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Introduction: Air pollution is a significant contributor to morbidity and mortality 
globally and has been linked to an increased risk of dementia. Previous studies 
within the Betula cohort in Northern Sweden have demonstrated associations 
between air pollution and dementia, as well as distinctive metabolomic profiles in 
dementia patients compared to controls. This study aimed to investigate whether 
air pollution is associated with quantitative changes in metabolite levels within this 
cohort, and whether future dementia status would modify this association.

Methods: Both short-term and long-term exposure to air pollution were 
evaluated using high spatial resolution models and measured data. Air pollution 
from vehicle exhaust and woodsmoke were analyzed separately. Metabolomic 
profiling was conducted on 321 participants, including 58 serum samples from 
dementia patients and a control group matched for age, sex, and education 
level, using nuclear magnetic resonance spectroscopy.

Results: No statistically significant associations were found between any metabolites 
and any measures of short-term or long-term exposure to air pollution. However, 
there were trends potentially suggesting associations between both long-term and 
short-term exposure to air pollution with lactate and glucose metabolites. Notably, 
these associations were observed despite the lack of correlation between long-term 
and short-term air pollution exposure in this cohort. There were also tendencies 
for associations between air pollution from woodsmoke to be more pronounced 
in participants that would later develop dementia, suggesting a potential effect 
depending on urban/rural factors.

Discussion: While no significant associations were found, the trends observed in 
the data suggest potential links between air pollution exposure and changes in 
lactate and glucose metabolites. These findings provide some new insights into 
the link between air pollution and metabolic markers in a low-exposure setting. 
However, addressing existing limitations is crucial to improve the robustness 
and applicability of future research in this area. The pronounced associations in 
participants who later developed dementia may indicate an influence of urban/
rural factors, warranting further investigation.
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1 Introduction

Major Neurocognitive Disorder, often denoted dementia, is a 
significant public health challenge, with 10 million new cases reported 
annually, and its prevalence projected to triple between 2010 and 2050 
according to the World Health Organization (1). Alzheimer’s disease 
(AD), an irreversible and progressive neurodegenerative disorder, 
alone accounts for a major part of all dementia cases and is the most 
prominent contributor to this global health issue. Given the substantial 
personal, social and economic burden associated with dementia care, 
and the lack of effective disease-modifying medications, it is crucial 
to identify and target potential modifiable risk factors as part of 
preventive policies (2).

Many well-established risk factors for dementia, such as 
hypertension, hyperlipidemia, and diabetes, are linked to lifestyle 
choices and can be modified to reduce the risk of disease. However, 
another modifiable risk factor that warrants attention at the population 
level is environmental: air pollution (3). Outdoor air pollution is 
composed of a complex mixture of toxic substances, including 
particulate matter (PM), irritant gases such as nitrogen dioxide (NO2), 
and heavy metals. PM, a mix of particles of various sizes and attributed 
from different sources, is considered responsible for many of the 
adverse health effects, both acute and chronic, associated with air 
pollution. Indeed, numerous studies have shown a positive association 
between daily mortality and ambient particle concentrations (4). 
Long-term exposure to ambient air pollutants, especially PM with a 
diameter of less than 2.5 micrograms (PM2.5), was estimated to have 
resulted in more than 4 million deaths worldwide in 2019 (5). While 
a substantial body of epidemiological research has established the 
association between air pollution exposure and cardiovascular 
diseases (6), the evidence regarding air pollution’s impact on cognitive 
decline, Alzheimer’s disease (AD), and other forms of dementia is 
more limited. Evidence is growing, however, and air pollution was 
suggested to be one of 12 established risk factors for dementia in the 
Lancet Commission Report Dementia prevention, intervention, and 
care in 2020 (3).

