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Background: The human immunodeficiency virus (HIV) remains a critical global 
health issue, with a pressing need for effective diagnostic and monitoring tools.

Methodology: This study explored distinctions in salivary metabolome among 
healthy individuals, individuals with HIV, and those receiving highly active 
antiretroviral therapy (HAART). Utilizing LC–MS/MS for exhaustive metabolomics 
profiling, we  analyzed 90 oral saliva samples from individuals with HIV, 
categorized by CD4 count levels in the peripheral blood.

Results: Orthogonal partial least squares-discriminant analysis (OPLS-DA) and 
other analyses underscored significant metabolic alterations in individuals with 
HIV, especially in energy metabolism pathways. Notably, post-HAART metabolic 
profiles indicated a substantial presence of exogenous metabolites and changes in 
amino acid pathways like arginine, proline, and lysine degradation. Key metabolites 
such as citric acid, L-glutamic acid, and L-histidine were identified as potential 
indicators of disease progression or recovery. Differential metabolite selection and 
functional enrichment analysis, combined with receiver operating characteristic 
(ROC) and random forest analyses, pinpointed potential biomarkers for different 
stages of HIV infection. Additionally, our research examined the interplay between 
oral metabolites and microorganisms such as herpes simplex virus type 1 (HSV1), 
bacteria, and fungi in individuals with HIV, revealing crucial interactions.

Conclusion: This investigation seeks to contribute understanding into the 
metabolic shifts occurring in HIV infection and following the initiation of 
HAART, while tentatively proposing novel avenues for diagnostic and treatment 
monitoring through salivary metabolomics.
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1 Introduction

The infection of human immunodeficiency virus (HIV) leads to acquired immunodeficiency 
syndrome (AIDS), marking one of the most significant pandemics in history (1). HIV spreads 
through blood, bodily fluids, and organ and tissue transplantation (2–4). Typically, new HIV 
transmissions predominantly occur in individuals who are unaware of their health status (5). HIV 
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invasion causes cell-mediated immune deficiency, primarily due to the 
depletion of circulating CD4+ T cells (6, 7). As a retrovirus, HIV enters 
the body and binds to macrophages and dendritic cells, which then 
transport the virus to CD4+ T cells. Infected CD4+ T cells home to 
lymphatic tissues, where the virus replicates and spreads extensively, 
establishing a persistent infection. Immune activation, a critical driver of 
HIV replication, is mediated by abnormal cellular signaling due to the 
secretion of various cytokines and the interaction of the viral envelope 
with cellular receptors. Ultimately, this results in lymphocyte depletion 
and the disruption of lymphatic tissue structures, leading to 
immunological damage (7). Owing to compromised immunity, the 
control of wound infections in people living with HIV (PLWH) becomes 
challenging, leading to complications in wound healing and infection, 
which can trigger comorbidities (8). HIV infection increases the risk of 
numerous comorbidities and opportunistic infections, including cardiac 
disease (9), uveitis (10), and head and neck squamous cell carcinoma 
(HNSCC) (11), thereby increasing mortality rates.

Current research on HIV primarily focuses on HIV subtyping 
(12), disease and treatment dynamics, regional infection trends and 
improvement strategies (13), as well as prevention and care (14). 
Studies on metabolic profiles in PLWH have concentrated on oral 
disease-related metabolites (4), neural metabolites (15), plasma 
metabolites (16), and fungal metabolites (17). It has been found that 
HIV RNA, proviral DNA, and infected cells are readily detectable in 
the salivary secretions of individuals with HIV, with saliva collection 
being a painless, simple, and rapid method (1). Saliva contains 
molecular information related to HIV, and its easy collection suggests 
its potential as a substitute for blood measurements. Studies have 
shown that the salivary metabolomic profile of individuals with HIV 
differs from that of individuals without HIVs (4). However, little is 
known about the salivary metabolomics in PLWH. Thus, there is an 
urgent need for salivary biomarkers associated with HIV infection. The 
use of untargeted metabolomics could facilitate the identification of 
these biomarkers and further elucidating their mechanisms of action.

Highly active antiretroviral therapy (HAART) is widely used in 
HIV treatment. It has been proven to be  effective in suppressing 
systemic HIV-1 viral load, reducing mortality rates, and lowering the 
incidence of opportunistic infections in PLWH (18, 19). In this study, 
we aimed to explore the differences in salivary metabolites among 
normal controls, individuals with HIV, and individuals with HIV 
receiving HAART. A total of 90 saliva samples from PLWH were 
collected, with patients grouped according to peripheral blood CD4 
count levels. Subsequent saliva samples were collected after the 
introduction of HAART for LC–MS/MS metabolomic sequencing. 
This method allows for the untargeted analysis of saliva samples before 
and after HAART. It facilitates the detection of salivary metabolic 
changes, with the goal of identifying biomarkers related to 
HAART. Through these analyses, we  hope to provide healthcare 
professionals with valuable information for diagnosing and assessing 
HIV conditions by examining changes in oral metabolites in PLWH.

2 Materials and methods

2.1 Sample collection and grouping

This study amassed oral saliva samples from 90 individuals with 
HIV, each providing one sample, by the Department of Stomatology of 

Yan’an Hospital, Kunming. Patients were categorized into the HIV group 
based on peripheral blood CD4 counts and subdivided into CD4-L (CD4 
count <200/mm3), CD4-M (CD4 count 200-500/mm3), and CD4-H 
(CD4 count >500/mm3), with each subgroup comprising 30 individuals. 
The control group (CON) consisted of healthy individuals matched in 
age, gender, ethnicity, and dietary habits with the case group, all being 
generally healthy and voluntary participants. Exclusion criteria included: 
pregnant or lactating women, individuals with impaired consciousness, 
dementia, psychiatric disorders, diabetes, severe oral lesions, recent use 
of antibiotics, and those unable to tolerate oral examination. Follow-up 
oral fluid samples were collected 6, 12, and 18 months after highly active 
anti-retroviral therapy (HAART), labeling them as the THIV group, 
denoted as T-6, T-12, and T-18, respectively. Demographic data of 
participants are demonstrated in Table 1.

