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Based on a large-scale nationally representative survey in China, this paper uses 
the exogenous impact of automation on working hours as the instrumental 
variable to examine working time’s impact on perceived mental disorders, on the 
basis of dealing with endogeneity. Different from existing literature, it is found 
that the impact of working time on perceived mental disorders is U-shaped, 
rather than linear. Mental disorders firstly decrease with working hours. After 
working more than 48.688  h per week, further increases in working time carry 
notable mental health costs, leading to a positive relationship between working 
hours and depression. The turning point of this U-shaped relationship is almost 
in line with the International Labor Organization’s 48 working hours/week 
standard, justifying it from a mental health perspective. In addition, we further 
exclude the possibility of more complex nonlinear relationships between 
working time and perceived mental disorders. Furthermore, heterogeneities 
are found in the effects of working hours on mental disorders across different 
subgroups. Males are more depressed when working overtime. Older workers 
have a lower tolerance for overwork stress. The turning point is smaller for the 
highly educated group and they are more sensitive to working longer. Those 
with higher socioeconomic status are less depressed after exceeding the 
optimal hours of work. The increase in depression among rural workers faced 
with overwork is not prominent. Perceived mental disorders are lower among 
immigrants and those with higher health status. In addition, labor protection and 
social security help to weaken mental disorders caused by overtime work. In 
conclusion, this paper demonstrates that working time has a U-shaped impact 
on perceived mental disorders and highlights the vulnerability of certain groups, 
providing a reference for setting optimal working hours from a mental health 
perspective.
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1 Introduction

Most countries have statutory limits of weekly working hours of 
48 h or less which is the standard established in International Labor 
Organization (ILO) conventions (1). The rationality of this criterion 
lies in the fact that most of the literature on the relationship between 
working hours and mental health indicates that the two factors are 
negatively related, that is, the increase in working hours leads to 
perceived mental disorders (2–4). Policies to reduce excessive working 
hours are found to help improve people’s subjective welfare (5). For 
example, implementing policies that limit working hours can not only 
reduce chronic fatigue and burnout caused by overwork, but also 
enhance life satisfaction and happiness (6). Data can more intuitively 
reflect this relationship: compared with those who work 35–40 h per 
week, people working more than 55 h per week have a 1.74 times 
higher risk of depressive symptoms (7).

Existing research on work-life balance finds that excessively long 
working hours lead to health problems and reduce mental well-beings 
(8–11). Specifically, excessively long working hours reduce rest time, 
resulting in a heavier workload and increased work stress (12). This 
not only leads to various physical illnesses, such as stroke and 
coronary heart disease (13), but also increases the risk of anxiety and 
depression (14, 15). In addition, studies from the work arrangement 
perspective show that shift arrangements and night work increase 
depression, anxiety, cognitive impairment and even suicidal 
tendencies (16–19). This is because irregular working hours may 
disrupt social networks, leading to feelings of loneliness and isolation, 
which in turn increase mental stress (20). Moreover, the circadian 
rhythm disruption caused by night shifts could result in hormonal 
imbalances, decreased immunity, and other negative health 
consequences, exacerbating mental health issues (21, 22). Moreover, 
literature suggests that working hours moderate the relationship 
between life satisfaction and mental health, rather than exerting direct 
impacts (23). In addition, it is found that working time flexibility also 
plays a role and low flexibility is associated with worse mental health 
(24). More flexible working hours enable people to better balance 
work and life, thereby improving their overall mental health (25). For 
example, compared to traditional office settings, remote work offers 
greater flexibility and has been proven to significantly enhance job 
satisfaction (26, 27).

However, some studies indicate that the relationship between 
working time and mental disorders is not clear. A meta-analysis based 
on a sample of 21 studies finds a small but significant positive 
relationship between working time and mental health (28). There are 
also studies suggesting no significant correlation between working 
hours and mental health (29). Besides, mutual influence or reverse 
causality between the two factors is also assumed (30). For example, 
evidence indicates that mental health affects working hours through 
working motivation and absence (31). Specifically, individuals with 
poor mental health have reduced work motivation and increased 
absenteeism, leading to shorter working hours (32). Moreover, 
cultural backgrounds may influence the relationship between these 
two. For example, in some cultures that highly value work, long 
working hours may be considered normal and may not significantly 
affect mental health (33, 34).