Despite indications that ambient air pollution may contribute 
to AD and other dementias, scientific evidence on this relationship 
remains limited, and the underlying biological mechanisms are not 
well understood. Given that the AD disease process begins many 
decades before the onset of symptoms during a lengthy preclinical 
period, it is of utmost importance to identify biomarkers of the 
disease to facilitate early diagnosis, prevention, and treatment (7). 
Metabolic profiling, which involves quantifying small molecules 
in cells, tissues, and biofluids, can be  an effective tool for 
identifying new disease biomarkers and understanding disease 
mechanisms (8–10). Recent research on air pollution and 
non-targeted metabolomics suggests that the relationship between 
air pollution exposure and metabolic pathways primarily revolves 
around oxidative stress, inflammation, and steroid metabolism 
(11). A recent review provided a comprehensive overview of the 
utilization of untargeted metabolomics to detect alterations in 
metabolites or metabolic pathways linked to air pollution exposure 
and found 13 studies investigating short-term effects and 10 
studies examining sub-chronic or long-term effects at the time of 
search in 2021 (12). Among the studies on long-term effects, there 
seemed to be considerable heterogeneity in exposure assessment 
methods. Additionally, local variations in major emission sources, 

such as traffic emissions and residential wood combustion have 
generally not been considered. We  have previously observed 
associations between air pollution and dementia in the Betula 
cohort in Northern Sweden (13, 14). Some research in the same 
cohort has indicated altered concentrations of metabolites in 
individuals with dementia compared to healthy individuals 
(15, 16).

The main objective in the present study was to investigate whether 
exposure to air pollution was associated with quantitative changes of 
serum metabolite levels in the Betula cohort. A further aim was to 
explore whether these potential associations were dependent on future 
dementia status.

2 Materials and methods

2.1 Study population

The examination of the linear relationship among air pollution, 
metabolites, and covariates drew upon data from the Betula cohort, a 
prospective longitudinal study centered on aging, memory, and 
dementia established in 1988. Its primary aim was to detect early 
indicators of dementia by closely monitoring the health and cognitive 
progression of its participants over time. A total of 4,500 participants 
were randomly selected, with over-sampling of older adults, from 
approximately 125,000 residents in the Umeå municipality and 
assigned to six distinct cohorts at different time points. Since its 
inception, the Betula study has conducted six independent test waves 
(T1-T6), typically spanning about 1 week. These comprised 
comprehensive health examinations, cognitive assessments, and 
neurological evaluations. Additionally, biological samples were 
collected on two separate occasions within each test wave. An in-depth 
account of the recruitment process and the study’s design has been 
documented elsewhere (17). For the purposes of the present study, a 
subset of 321 participants were selected from test waves T4 (2003–
2005) and T5 (2008–2010). These individuals were aged between 64 
and 95 years at the time of the biological sample collection. The 
selection of the participants was based on available biofluid specimen 
of 1,144 individuals at T4. Among them, 136 individuals who were 
diagnosed with dementia case at T4 (2003–2005), T5 (2008–2010) and 
T6 (2013–2015) were selected. Additionally, 185 controls were 
matched with these dementia cases based on age, education, gender 
and vital status (alive or diseased) resulting in final study count of 321 
individuals in present study.

2.2 Metabolomics profiling

A detailed description of the serum metabolic profiling procedure 
has been provided elsewhere (15). In brief, the metabolomic profiling 
involved the analysis of serum samples collected from both dementia 
patients and a control group matched for age, sex, and education level. 
This analysis was carried out using nuclear magnetic resonance 
(NMR) spectroscopy, a highly robust quantitative method, often 
referred to as NMR metabolomics or metabonomics (18). In total, 58 
metabolites were quantified for each of the 321 samples using the 
Chenomx NMR Suite software package, version 8.01 (Chenomx Inc., 
Edmonton, Canada).
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2.3 Air pollution exposure assessment

2.3.1 Long-term exposure
To estimate exposure to PM2.5 and Black Carbon (BC), we relied 

on data for the years 1990, 2000, and 2010, which were computed by 
the Swedish Meteorological and Hydrological Institute (SMHI) using 
a comprehensive methodology specified elsewhere (19). In short, this 
involved the utilization of a wind model and a Gaussian air quality 
dispersion model with detailed input data. Notably, the principal local 
contributors to PM2.5 emissions encompassed road traffic and 
residential wood burning.