A written informed consent was acquired from all participants 
before inclusion. The study was approved by the Medical Ethics 
Committee of Yan’an Hospital in Kunming, Yunnan Province.

2.2 Metabolite extraction

Initially, 200 μL of each sample was transferred into a 1.5 mL 
Eppendorf tube, to which 350 μL of extraction liquid (V methanol: V 
acetonitrile: V H2O = 2:2:1) was added, along with 
20 μL L-2-Chlorophenylalanine (1 mg/mL in dH2O) as an internal 
standard. Samples were vortex mixed for 30 s, followed by ultrasound 
treatment for 10 min in ice water. After incubating at −20°C for 1 h, 
samples were centrifuged at 13800 g for 15 min at 4°C. The supernatant 
(0.5 mL) was then transferred to a fresh 1.5 mL Eppendorf tube and dried 
in a vacuum concentrator without heating. The obtained dry extract was 
reconstituted with 300 μL of extraction liquid (V acetonitrile: V 
water = 1:1), vortexed for 30 s, and sonicated in a 4°C water bath for 
10 min. Following another centrifugation at 12000 rpm for 15 min at 4°C, 
60 μL of the supernatant was transferred into a fresh 2 mL LC/MS glass 
vial, with 10 μL from each sample pooled as QC samples. Afterwards, 
60 μL of supernatant was then used for UHPLC-QTOF-MS analysis. 
Data collection was segmented by mass range (50–300, 290–600, 
590–900, 890–1,200) to expand the collection rate of the secondary 
spectra. Four replicates were collected for each method segment.

2.3 Data processing

Data processing was conducted using the xcms4dda and xcms4lipid 
programs based on XCMS, setting minfrac to 0.5 and cutoff to 0.1. 
Secondary data were initially screened, retaining peaks identified in either 
forward or reverse analysis. Peaks from primary and secondary data were 
then matched primarily based on mz and RT, within an mz tolerance at 
±30 ppm and RT tolerance at ±60s. Prior to data analysis, data tables were 
normalized using the SVR algorithm. QC samples with detection rates 
<50% and RSD > 30% were omitted, leading to the final data compilation.

2.4 Orthogonal partial least 
squares-discriminant analysis (OPLS-DA)

After the acquisition of metabolomic sequencing data, OPLS-DA 
was applied to observe intergroup sample differences. Model accuracy 
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and reliability were evaluated using the respective orthogonal T scores. 
Further visualization of significant metabolites in the HIV and THIV 
groups was achieved through analysis of variance (ANOVA), heatmap, 
and hierarchical clustering analyses, conducted using R packages ropls 
(v. 1.30.0) and pheatmap (v. 1.0.12), respectively.

2.5 Differential metabolite selection and 
functional enrichment analysis

Significant differential metabolites were selected based on the 
variable importance in projection (VIP) from the OPLS-DA model, 
with VIP > 1 and p < 0.05 indicating significance. Differential 
metabolites were annotated using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) compound database,1 and subsequently 
mapped to the KEGG pathway database. Pathways with significant 
modulation of metabolites were illustrated, with their significance 
assessed via hypergeometric test p-values. Key KEGG enriched 
pathways were then selected, with metabolite accumulations 
displayed in heatmaps and metabolite pathways depicted using 
AI tools.

2.6 Trend analysis

Metabolites in both the HIV and THIV groups underwent time 
trend analysis using the TCseq R package (v. 1.22.6). Clusters with 
similar trends were chosen for KEGG enrichment analysis. Finally, the 
levels of metabolites within enriched pathways were visualized 
in heatmaps.

1 https://www.kegg.jp/kegg/pathway.html

2.7 Metabolite correlation analysis

All metabolites, including those in weighted correlation 
network analysis (WGCNA) modules, were subjected to Pearson 
correlation analysis, with correlation coefficients and corresponding 
heatmaps generated using R (v. 4.2.3). The relationships among 
autocorrelated metabolites were visualized using Cytoscape (v. 
3.10.0), with certain network results visualized using the MCODE 
(v. 2.0.3) plugin.

2.8 Weighted correlation network analysis

The WGCNA package (v. 1.72–5) in R was employed to scrutinize 
metabolites within the metabolome. Metabolites from significant 
modules were analyzed using analysis of ANOVA, with their 
distribution exhibited in heatmaps. Subsequently, metabolites in each 
module underwent network analysis to observe inter-metabolite 
interactions. WGCNA and network interactions were analyzed using 
R package and Cytoscape.

2.9 Identification of biomarkers

Receiver operating characteristic curve (ROC) analysis and the 
random forest algorithm were performed on detected metabolites to 
identify biomarkers. ROC curves were generated via Monte-Carlo 
cross-validation (MCCV) using balanced sub-sampling. In each 
MCCV, 2/3 of the samples were used to evaluate feature importance, 
and the top 5, 10, 15, 20 important features were then utilized to build 
classification models, which were validated on the 1/3 of the samples 
left out. This procedure was repeated multiple times to calculate the 
performance and confidence interval of each model. The random 
forest classification method was then employed for metabolite 

TABLE 1 Characteristics of the study population.

