigation captures only 
city-level relationships between air pollution and obesity 
morbidity, limiting the generalization of the findings to the 
individual level.

 2 APC measurement issues: Potential bias may arise from the use 
of electric heating in certain cities north of the QHB, such as 
Beijing and Tianjin, which may reduce variation in air pollution 
exposure and thus underestimate the impact of air pollution on 
obesity outcomes. Although efforts were made to address this 
bias by employing an optimal bandwidth, it remains a concern.

 3 Neglect of short-term exposure identification: The current 
study exclusively examines the long-term influences of air 

TABLE 4 The indirect correlation between air pollution (AQI)a and obesity: the SEM mediation from the social behavior perspective.b

Influences Independent variable  =  OWc Independent variable  =  OBc Independent variable  =  SOc

Panel 1: Full model

(a1) AQI → PA −0.41*(−0.66:-0.23) −0.34***(−0.48:-0.12) −0.48*(−0.78:-0.15)

(b1) PA → OB −0.8*(−1.45:-0.55) −0.52***(−0.79:-0.32) −0.5*(−0.96:-0.33)

(a2) AQI → Sleep −0.62*(−1.17:-0.35) −0.54***(−0.81:-0.17) −0.47*(−0.82:-0.15)

(b2) Sleep→OB −0.17*(−0.66:-0.23) −0.11***(−0.42:-0.02) −0.21*(−0.66:-0.23)

(a3) AQI → Smoke 0.19*(0.03:0.46) 0.18***(0.02:0.42) 0.24*(0.03:0.38)

(b3) Smoke→OB 0.74*(0.23:0.96) 0.38***(0.13:0.49) 0.46*(0.13:0.76)

(a4) AQI → Alcohol 0.28*(0.11:0.65) 0.26***(0.07:0.43) 0.31*(0.23:0.44)

(b4) Alcohol→OB 0.39*(0.12:0.54) 0.31***(0.08:0.59) 0.23*(0.05:0.49)

(a5) AQI → MH −0.32*(−0.64:-0.17) −0.2***(−0.28:-0.06) −0.38*(−0.64:-0.17)

(b5) MH → OB −0.5*(−0.79:-0.43) −0.3***(−0.41:-0.08) −0.21*(−0.55:-0.13)

(a6) AQI → SB 0.33 (0.17:0.52) 0.29***(0.08:0.52) 0.25(0.08:0.39)

(b6) SB → OB 0.67*(0.37:0.89) 0.41***(0.32:0.57) 0.6*(0.14:0.92)

(c) AQI → OB 0.48***(0.17:0.89) 0.31***(0.08:0.75) 0.44*** (0.12:0.77)

Panel 2: SEM model of influences from AQI to OB

Totald 1.36***(0.39:2.14) 0.89***(0.31:1.65) 1.18***(0.49:1.73)

Dir.Totale 0.48***(0.17:0.89) 0.31***(0.08:0.75) 0.44*** (0.12:0.77)

Ind.Totalf
0.88[64.71%]***

(0.27:1.15)

0.58[65.17%]g***

(0.08:0.75)

0.74[62.17%]***

(0.27:1.36)

Ind1 (a1 × b1)
0.33[24.26%]***g

(0.02:0.59)

0.18[31.03%)g*

(0.04:0.29)

0.24***[32.43%]g

(0.08:0.45)

Ind2 (a2 × b2)
0.11[8.09%]***g

(0.07:0.14)

0.06[10.34%)g*

(0.02:0.13)

0.1***[13.51%]g

(0.07:0.12)

Ind3 (a3 × b3)
0.14[10.29%]***

(0.03:0.28)g

0.07[12.06%)g*

(0.02:0.15)

0.11***[14.86%]g

(0.05:0.23)

Ind4 (a4 × b4)
0.11[8.09%]***

(0.04:0.15)g

0.08[13.79%)g*

(0.04:0.11)

0.07***[9.46%]g

(0.02:0.11)

Ind5 (a5 × b5)
0.16[11.76%]***

(0.03:0.42)g

0.06[10.34%)g*

(0.01:0.09)

0.08***[10.81%]g

(0.02:0.13)

Ind6 (a6 × b6)
0.22[16.18%]***

(0.11:0.59)g

0.12[20.69%)g*

(0.04:0.16)

0.15***[20.27%]g

(0.06:0.25)