Furthermore, heterogeneities in the relationship between working 
hours and mental health are documented in the literature. For example, 
studies have found that working overtime is more prominently 

associated with poor mental health in men, while less in women (35). 
This gender difference may be due to the social pressure on men to 
be  the primary breadwinners, which causes them to bear greater 
financial responsibility and psychological stress when working long 
hours (36). Additionally, disparities are also reflected in groups with 
different socioeconomic statuses, educational levels and occupational 
skills. Those who are higher educated and more satisfied with living 
conditions are less negatively impacted on their mental health by 
overtime working (37, 38). For example, individuals with higher 
socioeconomic status are more likely to have access to superior resources 
and more effective social support to cope with the stress of long working 
hours (39). Nevertheless, another study shows that people with higher 
occupational skills experience greater perceived mental disorders due 
to long working hours (40). This means that when analyzing the 
relationship between working time and mental disorders, more attention 
needs to be paid to the heterogeneities among different subgroups.

From the above review, we  find that existing research results 
support either a linear negative or positive correlation between 
working time and mental disorders. At the same time, some scholars 
believe that there is a problem of reverse causality in the relationship 
and thus it is difficult to determine the causality between working 
hours and mental health. The aim of this paper is to clarify the exact 
relationship between working time and mental disorders. Specifically, 
based on data from a large-scale, nationally representative survey in 
China, this paper investigates the effect of working hours on 
depression, using the exogenous impact of automation on working 
time as the instrumental variable. Additionally, we examine potential 
nonlinear relationships by including higher-order terms of working 
hours in the regressions and perform a series of robustness tests. 
Moreover, heterogeneities are investigated across various aspects, 
including gender, age, education, socioeconomic status, region, 
migration status, health condition, labor protection, and social security.

2 Materials and methods

2.1 Data source

Data used in this paper are from a large-scale nationally 
representative survey, Chinese General Social Survey (CGSS), 
conducted in 2017 and 2018 CGSS is one of the most important 
national, comprehensive and continuous academic survey projects in 
China, and is a member of the world General Social Survey (GSS) 
family. It collects extensive data at multiple levels and across various 
domains. CGSS aims to gather information on Chinese society to 
monitor and explain trends in work, behaviors, health and attitudes to 
examine the structure and functioning of society in general. CGSS 
sample covers 28 provinces/municipalities/autonomous regions in 
China and uses the multi-stage stratified Probability Proportionate to 
Size (PPS) sampling method, making it highly representative. Details 
of the study protocol are introduced in the Supplementary material and 
data files are available on http://cgss.ruc.edu.cn/English/Home.htm.

2.2 Measures

The explained variable in this paper is the depression degree, 
which is based on the classic Likert scale from 1 to 5 to characterize 
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the level of depression. Specifically, respondents answer whether 
their current mental health status is not depressed, mildly 
depressed, moderately depressed, very depressed or severely 
depressed. This indicator is one of the most commonly used indexes 
to measure depression in the existing literature (41–44). The 
explanatory variable is the number of hours worked per week. 
We preliminarily analyze the relationship between depression and 
working time, by averagely dividing the sample according to the 
quantiles of working hours into five subsamples, including groups 
of shorter working time, middle-shorter working time, middle 
working time, middle-longer working time and longer working 
time. Figure 1 illustrates that the percentage of people who are not 
depressed and a little depressed in the middle working time group 
is significantly higher than that in other groups, while in this group 
very depressed and extremely depressed respondents account for 
the lowest percentage. The share of the very depressed and 
extremely depressed increases notably both at the upper and lower 
sides of the middle working time group. This pattern suggests that 
the middle working hours group experiences the lowest levels of 
depression and the relationship between working time and 
perceived mental disorders tends to be nonlinear.

Referring to the literature concerning depression (45–56), in order 
to avoid the omitted variables bias, we fully control factors affecting 
depression in the following five aspects. (1) Basic demographic 
characteristics include age, the quadratic term of age, gender, 
education level, health status and whether the respondent is a migrant. 
(2) Social characteristics include whether the respondent’s Hukou is 

in urban,1 and whether she/he belongs to ethnic minorities, is a 
religious believer and Communist Party of China (CPC) member. (3) 
Working characteristics include the logarithm of income, the 
respondent’s overall socio-economic status and whether she/he has 
pension and medical insurance. (4) Family characteristics include 
whether the respondent is married, her/his number of children and 
number of houses. (5) Regional and year dummies. The descriptive 
statistics of above variables are shown in Supplementary Table S1.