HARRT duration Non-medication

6  months 12  months 18  months p-valve

Male (%) 51% 58% 53% 0.7791a 69%

Age 43 ± 12 36 ± 13 37 ± 12 0.0173b 38 ± 13

HIV staging
I 30 27 29 58

II, III, IV 10 13 16 10

Possible route of 

infection

Drug addiction 5 4 8 4

Sexual behavior 35 39 37 80

Before HARRT

CD4 count 4 ~ 727 8 ~ 698 7 ~ 618 0.442b 13.9 ~ 973

CD8 count 140 ~ 4,212 293 ~ 2,352 74 ~ 2,246 0.239b 35 ~ 3,373

Viral load 100 ~ 9,999,999 649 ~ 3,717,000 1,463 ~ 1,323,000 0.225b 110 ~ 330,000

After HARRT

CD4 count 31.9 ~ 956.6 56.5 ~ 2253.6 109.5 ~ 1,066 0.769b -

CD8 count 179 ~ 2510.9 286 ~ 1992 77.6 ~ 1717.8 0.154b -

Viral load - - - - -

ap value is based on chi-square test.
bp values are based on ANOVA test.
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ranking. Finally, feature metabolites were selected based on their areas 
under the curve (AUCs) for validation, resulting in ROC curves.

2.10 Taqman PCR analysis of HSV-1, 
bacteria and fungi in saliva

Absolute quantification of HSV-1, as well as bacteria and fungi 
related to oral diseases was performed using Taqman PCR. Specifically, 
these bacteria primarily included Staphylococcus aureus, Escherichia 
coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus 
pneumoniae, Klebsiella pneumoniae, and others. The fungi included 
Candida albicans, Candida albicans, Candida tropicalis, Aspergillus 
niger, and Aspergillus flavus. The Gg1(US4) gene of HSV-1, 16S 
ribosomal RNA (rRNA) gene for bacteria, and 18S rRNA gene for 
fungi were used as targets for detection and quantification, following 
the methods described in a previous report (20). Primer sequences of 
HSV-1 were designed using Primer Premier 5.0, while those of 
bacteria and fungi were retrieved from SILVA SSU r114 database 
accessed through the SILVA website.2 Primers were synthesized by 
Invitrogen (CA, United  States), with sequences demonstrated in 
Table 2.

3 Results

3.1 Comprehensive metabolomics profiling 
revealed distinct alterations in PLWH

By integrating metabolites from both positive and negative ion 
modes in LC–MS/MS analysis, a total of 1,401 mixed data points 
were obtained. To delineate the metabolic alterations between pre- 
and post-HAART individuals with HIV more distinctly, differential, 
functional, and trend analyses were conducted. It was revealed that 
the metabolites in PLWH were significantly enriched in energy 
metabolism. The construction of an OPLS-DA model aimed to 

2 www.arb-silva.de

identify outliers and cluster patterns within the overall sample set. 
Utilizing the T-score, partial overlap among the CD4-L, CD4-M, 
and CD4-H groups was observed. However, a distinct separation 
from the CON group was observed, indicating a high degree of 
sample differentiation between the HIV and CON groups 
(Figure 1A). In the analysis of differential metabolites between the 
CON and HIV groups, 41 (upregulated 26, downregulated 15), 434 
(upregulated 324, downregulated 110), and 240 (upregulated 133, 
downregulated 107) significantly varied metabolites were identified 
in the CD4-L, CD4-M, and CD4-H groups, respectively (Figure 1B). 
Further KEGG functional enrichment analysis revealed that the 
CD4-L group was enriched in starch and sucrose metabolism. The 
CD4-M group showed enrichment in arginine and proline 
metabolism, glycine, serine and threonine metabolism, biosynthesis 
of unsaturated fatty acids, sphingolipid metabolism, and amino 
sugar and nucleotide sugar metabolism. In addition, both CD4-M 
and CD4-H were enriched in tyrosine metabolism, alanine, 
aspartate, and glutamate metabolism, and arginine and proline 
metabolism (Figure  1C). An examination of metabolite levels 
within these pathways revealed a reverse relationship when 
comparing the CON and CD4-L groups with the CD4-M and 
CD4-H groups. Metabolites such as L-asparagine, glyceric acid, 
xanthosine, adenosine, dopamine, glucosamine, and 
deoxyguanosine had lower levels in CD4-M and CD4-H, whereas 
sphinganine, L-arginine, L-alanine, and dimethylglycine were more 
abundant (Figure 1D). ANOVA revealed similar metabolite levels 
between the CON and CD4-L groups, as well as between the 
CD4-M and CD4-H groups. Metabolites such as 3alpha-hydroxy-
3,5-dihydromocolin L acid and miraxanthin-I were more prevalent 
in CD4-M and CD4-H, whereas the accumulation of cis-9-
palmitoleic acid, KRN 7000, 11-O-demethylpradinone II, 2-amino-
1,2-bis (p-chlorophenyl) ethanol, and N-acetylputrescine was 
inversely related (Figure 1E).

Next, by trend analysis and functional analysis for all 
metabolites, we identified distinct patterns in Cluster 4, Cluster 5 
and Cluster 7. Cluster 4 metabolites demonstrated a decreasing 
trend with diminishing CD4 cell counts, albeit a slight increase 
when the count was below 200. KEGG enrichment analysis linked 
these metabolites to caffeine metabolism. Cluster 5 metabolites 
initially rose after HIV infection, but they showed a decreasing 

TABLE 2 Primer sequences of HSV-1, bacteria, and fungi.