Concerning PM2.5 and BC from road traffic, they were modelled 
separately for exhaust and wear-and-tear. Road networks were 
meticulously described with a high degree of detail, and the recorded 
traffic flow data for both heavy and light vehicles were collected 
separately by SMHI for major roadways, with additional data being 
modelled for less travelled routes. Additionally, the composition of the 
vehicle fleet was derived from the National Vehicle Registry and 
categorized into passenger cars (petrol, diesel, ethanol, gas), light 
commercial vehicles (petrol and diesel), heavy goods vehicles (petrol 
and diesel), and buses (diesel, biogas, and ethanol). Emission factors 
for exhaust emissions from various vehicle types, taking into account 
different speeds and driving conditions, were calculated based on the 
Handbook Emission Factors for Road Transport (HBEFA) 3.1 (20).

For the assessment of PM2.5 from residential heating, SMHI 
utilized a comprehensive emission inventory based on information 
gathered from chimney sweepers, collected by the Department for 
Occupational and Environmental Medicine at Umeå University. This 
inventory allowed emissions to be  represented as point sources, 
encompassing a total of 10,287 appliances from the period 2006 to 
2009 within the assessment area. The inventory underwent validation 
through a monitoring campaign conducted in and around Umeå, with 
a particular focus on areas significantly impacted by small-scale 
residential heating. Additionally, a survey was carried out to gather 
information on wood consumption and firing habits, enabling the 
estimation of average wood consumption for various heating 
appliances. Omstedt et al. (21) provide further insights into emission 
factors, inventory validation, and survey details. Within our study 
area, residential wood burning was the predominant source of local 
particle emissions from residential heating, and as such, this particle 
source is henceforth referred to as “residential wood burning.”

The original spatial resolution of the model grids was 3,200 m x 
3,200 m but was progressively refined to 50 m x 50 m in areas with 
increased urbanization. To estimate historical air pollution levels, 
we performed a backward extrapolation of the modelled PM2.5 and BC 
concentrations to the levels observed at T3. This was achieved by 
applying scaling factors for each year, using 2009 as the baseline year. 
For the years spanning 1998 to 2000, the annual mean concentrations 
of PM2.5 and BC were modelled to be  6.75 μg/m3 and 0.49 μg/m3, 
respectively.

The pollutant measures included in the analysis were: PM2.5 
related to traffic emissions (PM2.5exhaust), residential wood burning 
(PM2.5 wood), road wear and tear PM2.5 non-exhaust, all local sources 
of PM2.5 together with regional background concentrations (PM2.5 
total), BC-concentrations associated with traffic (BC traffic), 
residential wood burning (BC wood), and all local sources of BC 
combined (BC total). These measures served as indicators of long-
term air pollution exposure.

2.3.2 Short-term exposure
We also used data on 24 hourly mean concentrations of PM10 with 

a diameter of less than 10 micrograms (PM10) from the 1st of January 
2003 to the 31st of December 2010 as a measure of short-term air 
pollution exposure. Data from a measurement station in the study 
area describing urban background concentrations was downloaded 
from SMHI’s server.1

2.4 Statistical analysis

All data are presented in the form of participant characteristics, or 
covariates, based on mean concentrations and standard deviations of 
PM2.5 exhaust and PM2.5 wood.

To explore the relationship between long-term exposure to air 
pollutants and serum metabolites, we  employed Spearman’s 
correlation analysis. All analysis was then stratified by future dementia 
status (yes/no). This variable describes whether a participant receives 
a dementia diagnosis at any time after the study period extending 
from memory testing to the end of follow up period in 2014. The 
relationship between long-term exposure to PM2.5 and serum 
metabolites was, furthermore, analyzed using linear regression 
analysis and adjusted for age at sampling date, and sex.

The relationship between measurements of daily averages of PM10 
at the sampling date and serum metabolites, using biological samples 
from 34 participants (participants with missing PM10 measurements 
were excluded), was also analyzed with linear regression. Analyses 
were adjusted for participants’ age and sex.

All analyses were conducted using R version 3.4.8.
The study was approved by the ethics review authority with Dnr: 

2022–04608-01 and written informed consent was given by all Betula 
participants. The researchers analyzing the data did not have access to 
information that could identify individual participants.

