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Background: Extrapulmonary tuberculosis (EPTB) refers to a form of 
Tuberculosis (TB) where the infection occurs outside the lungs. Despite EPTB 
being a devastating disease of public health concern, it is frequently overlooked 
as a public health problem. This study aimed to investigate genetic diversity, 
identify drug-resistance mutations, and trace ongoing transmission chains.

Methods: A cross-sectional study was undertaken on individuals with EPTB in 
western Ethiopia. In this study, whole-genome sequencing (WGS) was employed 
to analyze Mycobacterium tuberculosis (MTB) samples obtained from EPTB 
patients. Out of the 96 genomes initially sequenced, 89 met the required quality 
standards for genetic diversity, and drug-resistant mutations analysis. The data 
were processed using robust bioinformatics tools.

Results: Our analysis reveals that the majority (87.64%) of the isolates can be 
attributed to Lineage-4 (L4), with L4.6.3 and L4.2.2.2 emerging as the predominant 
sub-lineages, constituting 34.62% and 26.92%, respectively. The overall clustering 
rate and recent transmission index (RTI) were 30 and 17.24%, respectively. Notably, 
7.87% of the isolates demonstrated resistance to at least one anti-TB drug, although 
multi-drug resistance (MDR) was observed in only 1.12% of the isolates.

Conclusions: The genetic diversity of MTBC strains in western Ethiopia was found 
to have low inter-lineage diversity, with L4 predominating and exhibiting high 
intra-lineage diversity. The notably high clustering rate in the region implies a 
pressing need for enhanced TB infection control measures to effectively disrupt the 
transmission chain. It’s noteworthy that 68.75% of resistance-conferring mutations 
went undetected by both GeneXpert MTB/RIF and the line probe assay (LPA) in 
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western Ethiopia. The identification of resistance mutations undetected by both 
GeneXpert and LPA, along with the detection of mixed infections through WGS, 
emphasizes the value of adopting WGS as a high-resolution approach for TB 
diagnosis and molecular epidemiological surveillance.
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Extrapulmonary tuberculosis, drug resistance-conferring mutations, genetic diversity, 
Mycobacterium tuberculosis, transmission dynamics, whole-genome sequencing

Introduction

Tuberculosis (TB) stands as the second most prevalent disease 
worldwide, following closely behind Coronavirus disease (COVID-
19). Globally, in 2022, approximately 10.6 million people fell ill with 
TB, reflecting a 4.5% increase from 2020. Among them, 1.30 million 
individuals died from TB, including 187,000 cases among those 
co-infected with human immunodeficiency virus (HIV) (1). While 
pulmonary tuberculosis (PTB) primarily affects the lungs, 
extrapulmonary tuberculosis (EPTB) involves other organs and tissues 
in the body (2). According to the WHO, EPTB constituted 16% of the 
new and relapsed TB cases reported worldwide in 2020. In Ethiopia, 
both forms of TB pose significant public health threats, with the 
country ranking third worldwide in terms of EPTB cases, surpassing 
PTB burdens observed in many other regions (3). Notably, in 2020, 
EPTB accounted for 30% of the reported cases in Ethiopia (4).

TB is instigated by members of the Mycobacterium tuberculosis 
complex (MTBC), which encompasses nine distinct phylogenetic 
lineages (5): L1 (Indo-Oceanic); L2 (East Asian); L3 (East African-
Indian); L4 (Euro-American); L5 (M. africanum West-African 1); L6 
(M. africanum West-African 2); L7 (Ethiopia) (6, 7); L8 
(M. tuberculosis from the African Great Lakes) (8); and the recently 
identified M. africanum L9 (5). Each lineage has evolved to adapt 
specifically to diverse human populations, exhibiting global 
prevalence in some cases and marked geographical restrictions in 
others (9). Understanding the predominant lineages within a 
particular region holds significance for TB prevention and care. The 
strain type also plays a pivotal role in influencing disease outcomes, 
variations in vaccine efficacy (10), the emergence of drug resistance 
(11), and the overall epidemiology of the disease (12).