Type Detection Loci Primers and Probes (5′-3′)

HSV-1 (Herpes simplex 

virus type 1)
Gg1(US4)

HHV-1 F: CTGTTCTCGTTCCTCACTGCCT

HHV-1 R: CAAAAACGATAAGGTGTGGATGAC

HHV-1 OUT_F: TCGAGAAGGACAAACCCAAC

HHV-1 OUT_R: CGCACCAATACACAAAAACG

HHV-1 P: 5-(FAM)CCCTGGACACCCTCTTCGTCGTCAG(TAMRA)-3

Bacteria 16S rRNA gene

F: GCAACGCGAAGAACCTTACC

R: ACGTCATCCCCACCTTCCT

Probe:FAM-ACGACAACCATGCACCACCTG-TAMRA

Fungi 18 s rRNA gene

F:CTGGCGATGGTTCATTCAAA

R:CTTGCCCTCCAATTGTTCCT

Probe:FAM-TAAGGGTTCGATTCCGGAG-TAMRA
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trend as the disease progressed, with enrichment in tryptophan 
metabolism. In contrast, Cluster 7 metabolites progressively 
increased with the advancement of HIV infection, implicating 
butanoate metabolism, glycerophospholipid metabolism, valine, 
leucine and isoleucine biosynthesis, and starch and sucrose 
metabolism (Figures  2A,B). Further analysis of the metabolic 
content in pathways revealed that metabolites in the CD4-L group 
were highly expressed compared to the other three groups, 
especially trehalose and ketoleucin. Conversely, L-valine and 
3-hydroxyanthranilic acid exhibited lower levels in the CD4-M 
group (Figure  2C). Lastly, given the alignment of Cluster 7 
metabolic trends with the progression of HIV infection, the 
metabolic profile of this Cluster was analyzed, revealing a significant 
increase in the CD4-L group (Figure 2D).

3.2 Severity of PLWH after HAART linked to 
distinct metabolomic profiles in THIV 
group

To identify metabolites significantly associated with the severity of 
PLWH after the introduction of HAART, a comprehensive metabolomic 
analysis of the THIV group was conducted. This revealed a predominance 
of exogenous metabolites. OPLS-DA distinctly separated the THIV 
group from the CD-4 group, with the T-6, T-12, and T-18 samples 
clustering together and well-separated from the CON and CD4-L 
groups, demonstrating a clear delineation between treated and untreated 
samples (Figure 3A). This distinction was also reflected in the metabolite 
content analysis. A differential metabolite analysis yielded 272 
(upregulated 158, downregulated 114), 414 (upregulated 208, 

FIGURE 1

Metabolomic analysis of pre-HAART HIV group. (A) OPLS-DA score plot differentiating the HIV group (CD4-L, CD4-M, CD4-H) from the normal 
control group (CON). (B) Differential metabolites between the three pre-HAART HIV groups and the control group, considered significant with VIP  >  1, 
Log2FC  >  0, p  <  0.05. (C) KEGG enrichment analysis of the differential metabolites in the pre-HAART HIV groups (p <  0.05). (D) Accumulation profiles of 
metabolites in enriched KEGG pathways, with orange indicating high levels and blue indicating low levels. (E) Analysis of variance (ANOVA) highlighting 
the 19 most significant metabolites, with high level in orange and low level in blue (p <  0.05).
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downregulated 206), and 424 (upregulated 207, downregulated 217) 
significantly varied metabolites in the T-6, T-12 and T-18 groups, 
respectively (Figure 3B). Enrichment analysis indicated that glyoxylate 
and dicarboxylate metabolism, arginine and proline metabolism, and the 
citrate cycle (TCA cycle) were commonly enriched across the three 
groups. T-6 exhibited enrichment in butanoate metabolism and histidine 
metabolism. T-12 showed enrichment in lysine degradation, alanine, 
aspartate, and glutamate metabolism, and aminoacyl-tRNA biosynthesis. 
T-18 was enriched in arginine and proline metabolism (Figure 3C). 
Subsequent quantification of metabolites within these pathways revealed 
an inverse relationship between the metabolite content and of the treated 
group and the CD4-L group. Notable increases were observed in the 
levels of L-histidine, linoleic acid, hypoxanthine, and L-carnitine after 
treatment. Conversely, glucosamine, adenine, N-acetyl-L-aspartic acid, 
and L-asparagine had higher levels in the CD4-L group than in the THIV 
group (Figure 3D). ANOVA revealed that exogenous metabolites such 
as L-norleucine, DL-O-tyrosine, norvaline, and 

N-acetyl-L-phenylalanine were elevated after treatment, while (R)-3-
hydroxybutyric acid and N-acetylputrescine showed inverse patterns 
(Figure 3E).

Further trend analysis of metabolites throughout the treatment stages 
identified characteristic trajectories in Cluster 1, 4 and 6. The metabolites 
in Cluster 1 exhibited a consistent upward trend throughout the course of 
treatment, enriched in sphingolipid metabolism. Metabolites in Cluster 4 
demonstrated a prompt declining trend upon treatment, but experienced 
less pronounced changes over time. This cluster was enriched in starch 
and sucrose metabolism, glycerolipid metabolism, purine metabolism, 
the pentose phosphate pathway, alanine, aspartate and glutamate 
metabolism, and pyrimidine metabolism. In contrast, the trajectory of 
Cluster 6 was opposite to Cluster 4, with metabolites enriched in beta-
alanine metabolism, fatty acid biosynthesis, arginine and proline 
metabolism, biosynthesis of unsaturated fatty acids, and aminoacyl-tRNA 
biosynthesis (Figures 4A,B). A quantitative review of pathway-associated 
metabolites showed an inverse accumulation compared with the CD4-L 

FIGURE 2

Trend analysis of metabolites in pre-HAART PLWH as well as associated metabolic pathways and metabolite accumulation. (A) Trend analysis of 
metabolites in pre-HAART PLWH. (B) KEGG enrichment in three clusters (p <  0.05). (C) Levels of metabolites in pathways, with high levels in orange and 
low levels in blue. (D) Metabolic levels of metabolites in Cluster 7.
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group. Metabolites such as L-histidine, 1,3-diaminopropane, linoleic acid, 
and oleic acid increased after treatment. Conversely, adenine, 
L-asparagine, D-erythrose 4-phosphate, xanthosine, glyceric acid, and 
deoxyguanosine decreased (Figure 4C).