2.3 Methods

It is almost impossible to conduct randomized controlled trials on 
working hours and to explore how the variations of working time 
affect depression. Therefore, it is very difficult to investigate the causal 
relationship between the two factors using observational data. The 
biggest challenge here is the reverse causality, where mental disorders 
also affect working hours (30, 31). To deal with this problem, we use 
the exogenous impact of automation on working time as the 
instrumental variable to examine the causal effect of working time on 
depression. In addition, to analyze the nonlinear relationship between 

1 Hukou is a system of household registration used in mainland China, mainly 

identifying a person as a rural or urban resident.

FIGURE 1

Relationship between working time and depression.
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the two factors, we include both working time and its quadratic term 
into regressions. Specifically, the following Two Stage Least Square 
(2SLS) statistical model is constructed.
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In the model, Working time_  and Working time squared_ _  
represent working hour per week and its squared term, respectively. 
Automation is an indicator of the extent to which the work performed 
by the respondent is affected by automation. Automation squared_  is 
the square of Automation . Depression  represents the degree of 
depression. xi′  is a vector of control variables introduced above. λt and 
θ p are time and province fixed effects. We use the first two equations 
to perform first-stage estimations of working time and its square and 
obtain their fitted values. In the second stage, the third equation is 
regressed using estimates of working hours and its square to examine 
the nonlinear effect of working time on perceived mental disorders.

In this 2SLS model, the instrumental variables are Automation and 
its quadratic term. The automation index is constructed by Autor and 
Dorn (57), which is the most commonly used indicator to measure the 
degree of automation’s impact on working time (58). Studies have 
confirmed that the larger the extent to which work is replaced by 
automation, the less working time is required (59). Therefore, this 
instrumental variable satisfies the correlation prerequisite. At the same 
time, owing to the following reasons, it also meets the exogeneity 
condition. First, the replacement of jobs by automation is caused by 
exogenous technological progress, independent of individual-level 
characteristics of workers. Second, the Automation index is measured 
utilizing the task traits of different occupations in the Dictionary of 
Occupational Titles by the United States Department of Labor in 1977 
(57). Because the individual status of a current worker could not affect 
the characteristics of the occupation in 1977, this instrumental variable 
well satisfies the exogeneity requirement, especially in terms of 
avoiding reverse causality. In Table 1, we show the relevant statistical 
test results for the instrumental variables. Therefore, based on the 
above 2SLS model, we can use the exogenous changes brought about 
by automation to scientifically examine how working hours affect 
perceived mental disorders on the basis of tackling endogeneity.

The range of this indicator is from −6.190 to 4.235. According to 
this index, the Automation indicators of sales and service occupations, 
mining, construction, manufacturing, transportation workers, 
personal and protective service workers are equal to or close to 4.235. 
This means that people performing these occupations are more likely 
to be replaced by automation, thus their income is more negatively 
impacted by exogenous artificial intelligence technological progress. 
Conversely, the values for corporate managers, physical, mathematical, 

and engineering professionals, life sciences and health professionals, 
and others are equal to or close to the minimum of −6.190. This 
suggests that these occupations are complementary to automation 
applications, resulting in a positive impact on their income from 
automation technology. A detailed description of the index is provided 
in the Supplementary material.

3 Results

3.1 Benchmark results

Estimation results are shown in Table  1. Column (1) is the 
regression result without controlling any variables. It is shown that the 
estimates of both working time and its squared term are statistically 
significant. The estimated coefficient of working hours is significantly 
negative, while that of its square is positive. This means that working 
time’s effect on depression is nonlinear. In the regressions from 
columns (2) to (6), we gradually add controls of the demographic 
characteristics, social characteristics, working characteristics, family 
background and regional and time dummies. With the inclusion of 
different types of controls, estimated coefficients of Working time_  
and Working time squared_ _  are all statistically significant at the 1% 
level. This means that the nonlinear relationship between working 
time and depression is very robust.