3 Results

The mean age of participants at recruitment was 79.9 years. Within 
the cohort of 321 participants, our study sample consisted of 136 
individuals with dementia and 185 healthy individuals. Descriptive 
data for all variables, including the mean concentrations of PM2.5 
exhaust and PM2.5 wood, are presented in Table  1. A tile plot 
illustrating the correlations between pollutants and serum metabolites 
is presented in Figure 1. In general, we observed very weak correlations 
between pollutants and metabolites. For instance, there were weak 
positive correlations between leucine and PM2.5 total (rs = 0.21, 
p-value = 0.02), PM2.5 exhaust (rs = 0.26, p-value = 0.01), PM2.5 
non-exhaust (rs = 0.256, p-value = 0.01), BC total (rs = 0.26, 
p-value = 0.00), and BC traffic (rs = 0.25, p-value = 0.01). Conversely, a 
weak negative correlation was observed between pyruvate and PM2.5 
total (rs = −0.21, p-value = 0.03), PM2.5 exhaust (rs = −0.2, 
p-value = 0.03), PM2.5 non exhaust (rs = −0.2, p-value = 0.03), BC total 
(rs = −0.22, p-value = 0.02), and BC traffic (rs = −0.2, p-value = 0.03). 
Results from the simple linear regression analysis (Figure 2) were in 

1 http://www.smhi.se/datavardluft
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line with these findings, the estimated slopes were imprecise. In 
Figure 3, the metabolites from Figure 2 for which the p-value was less 
than 0.2 were selected for closer presentation. Figure 4 is a point plot 
presenting the regression coefficients for long-term PM2.5 exposure 
(A) and short-term PM2.5 exposure (B), with each of the investigated 
serum metabolites adjusted for age and sex. Most estimates were very 
close to zero, with the exception of Glucose (β = −1.22, p-value = 0.06 
and) and, to some extent Lactate (β = −0.02, p-value = 0.7), which 
seemed to be negatively correlated with total PM2.5 especially for long-
term exposure but also a tendency of signal for the same metabolites 
with short-term exposure, at least visually (Figures  4A,B). The 
corresponding estimates for short term exposure of PM10 for glucose 
and lactose were (β = −0.009, p-value = 0.05) and (β = −0.006, 
p-value = 0.33) respectively.

When stratifying the analysis by future dementia status, the 
correlations were still weak (Figure  5). Although inconsistent (p-
values were > 0.05), there was a tendency for the patterns to differ 

between the two groups, however. Among study participants who later 
developed dementia, the associations were to a larger extent negative 
for PM2.5 wood than among control participants who did not receive 
a dementia diagnosis during follow-up.

4 Discussion

4.1 Main findings

In this study, we  did not find strong evidence supporting 
association between exposure to ambient particulate air pollution and 
serum metabolites, in a low exposure setting in Northern Sweden. The 
lack of clear associations was seen for both long-term and short-term 
exposure to air pollution. There were tendencies for the Glucose and 
Lactate metabolites to be negatively associated with long-term-, and 
possibly also short-term exposure to air pollution, however. While 

TABLE 1 Distribution of Population characteristics at recruitment according to mean PM2.5 exposure to vehicle exhaust and residential wood burning 
[number of individuals (N) and dementia cases (n), Mean (standard deviation, SD)].

PM2.5 (μg/m3)

Wood burning Vehicle exhaust

N (n) Mean (SD) Mean (SD)

Age 64–74 84 (33) 0.88 (0.22) 0.15 (0.14)

75–85 191 (83) 0.84 (0.24) 0.19 (0.19)

> 85 46 (20) 0.89 (0.27) 0.203 (0.24)

Sex Female 204 (87) 0.86 (0.24) 0.18 (0.18)

Male 117 (49) 0.86 (0.24) 0.19 (0.20)

Education Compulsory 209 (108) 0.84 (0.24) 0.18 (0.19)

High School 35 (14) 0.91 (0.21) 0.17 (0.11)

University 28 (12) 0.99 (0.24) 0.21 (0.24)

Smoking No 207 (81) 0.85 (0.26) 0.18 (0.18)

Yes 105 (47) 0.87(0.20) 0.20 (0.20)

BMI* Overweight 165 (61) 0.84 (0.24) 0.19 (0.20)

Normal or Underweight 140 (69) 0.88 (0.25) 0.18 (0.16)

Medication

  Anti-hypertensive No 169 (71) 0.86 (0.25) 0.19 (0.19)

Yes 130 (51) 0.86 (0.22) 0.18 (0.18)