3.3 HIV infection altered amino acid and 
energy metabolism in saliva

Differential and KEGG enrichment analyses of metabolites revealed 
that salivary metabolites might be  associated with amino acid and 
energy metabolism after HIV infection, which was confirmed by 
subsequent analyses. The citrate cycle (TCA cycle) and glyoxylate and 
dicarboxylate metabolism were closely related to HIV. To further explore 

the accumulation pattern of specific metabolites detected within the two 
pathways, we visualized the levels of involved metabolites in pathway 
diagrams using pie charts. The pathways were interconnected through 
oxaloacetate, involving citric acid, cis-aconitic acid, and isocitric acid. 
Pathway diagrams indicated increased accumulation of is-aconitic acid 
and l-glutamic acid upon treatment, while citric acid and isocitric acid 
showed greater accumulation in the CD4-L group (Figure 5).

3.4 Autocorrelation analysis revealed key 
metabolite interactions in HIV

To observe the antagonistic and synergistic interactions among 
metabolites, an autocorrelation analysis was performed based on the 

FIGURE 3

Metabolomic analysis of the THIV group. (A) OPLS-DA score plot showed clear separation of the THIV group from the control and CD4-L groups. 
(B) Differential metabolites between the three stages of the THIV group (T-6, T-12, T-18) and the CD4-L group, with significance determined by VIP  >  1, 
Log2FC  >  0, and p  <  0.05. (C) KEGG enrichment analysis of the differential metabolites in the three stages of the THIV group (p <  0.05). (D) Metabolite 
profile in the KEGG enriched pathways, with high level in orange and low level in blue. (E) ANOVA showing the 20 most significant metabolites, with 
high levels in orange and low levels in blue (p <  0.05).
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correlation coefficients of the 1,401 metabolites. Three networks with 
the highest MCODE scores were selected for further study 
(Figures 6A–C). Metabolites were ranked by degree value, with those in 

the inner circle of the network deemed more crucial, likely playing key 
roles. The network diagrams distinctly showed that the inner-circle 
metabolites were predominantly amino acids and exogenous substances. 

FIGURE 4

Trend analysis of PLWH after HAART, as well as associated metabolic pathways and metabolite accumulation. (A) Trend analysis of metabolites in PLWH 
after treatment revealed three clusters with characteristic trajectories. (B) KEGG enrichment of metabolites in the three clusters. (C) Accumulation 
levels of metabolites in the pathways, with high levels in orange and low levels in blue.

FIGURE 5

Combination of metabolic pathways in citrate cycle (TCA Cycle) and glyoxylate and dicarboxylate metabolism. The accumulation levels of involved 
metabolites are presented in pie charts within the pathway diagrams, with colors indicating group classification.
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L-histidine, L-glutamate, indole, 3-hydroxyisovaleric acid, and serinyl-
valine occupied central positions within the network, indicating their 
strong correlations with peripheral metabolites. N-α-acetyl-l-arginine 
and most of its connected metabolites exhibited positive correlations, 
suggesting a synergistic function. Conversely, isopentenyl 
pyrophosphate demonstrated negative correlations (Figure  6A). 
Dl-vanillylmandelic acid, positioned at the core of the network, was 
negatively correlated with erucic acid, 2-ethyl-2-hydroxybutyric acid, 
L-tyrosine, stearoylcarnitine, altretamine, diethanolamine, cellobiose, 
and choline, indicating an antagonistic role (Figure 6B). In the third 
subnetwork, five metabolites were mutually positively correlated 
(Figure 6C). To elucidate the functions of these metabolites in HIV 
infection more clearly, KEGG enrichment analysis was conducted on 
the metabolites from the first subnetwork. They were significantly 
enriched in pathways related to amino acid and energy metabolism, 
including glyoxylate and dicarboxylate metabolism, arginine and 
proline metabolism, butanoate metabolism, histidine metabolism, 
pentose phosphate pathway, glycine, serine, and threonine metabolism, 
synthesis and degradation of ketone bodies, d − glutamine and 
d − glutamate metabolism, and nitrogen metabolism (Figure 6D).

3.5 WGCNA identified distinct metabolite 
clusters in HIV infection

In the identification of pivotal metabolites, WGCNA was 
conducted. Within the WGCNA framework, all 1,401 metabolites 

were classified into distinct clusters, with the sample clustering 
dendrogram indicating well-defined sample grouping. Additionally, 
average linkage hierarchical clustering based on module distances 
resulted in the amalgamation of similar modules, culminating in a 
total of six distinct modules (Figures  7A,B). Subsequent analysis 
focused on metabolites from the turquoise (186), blue (170), and 
green (124) modules. Firstly, an assessment of inter-metabolite 
correlations within each module was carried out, followed by ANOVA 
of metabolite content, from which the 25 most significant metabolites 
were selected for visualization. In the correlation network diagram of 
the turquoise module, a predominance of positively correlated 
metabolites was observed, demonstrating similar levels of 
interconnectivity (Figure 7C). The accumulation of metabolites in the 
HIV group paralleled that of the CON group, while the THIV group 
exhibited an opposite trend. Following HAART, the level of 
ethylmalonic acid decreased, compared with untreated individuals. 
Metabolites such as histidinyl-threonine, isoleucyl-leucine, and 
L-glutamate showed increased levels after treatment (Figure 7D).