As shown in column (6), the estimates of working time and its 
squared term are −0.0736 and 0.0008. This means that when working 
hours are lower than 48.688 h per week (=0.0735557/(0.0007554*2)), 
depression reduces as working time increases. This is mainly due to 
the fact that when working time is low, income rises with longer 
working hours, which is conducive to reducing perceived mental 
disorders. Existing literature provides indirect explanations 
concerning why working longer during the lower working time 
interval could help reduce perceived mental disorders. A study from 
the United Kingdom found that for unemployed or economically 
inactive individuals, increasing their working time can improve their 
social participation and mental health (60). However, after working 
hours exceed the turning point of 48.688 h per week, depression 
increases with working longer. This turning point is almost in line 
with the International Labor Organization (ILO) standard of working 
no more than 48 h per week (61). Therefore, this research justifies the 
standard from a mental health perspective. Figure  2 intuitively 
illustrates that as working time increases, its effect on depression is 
firstly negative and then positive, meaning a U-shaped effect of 
working time on depression. In CGSS, 23.090% of the respondents 
work more than 48.688 h per week. This means that from the 
perspective of mental health, almost 1 in 4 people suffer from rising 
depression caused by overwork.

In addition, we further examine whether the relationship between 
working hours and depression is a U-shaped relationship or a more 
complex association with more turning points. We include working 
time and its quadratic and cubic terms into the instrumental variable 
model. Regression results are shown in column (7) of Table 1. It is 
demonstrated that all of the three variables are not significant. This 
means that the multicollinearity among them causes overfitting. 
Therefore, the cubic term of working time should not be included in 
the regression. This confirms that the relationship between working 
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TABLE 1 Empirical results.

Model (1) 2SLS (2) 2SLS (3) 2SLS (4) 2SLS (5) 2SLS (6) 2SLS (7) 2SLS

Variable Depression Depression Depression Depression Depression Depression Depression

Working_time
−0.0648***

(0.0240)

−0.0631***

(0.0185)

−0.0652***

(0.0192)

−0.0843***

(0.0222)

−0.0852***

(0.0221)

−0.0736***

(0.0235)

−0.0498

(0.1581)

Working_

time_squared

0.0007**

(0.0003)

0.0007***

(0.0002)

0.0007***

(0.0002)

0.0009***

(0.0002)

0.0009***

(0.0002)

0.0008***

(0.0002)

0.0001

(0.0043)

Working_

time_cubed

0.0000

(0.0000)

Age
0.0002

(0.0071)

0.0014

(0.0069)

0.0025

(0.0069)

0.0129*

(0.0071)

0.0133*

(0.0069)

0.0135**

(0.0067)

Age_squared
−0.0001

(0.0001)

−0.0001

(0.0001)

−0.0001

(0.0001)

−0.0002**

(0.0001)

−0.0002**

(0.0001)

−0.0002**

(0.0001)

Whether 

female

0.0557*

(0.0299)

0.0491

(0.0310)

0.0686**

(0.0304)

0.0757**

(0.0301)

0.0800***

(0.0303)

0.0728

(0.0462)

Education level
0.0102

(0.0101)

0.0144*

(0.0083)

0.0166**

(0.0071)

0.0175**

(0.0070)

0.0173***

(0.0066)

0.0147

(0.0166)

Health status
−0.3019***

(0.0147)

−0.2999***

(0.0147)

−0.2840***

(0.0150)

−0.2813***

(0.0149)

−0.2789***

(0.0151)

−0.2792***

(0.0154)

Whether 

migrants

0.0112

(0.0313)

0.0137

(0.0329)

0.0226

(0.0330)

0.0091

(0.0327)

0.0608*

(0.0330)

0.0659

(0.0411)

Whether 

Hukou in 

urban

0.0004

(0.0348)

0.0026

(0.0318)

0.0009

(0.0311)

0.0307

(0.0300)

0.0258

(0.0423)

Whether 

ethnic 

minorities

−0.0554

(0.0400)

−0.0846*

(0.0436)

−0.0876**

(0.0434)

−0.1802***

(0.0483)

−0.1746***

(0.0616)

Whether 

religious 

believer

0.0486

(0.0322)

0.0487

(0.0351)

0.0441

(0.0355)

0.0463

(0.0355)

0.0423

(0.0427)

Whether CPC 

member

−0.0843***

(0.0312)

−0.0770**

(0.0332)

−0.0649*

(0.0336)

−0.0697**

(0.0327)

−0.0771

(0.0564)

ln_Income
0.0359**

(0.0150)

0.0362**

(0.0147)

0.0339**

(0.0152)