  Anti-Alzheimer’s No 305 (120) 0.86 (0.24) 0.18 (0.18)

Yes 16 (16) 0.87 (0.20) 0.24 (0.28)

  Lipid lowering 

agents

No 271 (112) 0.86 (0.24) 0.185 (0.19)

Yes 50 (24) 0.84 (0.21) 0.18 (0.17)

  Anti-diabetics No 295 (127) 0.86 (0.24) 0.19 (0.19)

Yes 26 (9) 0.86 (0.28) 0.14 (0.12)

  Anti-thrombocytes No 185 (77) 0.86 (0.26) 0.18 (0.16)

Yes 136 (59) 0.86 (0.21) 0.195 (0.21)

  Diuretics No 221 (96) 0.87 (0.23) 0.180 (0.18)

Yes 100 (40) 0.85 (0.25) 0.190 (0.20)

  Vitamin intake† No 237 (96) 0.87 (0.25) 0.177 (0.18)

Yes 84 (40) 0.84 (0.21) 0.203 (0.20)

*Overweight: >25 kg/m2. †Normal or underweight: ≤25 kg/m2.
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these observations could potentially be a result of random chance due 
to multiple comparisons, they are still considered to be noteworthy.

4.2 Identifying metabolites

Findings from previous studies are somewhat mixed, and there 
seems to be substantial variation regarding which metabolites have 
been found to be  associated with air pollution exposure. A study 
conducted in the USA employed untargeted metabolomics, which has 
the capability to identify metabolomic signals associated with traffic 
exposure and utilized weekly mean pollutant concentrations (22). 
Notably, arginine and histidine were among the 10 validated 
metabolites found to be associated with traffic exposure. In a separate 
study conducted in the Netherlands, a narrower exposure window of 
5 h was employed, and metabolite profiling was conducted using 493 
blood samples collected from 31 volunteers (23). Tyrosine, guanosine, 
and hypoxanthine were among the metabolites associated with air 
pollution exposure. In another study from the USA, metabolic 
perturbations associated with daily mean exposures to traffic-related 

air pollutants among 180 participants (24). Here, histamine and uracil 
were found to be associated with carbon monoxide, nitrogen dioxide, 
and elemental carbon. In a Chinese study, the two primary metabolic 
signatures were detected: comprised lipids and dipeptides, 
polyunsaturated fatty acids, taurine, and xanthine (25). Metabolites in 
both groups exhibited a decline during the 2008 Beijing Olympics 
when air pollution concentrations decreased, followed by an increase 
after the Olympics when air pollution returned to its usual 
(high) levels.

In a recent review, 47 studies was found where untargeted 
metabolomics was used to explore the impact of air pollution on the 
human metabolome (11). Thirty-five metabolites, including 
hypoxanthine, histidine, serine, aspartate, and glutamate, consistently 
showed associations with multiple pollutants in at least 5 
independent studies.

The present study observed tendencies for the metabolites Glucose 
and Lactate to be associated with long-term, and possibly, short-term 
PM-concentrations when adjusted for age and sex. It should be noted 
that there were many comparisons in the study, and a certain number 
of associations hence should be  expected to be  observed due to 

FIGURE 1

Tile plot displaying correlations between the investigated air pollutants (long-term exposure) and serum metabolites. A mosaic of light blue shades 
indicates a weak negative correlation between pollutants and metabolites while the light shades of red tones emphasizes the weak positive correlation 
between pollutants and metabolites.
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chance. However, the fact that the tendency of the associations is 
observed for both long- and short-term exposure is intriguing, since 
there is no reason for the long-term and short-term exposure 
measures to correlate in the present study.

4.3 Possible pathways

Commonly affected pathways identified the recent review of 47 
studies involved oxidative stress and inflammation, such as 
glycerophospholipid metabolism, pyrimidine metabolism, methionine 
and cysteine metabolism, tyrosine metabolism, and tryptophan 
metabolism (11). In the present study, a limited number of metabolites 
were analyzed, and only two metabolites seemed to be associated with 
air pollution exposure. Pathway analyses were thus not applicable.