In the analysis of the blue module, 4-hydroxybenzoate, 
D-lyxose, and leu-leu exhibited the highest levels of interactivity. 
4-Hydroxybenzoate was negatively correlated with tryptophanol 
and lysyl-aspartate, but positively with D-lyxose, O-phospho-L-
threonine, and N-acetylputrescine (Figure  7E). The buildup of 
metabolites in the CON and CD4-L groups was consistent, while 
that in CD4-M, CD4-H, T-6, T-12, and T-18 groups was uniform. 
Oxidized photinus luciferin, cefoxitin sodium, and miraxanthin-I 
increased in treated groups, whereas glyceric acid, citramalic acid, 

FIGURE 6

Correlation analysis of all metabolites. (A–C) Subnetworks with the highest scores in the metabolite correlation analysis. (D) KEGG enrichment analysis 
of metabolites in Subnetwork (A).

https://doi.org/10.3389/fpubh.2024.1400332
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Du et al. 10.3389/fpubh.2024.1400332

Frontiers in Public Health 10 frontiersin.org

FIGURE 7

Metabolite rorrelation analysis across groups. (A) Dendrogram showing the clustering of the involved metabolites. (B) Heatmap of correlations 
between metabolites and the HIV and THIV groups by WGCNA, with correlation coefficients and corresponding p-values displayed in rectangles and 
brackets. (C) Correlation among metabolites in the turquoise module, with orange dashed lines indicating positive correlations and turquoise dashed 
lines indicating negative correlations. In the interaction network, each circle represents a metabolite, and each dashed line represents the interaction 
between correlated metabolites. Metabolite interactions are arranged in descending order of correlation level using Cytoscape; larger circles indicate 
greater relevance in the pathway. (D) Metabolite accumulation in the turquoise module, with the 25 most significant metabolites displayed by ANOVA 
(p <  0.05). (E) Correlation among metabolites in the blue module. (F) Metabolite accumulation in the blue module. (G) Correlation among metabolites 
in the green module. (H) Metabolite accumulation in the green module.
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and 3-iodo-4-hydroxyphenylpyruvate decreased in CD4-M, 
CD4-H, and THIV groups (Figure 7F). In the green module, the 
HIV group exhibited similar correlation strength for metabolites 
like pargyline, altretamine, stearoylcarnitine, diethanolamine, and 
DL-phenylalanine, except for gly-gln and flumequine. Gly-gln 
showed a negative correlation with other metabolites, whereas 
flumequine exhibited a positive correlation. The remaining 
metabolites demonstrated positive correlations (Figure 7G). The 
pattern in CD4-L was opposite to that in CD4-M and CD4-H, 
while the THIV group showed consistent metabolite accumulation. 
After treatment, KRN 7000 levels increased, whereas norvaline, 
glycyl-arginine, and other metabolites decreased (Figure  7H). 
These metabolites were identified as key players within their 
respective modules.

3.6 ROC and random forest analyses 
highlighted distinct metabolites between 
pre- and post-treatment stages

To discern key metabolites in pre- and post-treatment patients, 
ROC validation and random forest analysis were employed between 
CON and HIV groups, as well as between HIV and THIV groups. The 
multivariate classification model created by random forest showed an 
AUC of 0.885 when 15 metabolite factors were considered in the HIV 
group (Figure  8A). Metabolites such as L-tyrosine, oxacillin, 
portulacaxanthin II, midine 5′-monophosphate, and prosulfocarb had 
higher selection frequencies, effectively differentiating between the 
CON and HIV groups (Figure  8B). The ROC curve for these 
characteristic metabolites exhibited substantial sensitivity 
(AUC = 0.929) (Figure 8C). Additionally, in the comparison between 
HIV and THIV groups, the ROC curve achieved an AUC of 1 
(Figure 8D), with validoxylamine A, indole, levothyroxine sodium 
anhydrous, Phe-Glu, and 8-Demethyl-8-alpha-L-
rhamnosyltetracenomycin C being highly selected, thus effectively 
distinguishing between these groups (Figure 8E), as corroborated by 
the validation ROC curve (AUC = 1) (Figure 8F).

3.7 Oral metabolites in PLWH showed 
distinct correlations with herpes simplex 
virus type 1 (HSV1), bacteria, and fungi

In PLWH, the correlation between oral metabolites and HSV1, 
as well as oral-disease related bacteria and fungi was investigated 
due to the close association of HIV infection with various microbes. 
We performed the absolute quantification of HSV1, bacteria, and 
fungi in the saliva of PLWH. Subsequently, this quantification was 
correlated with the 30 most significant metabolites in the saliva of 
PLWH. The correlation matrix revealed a negative correlation 
between indole and HSV-1. Metabolites such as 2-Methyl-3-
hydroxybutyric acid, Phe-Glu, O-Phospho-L-threonine, Pro-His, 
p-Chlorophenylalanine, gamma-L-Glutamyl-L-glutamic acid, 
isopentenyl pyrophosphate, L-Glutamine, and dihydroxyacetone 
phosphate showed negative correlations with HSV1, bacteria, and 
fungi. Conversely, stearoylcarnitine, Pro-Trp, diethanolamine, and 
DL-a-Hydroxybutyric acid exhibited positive correlations 
(Figure 9).