0.0311

(0.0259)

Socio-

economic 

status

−0.1568***

(0.0213)

−0.1504***

(0.0215)

−0.1490***

(0.0207)

−0.1508***

(0.0224)

Whether 

having pension

−0.0137

(0.0261)

−0.0096

(0.0264)

−0.0180

(0.0257)

−0.0241

(0.0443)

Whether 

having medical 

insurance

0.0465

(0.0450)

0.0646

(0.0454)

0.0529

(0.0435)

0.0540

(0.0437)

Whether 

married

−0.1445***

(0.0302)

−0.1340***

(0.0289)

−0.1309***

(0.0336)

Family size
−0.0020

(0.0073)

−0.0070

(0.0073)

−0.0062

(0.0092)

Number of 

children

0.0126

(0.0121)

0.0053

(0.0112)

0.0061

(0.0119)

Number of 

houses

−0.0131

(0.0153)

−0.0055

(0.0155)

−0.0050

(0.0161)

Year dummy No No No No No Yes Yes

(Continued)
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hours and perceived mental disorders is not cubic or nonlinear with 
more turning points.

3.2 Heterogeneities

This paper further investigates the heterogeneities of working 
time’s U-shaped effects on depression from multiple perspectives, 
illustrated in Figure 3. Here, we mainly focus on the turning points 
and the disparities in perceived mental disorders among different 
groups. In terms of gender, it is shown that the turning points for men 
and women are very close. However, men suffer more perceived 
mental disorders from overwork than women. With regard to age, 
older workers’ turning point is much smaller than that of young 
workers (44.966 < 53.353). Additionally, older workers experience 
higher levels of depression when faced with overwork. In respect of 
educational heterogeneity, it is found that the turning point is smaller 
for the higher educated group with a college degree or above, meaning 

that they are more sensitive to working hours and less willing to work 
longer. Nevertheless, when working time does not exceed the turning 
point, their depression level is lower, which may be attributed to their 
better working environment.

As to socioeconomic status, the higher status group experiences 
lower levels of depression when working longer than the optimal 
hours. Regarding regional differences, the U-shaped curve of rural 
residents is flatter and especially after the turning point, the upward 
trend is not prominent. This is related to the relatively lower living 
standards of residents in rural areas under China’s urban–rural 
dual economic structure, in which rural workers are more willing 
to work more hours for higher income. In addition, findings 
suggest that migrants and healthier people have a greater turning 
point in the U-shaped relationship between working hours and 
depression. When the optimal working time is exceeded, perceived 
mental disorders are also lower among them, meaning that 
migrants and those with healthier status are more tolerant 
to overwork.

TABLE 1 (Continued)

Model (1) 2SLS (2) 2SLS (3) 2SLS (4) 2SLS (5) 2SLS (6) 2SLS (7) 2SLS

Variable Depression Depression Depression Depression Depression Depression Depression

Province 

dummies
No No No No No Yes Yes

Constant
3.3446***

(0.3634)

4.4161***

(0.2256)

4.4133***

(0.2555)

4.4720***

(0.2637)

4.3104***

(0.2743)

3.8939***

(0.3215)

3.7731***

(0.8921)

Observations 12,452 12,408 12,377 11,738 11,655 11,655 11,655

***, **, and * indicate significance at the levels of 1, 5, and 10%, respectively. The values in parentheses are standard errors robust to heteroskedasticity. Yes means the corresponding variables 
are controlled in the regression, while N means not controlled. The same for other tables in this paper and the Supplementary material.

FIGURE 2

U-shaped effect of working time on depression.
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Furthermore, we  also pay special attention to whether labor 
protection and social security can alleviate the adverse effects of 
overwork on depression. In terms of labor protection, we compare the 
difference between trade union members and nonunion members. It 
is found that union members have a larger turning point and they 
consistently experience lower depression than non-union members as 
working time increases. This suggests that labor protection from 
unions can help to mitigate the negative impact of overtime on mental 
health. Besides, we  explore the heterogeneity in terms of social 
security and find similar results. Those with social insurance have a 
higher turning point and experience lower perceived mental disorders 
when working overtime, meaning that social security also helps to 
reduce its side effect on mental health.