Original studies also support the association between both 
oxidative stress and inflammation pathways and traffic and have also 
highlighted an association between traffic exposure and leukotriene 
and vitamin E metabolism (22). Significant alterations in the blood 
metabolome correlating with fluctuations in air pollution levels, some 

of which were linked to acute health effects, have also been identified 
(23). Pathway analysis conducted in the same original study 
demonstrated augmentation in the course of eight pathways, with a 
notable emphasis on tyrosine metabolism (24). Additionally, in a 
U.S. study, DNA damage and repair, nutrient metabolism, and acute 
inflammation were all linked to traffic-related air pollutants and 
pyrimidine metabolism, as well as the carnitine shuttle which assists 
the active transportation of long chain fatty acid from the blood 
stream to the mitochondria for energy production (24). However, 
authors of the review article concluded that future efforts should 
prioritize validation through hypothesis-driven protocols and 
advancements in metabolic annotation and quantification 
techniques (11).

Regarding the present study’s results, Glucose and Lactate’s 
tendency toward an association with both long-term and short-
term to ambient PM is also interesting for the discussion of 
metabolic pathways. For instance, evidence on the association 
between ambient air pollution and diabetes, for which Glucose is a 
key factor, is increasing, and air pollution appears to be associated 
with dysregulation of glucose metabolism (26). Additionally, 

FIGURE 2

Simple linear regression analysis showing the association between long-term exposure to PM2.5-total and the 58 investigated serum metabolites (the 
red lines illustrate the estimated slopes).

https://doi.org/10.3389/fpubh.2024.1401006
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Raza et al. 10.3389/fpubh.2024.1401006

Frontiers in Public Health 07 frontiersin.org

Lactate, a crucial metabolic substrate, exerts its regulatory impacts 
on immune response depending on the cell type and pathway by 
which lactate is produced or metabolized, which can either hinder 
or enhance the inflammatory response (27). This metabolite also 
functions as an intercellular and inter-tissue redox signaling 
molecule and plays a key role in supplying energy for oxidative 
metabolism across various tissues, contributing to the preservation 
of redox homeostasis and the overall integrity of both tissues and 
the entire organism (28). Given that oxidative potential in 
particulate air pollution is often stated as one of the key mechanistic 
pathways for various diseases, the tendency of an association with 
Lactate should be further investigated in future studies. The findings 
related to Lactate are also interesting given emerging evidence 
indicating that particulate air pollution may affect the 
microbiota (29).

4.4 Dementia diagnosis

In the present study, the correlation between various PM air 
pollutants, especially those related to wood combustion, and 
metabolites appeared more pronounced among individuals who 
subsequently developed dementia. These findings are not conclusive 
however, with high p-values, but could be  seen as hypothesis 
generating. To our knowledge, differential associations due to future 
dementia diagnosis have not been investigated, or seen, before. The 
finding may imply a differential impact of exposure on susceptible 
groups, prompting inquiries into the varying metabolomic response 
among those who later experience dementia. Moreover, this finding 
aligns, to some extent, with prior results from the Betula cohort, 
which have indicated clearer associations between air pollution and 
dementia among more susceptible groups (30), and associations 

between exposure to woodsmoke and dementia (14). We have also 
earlier seen in the Betula cohort that the connection between 
particulate air pollution and dementia exhibited greater strength 
among participants with the APOE ε4 allele and among those with 
lower scores on odor identification ability (30).

We primarily focused on metabolic markers from the serum 
metabolome and their associations with air pollution exposure. The 
metabolites in our study were previously analyzed using nuclear 
magnetic resonance spectroscopy both in serum and saliva, revealing 
statistically significant models that distinguished dementia patients 
from controls (15, 16). Dementia patients showed elevated levels of 
acetic acid, histamine, and propionate, with decreased levels of 
dimethyl sulfone and succinate. These metabolites, along with others, 
have relevance in AD pathways, dietary influences, and periodontal 
status. While providing valuable insights, our study did not explore a 
broader range of metabolites. Future research could expand this scope 
and consider stratifying analysis by other diseases. Additionally, 
threonine emerged as particularly significant in both dementia and 
pre-dementia groups, impacting multiple metabolic pathways. 
However, only two metabolites (lactate and glucose) stood out in the 
present study, limiting pathway analysis. Future research could include 
more metabolites and consider other disease stratifications.