4 Discussion

4.1 Energy metabolism enhanced in saliva 
after HIV treatment

The application of untargeted metabolomics on saliva samples 
allows simultaneous detection of changes in both exogenous compounds 
and endogenous metabolites. This study has identified that the citrate 
cycle (TCA cycle) and glyoxylate and dicarboxylate metabolism play 
pivotal roles upon HIV infection. Acetyl coa condenses with oxaloacetic 
acid under the action of citrate synthetase to form citric acid, which is 
subsequently converted to isocitric acid by aconitase. Although these 
two pathways share metabolic components and are involved in energy 
metabolism, they exhibit distinct differences. The glyoxylate cycle in 
glyoxylate and dicarboxylate metabolism represents the conversion of 
fat to sugar, commonly considered as an ancillary route to the TCA 
cycle, which is central to cellular metabolism. Conversely, the TCA cycle 
occurs in mitochondria and is closely associated with oxidative 
decarboxylation of sugars (21, 22). The TCA cycle, being central to 
carbon and energy metabolism and a primary source of cellular energy, 
has been found to have its intermediates in serum acting as biomarkers 
for various potential pathological conditions (23, 24). Despite 
enrichment of the TCA cycle discovered in saliva exposome-wide 
association studies (EWAS) (25), research focusing on the salivary 
metabolites of PLWH remains scarce. Studies have shown that the TCA 
cycle is the most significantly altered metabolic pathway in the 
cerebrospinal fluid of people living with PLWH, affecting other amino 
acid and lipid metabolisms (26).

Citric acid, reversibly converted to cis-aconitic acid and isocitric 
acid under the action of aconitase, undergoes changes in the 
cerebrospinal fluid metabolism of PLWH. Accumulation of citric acid 
could potentially lead to cognitive deterioration in patients (26, 27), 
suggesting its harmful role in the progression of HIV. In the CD4-L 
group (CD4 count <200/mm3), the accumulation of citric acid was 
significantly higher than in the CD4-M, CD4-H, and other post-
treatment groups. This result implied that worsening conditions in 
PLWH might increase the accumulation of citric acid in saliva, leading 
to adverse disease progression. In vitro inhibition experiments have 
shown that using succinic acid or cis-aconitic acid for acylation of 
lysine residues in proteins results in derivatives that exhibit potent 
antiviral activity against HIV-1 and/or HIV-231. Our analysis revealed 
that post-treatment patients had significantly higher levels of 
cis-aconitic acid compared with untreated individuals, suggesting that 
increased cis-aconitic acid levels may enhance antiviral activity in the 
body. Hence, the level of cis-aconitic acid in saliva could potentially 
serve as an indicator of recovery in PLWH.

Glutamic acid has been extensively studied in the context of 
endogenous anticancer agents and anticancer drug conjugates, 
demonstrating its effectiveness in these areas (28). Furthermore, the 
synthesis of L-glutamic acid amide has shown activity against Ehrlich 
ascites carcinoma (29). The HIV-1 Gag p6 protein regulates the final 
steps of new viral particle detachment from the cell membrane 
through the action of its two late domains. Glutamic acid within P6 
contributes to late-stage viral replication and may facilitate interactions 
between Gag and the lipid membrane (30). Additionally, L-glutamic 
acid is converted to L-glutamine by L-glutamine synthetase, and 
studies have indicated alterations in L-glutamine metabolism in CD4+ 
T cells infected with HIV-1 (31). In our study, the treatment group 
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exhibited higher levels of L-glutamic acid in saliva compared with 
other groups. As L-glutamic acid is an upstream metabolite of 
L-glutamine, we hypothesize that HAART promotes the synthesis of 

L-glutamic acid. Pathway analysis revealed increased levels of 
metabolites related to glyoxylate and dicarboxylate metabolism and 
the tricarboxylic acid (TCA) cycle in saliva after treatment, suggesting 

FIGURE 8

Biomarkers between HIV and THIV groups. (A) ROC curve based on cross-validation performance for metabolites between HIV and CON groups, with 
predicted class probabilities for each sample obtained using the best classifier based on AUC (mean of cross-validation). (B) Random forest analysis of 
metabolites between HIV and CON groups. (C) ROC curve for key metabolites validation between HIV and CON groups. (D) ROC curve based on 
cross-validation performance for metabolites between HIV and THIV groups. (E) Random forest analysis of metabolites between HIV and THIV groups. 
(F) ROC curve for key metabolites validation between HIV and THIV groups.
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enhanced energy metabolism. Based on these findings, we propose 
that treatment of PLWH may lead to an increase in energy metabolism 
in saliva.

4.2 Metabolites in the saliva of HIV 
individuals were primarily enriched in energy 
metabolism pathways, and their levels 
changed with the reduction in CD4 cells

Upon pathway analysis, it was observed that metabolite 
pathways in PLWH saliva were predominantly related to energy 
metabolism, distinguishing CD4-L from CD4-M and CD4-H 
groups. Results indicated that when CD4 counts was between 
200–500 cells/mm3, metabolite levels underwent alterations 
compared with the control group. However, when CD4 counts 
dropped below 200 cells/mm3, metabolite levels changed again, 
gradually returning to normal levels. In some studies, HIV has 
been linked to innate and adaptive immune activation. 
Furthermore, immunological activation associated with 
mycobacterial infections or autoimmune diseases has been found 
to significantly alter the metabolic state of the immune system, 

disrupting metabolism and affecting the host response to 
pathogens, leading to metabolic disturbances (32, 33).