Panel 3: SEM model fitting

Fit indexh RMSEA = 0.06, CFI = 0.85, TLI = 0.89 RMSEA = 0.04, CFI = 0.93, TLI = 0.91 RMSEA = 0.07, CFI = 0.81, TLI = 0.84

aWe focused only on AQI to reveal the potential relationship between air pollution and obesity in general. AQI was air quality index, OW was overweight, OB was obesity, SO was severe 
obesity, PA was physical activity, MH was mental health, and SB was sedentary behavior. b“()” was the 95% CI, “[]” was the proportion of mediating influences. cOW and SO were BMI ≥24 and 
BMI ≥30, respectively. d*p < 0.05, **p < 0.01, ***p < 0.001. eTotal influences refers to the sum of all influences. fDirect influences were the influences between air pollution and obesity after 
excluding the influence of mediations. gIndirect influences were air pollution and obesity through mediating factors. hModel fitting values including RMSEA where <0.05 is acceptable and the 
smaller, the better, CFI where >0.08 is acceptable and the bigger, the better, TLI where >0.09 is acceptable and the bigger, the better.
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pollution exposure on obesity outcomes and does not account 
for short-term exposures. This is particularly relevant since 
short-term exposures may cause significant metabolic system 
disorders and induce obesity, especially among vulnerable 
populations such as infants, pregnant women, and patients.

 4 Measurement bias: The survey data relied on self-reported 
information regarding physical characteristics, which may 
lead to underestimation or overestimation of height or weight. 
Additionally, this self-reported information may introduce 
recall bias, affecting the accuracy of BMI calculations.

Given the conclusions and limitations of this study, we propose 
the following directions for future research:

 1 Identifying causal associations between obesogenic 
environments and individual BMI using more accurate cohort 
data: Future studies should employ large-scale analyses that 
account for individual-level factors and use causal statistical 
methods such as propensity score matching or instrumental 
variables to mitigate potential biases.

 2 More accurate estimation of obesogenic environments through 
randomized controlled trials (RCTs): Future research should 
consider using RCTs to simulate quasi-randomized 
distributions of obesogenic environments, such as 
air pollutants.

 3 Considering both long-term and short-term air pollution 
exposure through an integrated analytical framework: To 

FIGURE 3

Robustness tests: the donut hole test. Whose principle was ‘the closer the sample to the accordingly, we removed 5, 10, 15, and 20% of the samples 
near the breakpoints sequentially.’ The endogeneity problem generated by statistical bias was balanced by RD, and the SEM model was constructed 
using MPlus 8.9. RMSEA  =  0.037, GFI =0.962, CFI =0.864, ACFI =0.951 and PGFI  =  0.736.
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comprehensively understand the relationship between air 
pollution and obesity, future investigations should examine 
evidence from both short-term and long-term exposures while 
also comparing the disparities between them.

5 Conclusion

This study provides a comprehensive analysis of the relationship 
between air pollution and obesity outcomes using nationally 
representative data from China. The findings indicate that air 
pollution is generally positively associated with BMI, with PM2.5 and 
PM10 having positive effects and SO2 and CO showing negative 
effects. Furthermore, the impact is more significant in men, older 
adults, and rural populations compared to their female, younger, and 
urban counterparts. Additionally, the potential correlation between 
air pollution and obesity is systematically mediated by social behavior 
determinants. These results have several significant implications for 
understanding the obesogenic environment, particularly in 
highlighting the need to integrate obesity prevention strategies with 
air pollution control efforts.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found at: https://www.isss.pku.edu.cn/cfps/.

Ethics statement

The studies involving humans were approved by Ethics 
Committee of the Chinese Centre for Social Science Research at 
Peking University. The studies were conducted in accordance with the 
local legislation and institutional requirements. Written informed 
consent for participation in this study was provided by the 
participants’ legal guardians/next of kin.

Author contributions

MY: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Project administration, Resources, 
Validation, Visualization, Writing – original draft. JX: Investigation, 
Methodology, Software, Supervision, Writing – original draft, Writing 

– review & editing. YL: Investigation, Methodology, Supervision, 
Visualization, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2024.1403197/
full#supplementary-material

SUPPLEMENTARY FIGURE S1

The initial SEM model of the potential mechanism between air pollution 
and overweight. (The endogeneity problem generated by statistical bias 
was balanced by RD, and the SEM model was constructed using MPlus 
8.2.)

SUPPLEMENTARY FIGURE S2

RD plot: polynomial  =  1. (The result was shown through the ‘RD the plot’ 
command in STATA 16.0; the significance of differences was tested through 
the t-test, and P4 denoted polynomial  =  1.)

SUPPLEMENTARY FIGURE S3

RD plot: polynomial  =  2. (The result was shown through the ‘RD plot’ 
command in STATA 16.0; the significance of differences was tested through 
the t-test, P4 denoted polynomial  =  2.)

SUPPLEMENTARY FIGURE S4

RD plot: polynomial  =  3. (The result was shown through the ‘RD plot’ 
command in STATA 16.0; the significance of differences was tested through 
the t-test, and P4 denoted polynomial  =  3.)
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