4.5 Methodological considerations

The study has strengths and limitations to consider. A major 
strength of our study is that we were able to uniquely investigate traffic 
exhaust, non-exhaust emissions, and wood smoke separately, which 
are the major sources of locally emitted air pollution in the area. 
We furthermore achieved a spatial resolution as fine as 50×50 meters 
in urban areas, allowing for precise capture of local emissions. 

FIGURE 3

Simple linear regression analysis showing the association between long-term exposure to PM2.5-total and the serum metabolites for p-value <0.2.
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Additionally, the study utilizes both long-term and short-term 
exposure estimates, providing a robust analysis of the impact of 
air pollution.

This study is furthermore subject to certain limitations that should 
be considered when interpreting the findings. A significant limitation 

relates to exposure misclassification, a common challenge in studies 
on air pollution and health, as people are not always at their homes or 
may spend minimal time outdoors, which is where air pollution is 
modelled. While we employed advanced models to estimate long-term 
exposure to specific sources of particulate air pollution, 

FIGURE 4

Point plot presenting the regression coefficients (y-axis) of the association of total PM2.5 exposure, including long-term (A) and short-term (B), with 
each of the investigated serum metabolites (x-axis), adjusted for age and sex.
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individual-level variations in factors such as residential mobility and 
wood firing habits, which can influence personal and neighborhood-
level exposure, were not accounted for. Regarding short-term 
exposure, only one measurement station was used, which is also an 
evident source of misclassification although being standard approach. 
While this could potentially introduce bias into our results, the applied 
approach to exposure assessment is considered state of the art in the 
field of air pollution epidemiology, and similar approaches are used in 
other studies (31, 32).

Another potential limitation pertains to the lack of knowledge 
surrounding relevant exposure windows. We used the annual mean as 
a marker for long-term exposure to air pollution and the daily mean 
as a marker for short-term exposure to air pollution. Metabolites are 
often influenced quite directly, and short-term exposure may, 
therefore, carry more significance than long-term exposure in this 
context. Generally, the annual mean serves as a reasonably valid proxy 
for exposure over the past several months. Daily mean concentrations 
can vary substantially from day to day, however. The choice of time 
windows may, thus, affect the results.

Residual confounding is another aspect to consider in 
observational studies. In the present study, we had access to data on 
several potential confounding factors, such as education level and 
smoking status. However, we  refrained from adjusting for such 
potential confounding factors because the correlations between the 
pollutants and the metabolites were markedly low and there was 
limited statistical power to include potential confounding factors into 
the models.

Finally, the results generated from this study may not 
be  universally applicable, as they are based on a specific 
population in Northern Sweden, in an area with generally quite 
low levels of air pollution concentrations. Factors like socio-
economic status, lifestyle, demographics, and local environmental 
conditions can vary significantly between regions and populations. 
With this, caution should be  exercised when attempting to 
generalize these findings to different geographic areas and 
demographic groups. Air pollution itself is an intricate mix subject 
to temporal and spatial variation, posing an additional challenge 
for assessing.

FIGURE 5

Tile plot displaying correlations between pollutant types and metabolites, stratified by future dementia status. A mosaic of light blue shades indicates a 
weak negative correlation between pollutants and metabolites while the light shades of red tones emphasize the weak positive correlation between 
pollutants and metabolites among those classified for their future dementia status.
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5 Conclusion

We found tendencies for the Glucose and Lactate metabolites to 
be associated with long-term, and possibly also short-term, exposure 
to particulate air pollution. Additionally, we observed tendencies for 
associations between PM2.5 from residential wood burning and the 
investigated serum metabolites mainly in participants who later 
developed dementia. In future research, it is essential to address 
existing limitations to enhance robustness and applicability to achieve 
more conclusive results, with sufficient statistical power. Continuous 
efforts to combat air pollution and implement long-term strategies are 
imperative for the well-being of both local and global populations. 
With the ultimate goal furthermore of establishing strategies for the 
early identification of individuals at risk of AD and to identify novel 
targets for preventive measures, these findings, although not conclusive, 
can possibly generate hypotheses for future studies. The findings may 
furthermore contribute to the growing body of evidence illustrating the 
potential for enhanced health due to improved air quality.
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