Given that HIV infection is a persistent, long-term, and challenging 
condition to treat, it is postulated that as the disease progresses, saliva 
metabolite levels gradually stabilize. Additionally, since the control group 
comprises HIV-negative individuals, the changes in saliva metabolite 
levels are less pronounced. These factors may contribute to the observed 
phenomenon, although further research is needed to determine the 
specific reasons. Research has shown an increase in the relative 
abundance of N-acetylputrescine following HIV infection, which is 
consistent with our findings (34). The anti-inflammatory properties of 
adenosine can regulate chronic inflammation and immune activation 
induced by HIV. As HIV progresses, CD4-L patients exhibit an increase 
in adenosine levels in saliva. Moreover, research suggests that HIV 
infection directly or indirectly induces dopamine dysfunction (35), a 
finding also supported by our results. Some studies have reported 
significantly lower levels of linoleic acid and argininosuccinic acid in 
individuals with HIV-1 (36, 37), and an increase in brain choline 
compounds before the onset of AIDS dementia in PLWH (38). 
Furthermore, palmitic acid has been studied for its ability to inhibit 
HIV-1 infection by blocking effective attachment between gp120 and 
CD4 (39). Our analysis revealed a significant decrease in the levels of 
sphinganine, linoleic acid, and argininosuccinic acid in the CD4-L group, 
suggesting that the metabolic trends of these metabolites in saliva align 
with those in blood. Although choline levels were lower in CD4-L, they 
were higher in CD4-M and CD4-H, indicating that choline metabolism 
in saliva partially mirrored the metabolic trends in blood. Additionally, 
cluster 7  in the trend analysis clearly showed the changes in these 
metabolites, with their levels gradually increasing from early to late-stage 
HIV infection. Based on this analysis, it can be  inferred that these 
metabolites may serve as potential biomarkers for HIV infection in saliva.

AIDS is a disease characterized by a prolonged course and 
intricate mechanisms, with its severity closely tied to immune levels. 
Plasma markers have been pivotal in tracking changes (40), yet 
hematological examinations pose risks, including transient pain, 
severe bleeding, and even disease transmission through medical 
exposure in PLWH. Therefore, identifying non-invasive biomarkers 
to delineate the physiological and pathological processes of HIV 
infection is of great significance. Saliva markers emerge as promising 
candidates, offering convenient sampling, safety, and negligible risk 
of disease transmission to others.

4.3 A substantial presence of exogenous 
metabolites was detected in the saliva of 
PLWH with the introduction of HAART, 
involving multiple amino acid metabolic 
pathways

Following HAART, significant changes occurred in the saliva 
metabolites of PLWH, with most prominently affected metabolites 
being exogenous, such as chlorsulfuron, oxidized photinus luciferin, 
cefoxitin sodium, and levothyroxine sodium anhydrous. These 
metabolites showed increased levels by treatment, indicating the 
detection of a considerable amount of exogenous metabolites in 
saliva. Additionally, our analysis identified enriched metabolic 
pathways besides the TCA cycle and glyoxylate and dicarboxylate 
metabolism. These included butanoate metabolism, lysine 
degradation, and arginine and proline metabolism. Creatine, 

FIGURE 9

Heatmap of the correlation matrix between metabolites and 
microbes. Correlation coefficients are represented by a blue-white-
yellow color scheme. Deep yellow indicates stronger positive 
correlations; deep blue indicates stronger negative correlations; 
white indicates no correlation. The top 30 metabolites are selected 
for display based on ANOVA.
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associated with arginine and proline metabolism, demonstrated an 
elevation in saliva content after treatment. Research has indicated 
that creatine has the potential to inhibit mitochondrial 
depolarization induced by human immunodeficiency virus-1 
transcription activator (HIV-1 TAT) and the opening of 
mitochondrial permeability transition pores triggered by HIV-1 
TAT. These findings suggest a role in the treatment of HIV-1-
associated neurocognitive disorders (41). Plasma N-acetylputrescine 
has also been utilized as a potential biomarker for assessing lung 
cancer treatment (42). Based on our research, these metabolites are 
suggested as potential biomarkers detectable in the saliva of PLWH, 
but their specific roles require further validation. Trend analysis 
revealed three distinct patterns of change in metabolite levels, with 
functional relevance mainly observed in energy metabolism (fatty 
acid biosynthesis, starch and sucrose metabolism) and overall 
body metabolism.

4.4 Indoles and L-glutamine may exhibit 
antagonistic effects against HSV-1, 
bacteria, and fungi

PLWH are susceptible to bacterial infections, a factor that further 
complicates their condition (43). Additionally, certain fungi can exert a 
detrimental impact on immunocompromised patients, frequently 
leading to invasive diseases (44). Moreover, HSV-1 infection increases 
the incidence of HIV-related illnesses (45). Therefore, monitoring 
changes in oral microbiota can aid in understanding and controlling 
HIV progression. Correlation analysis revealed a relationship between 
microorganisms and metabolites in saliva in the context of HIV 
infection. Indole, a degradation product of tryptophan, serves as a 
signaling molecule in many bacteria (46). Indoles exhibit significant 
biological activities in antioxidative, anti-inflammatory, anti-fungal, and 
antibacterial effects (47, 48). In our work, indole showed a negative 
correlation with HSV1, suggesting its inhibitory effect on HSV1 
development. Glutamine has been identified for its role in critical 
illnesses, cancer, and heart injury (49), and L-glutamine has been found 
to assist in alleviating nelfinavir-associated diarrhea in PLWH (50). 
L-glutamine exhibits a negative correlation with HSV-1, bacteria, and 
fungi, further supporting its inhibitory effect on these microbes.
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