3.3 Robustness checks

We conduct a series of robustness checks on the U-shaped 
relationship between working time and perceived mental disorders. 
First, the sample sizes are different from columns (1) to (6). This is 
because the number of observations for different control variables 
differs slightly. As more control variables are included in the 
regressions, the sample size decreases to some extent. Naturally, we are 
concerned about whether this affects the results of this paper. 
Therefore, we conduct a robustness test, with the results presented in 
Supplementary Table S2. Second, another indicator measuring the 

impact of automation is used as the instrumental variable in the 2SLS 
model. Details of this IV are explained in Supplementary Table S3, in 
which the statistical results are almost identical with the benchmark 
regressions, lending further credence to the robustness of the 
conclusion. Third, “whether feeling depressed” is regressed as the 
explained variable using the IV-Probit model. Results of 
Supplementary Table S4 show that both working time and its quadratic 
term have significant effects on this dependent variable, further 
confirming the U-shaped relationship between working hours and 
perceived mental disorders.

Fourth, we perform regressions using other types of instrumental 
variables models, including limited information maximum likelihood 
estimation (LIML), generalized method of moments (GMM) and 
efficient two-step GMM and iterative GMM. Supplementary Table S5 
demonstrates that regardless of which instrumental variable estimation 
method is used, results are almost the same with benchmark 
estimations. Fifth, considering that the nonlinear relationship between 
working time and depression has not been paid attention to in the 
literature, we specifically examine whether the square of working time 
is an important factor for predicting depression. In this regard, we use 
machine learning methods such as Lasso, Ridge, and Elastic Net models 
to perform penalized regression. Supplementary Table S6 demonstrates 
that working time squared_ _  is one of the key predictors of perceived 
mental disorders in all these models. This further confirms the 
robustness of nonlinear relationship between working time and 
depression. Sixth, a placebo test of working hours is performed to check 
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Heterogeneities in the U-shaped impact of working time on depression.
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the endogeneity after using the IV method. As illustrated and explained 
in Supplementary Figure S1, the U-shaped relationship between 
working hours and depression is not caused by other omitted factors.

4 Conclusion

Using a large-scale nationally representative survey in China, this 
paper examines the nonlinear impact of working hours on perceived 
mental disorders. Applying the exogenous impact of automation on 
working time as the instrumental variable, we investigate the causal 
relationship between working time and perceived mental disorders on 
the basis of dealing with endogeneity. It is found that the effect of 
working time on depression is U-shaped, rather than linear. When 
working less than 48.688 h per week, depression reduces as working 
hours increase. This may be because within this range, increased working 
hours could enhance an individual’s sense of self-worth, maintain 
moderate social interactions, and usually lead to higher income (6). 
These factors contribute to improved mental health. However, after 
exceeding this threshold, the mental health costs outweigh the benefits 
aforementioned, resulting in a positive correlation between working 
hours and depression. Long working hours result in chronic fatigue and 
sleep deprivation, increase psychological stress, and weaken social 
support systems, thereby having a significant negative impact on physical 
and mental health (12, 14). These findings justify the ILO’s working time 
standard of not working more than 48 h per week. This underscores the 
importance of reasonably arranging work hours to ensure workers’ 
health and safety, avoiding both excessively long and short working 
hours. The nonlinear causal relationship is a contribution to the existing 
literature in which the linear correlation between working time and 
depression is assumed (62–66). Based on this, we further find that there 
are no more complex nonlinear relationships with more turning points 
between working hours and mental health. Moreover, various robustness 
tests are carried out, all of which support the above conclusions.

Heterogeneity analysis shows that when working hours exceed the 
turning point, men’s depression level is higher. Older workers have a 
lower tolerance for overtime working stress. The turning point of the 
higher educated group is smaller and they are less willing to work 
longer. Those with higher socioeconomic status experience lower 
levels of depression after exceeding optimal working hours. The 
increasing levels of depression among rural residents are not 
pronounced, meaning that they are more willing to work more to raise 
income. After exceeding the turning point, perceived mental disorders 
are lower among migrants and those with better health conditions. In 
addition, it is also discovered that labor protection and social security 
can help to reduce mental disorders caused by overwork. Analytical 
results in this paper imply that the optimal working hours should 
be considered from a mental health perspective and different turning 
points of the U-shaped relationship among different groups should 
be noted. In addition, heterogeneities imply that some disadvantaged 
subgroups suffer from more perceived mental disorders due to 
excessive working and therefore need to be given more attention.
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