Molecular epidemiology has become increasingly crucial as a tool for 
efficient TB control, enabling the identification of distinctive strains 
associated with outbreaks (13), virulence (14), and the development of 
drug resistance (15). Moreover, molecular epidemiology can elucidate the 
geographical origin of a strain and unveil new lineages (7). In Ethiopia, 
the molecular epidemiology of TB has largely depended on spoligotyping. 
This technique analyzes only a small segment of the MTBC genome, 
limiting its ability to accurately reconstruct complex transmission chains 
and establish clear transmission links between patients (16).

Whole-genome sequencing (WGS) is revolutionizing our 
understanding of drug resistance, clinical management, and transmission 
patterns, significantly contributing to disease control efforts (17). While a 
few studies in Ethiopia have recently explored the genetic diversity and drug 
resistance of MTBC using WGS, none have specifically investigated EPTB 
patients in the western region of Ethiopia. In western Ethiopia, specifically 
in western Oromia, a persistent conflict spanning over three decades has 
significantly undermined TB control programs. This conflict has resulted 

in challenges such as overcrowding due to social displacement, widespread 
hunger, and overcrowded prisons. Therefore, examining the genotype of 
MTB strains becomes crucial for contributing to TB prevention and care 
initiatives. Consequently, this study was undertaken using WGS to explore 
the genetic diversity, resistance-conferring mutations, and ongoing 
transmission of EPTB in western Ethiopia.

Materials and methods

Study setting

The study took place at Nekemte Specialized Hospital and 
Wallaga University Referral Hospital, both located in Nekemte City, 
the capital of East Wallaga Zone (Figure 1), approximately 320 km 
west of Addis Ababa, Ethiopia. These hospitals were selected because 
they serve as the sole diagnosis and treatment centers for EPTB in 
western Oromia, Ethiopia.

An institution-based, cross-sectional study design was conducted 
on confirmed EPTB patients who visited the listed health facilities 
between August 2018 and December 2019. Study participants 
encompassed all age groups, with those unwilling to provide consent 
or assent being excluded from participation.

Collecting, transporting, and culturing of 
the specimens

Following the participants’ consent, 264 fine needle aspiration 
(FNA) specimens from lymph nodes and other tissues were collected 
and examined by a pathologist using a microscope. The FNA cytology 
slides were air-dried, and a Wright stain was applied to the smear for 
one to 3 min. Subsequently, a second 2 ml of distilled water was added, 
left to stand for twice the duration of the first phase (2–6 min). After 
drying, a light microscope was employed for examination. All FNA 
MTB-positive specimens were meticulously packed in an ice box at 
+4°C and transported to the Aklilu Lemma Institute of Pathobiology 
(ALIPB), TB Laboratory, Addis Ababa University (AAU), for 
screening the growth MTBC.

The culturing of samples adhered to the Petroff procedure and was 
executed at ALIPB, AAU (18). Specimens were decontaminated by 
centrifugation at 3,000 rpm for 15 min using a final NaOH concentration 
of up to 2%, achieved by mixing with an equal amount of 4% NaOH 
stock solution and the sample. After discarding the supernatant, the 
sediment was neutralized with 2 N HCl. The inoculation of the sediment 
occurred on two conventional Löwenstein–Jensen (LJ) egg slant media, 
with one containing 0.6% sodium pyruvate and the other 0.75% glycerol. 
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The inoculated slant was then incubated at 37°C for a minimum of 
4 weeks, with weekly observations of mycobacterial colony growth. A 
total of 121 culture-positive isolates were harvested and then transported 
to J. Craig Venter Institute (JCVI), United States after DNA extraction.

DNA extraction and whole-genome 
sequencing

DNA extraction was carried out using a modified chloroform and 
acetyl trimethyl ammonium bromide (CTAB) protocol, as previously 
detailed (19). Subsequently, the concentration of DNA was quantified using 
Qubit 4 technology with a Qubit dsDNA HS Assay kit (Thermo Fisher 
Scientific, Waltham, USA). For the preparation of sequencing libraries, a 
genomic DNA concentration of 1 ng was utilized, and the Illumina Nextera 
XT library preparation kit (Illumina, San Diego, USA) was employed 
following the manufacturer’s instructions. Quality control procedures for 
the library were implemented using the Agilent High Sensitivity DNA Kit 
(Agilent, CA, USA) and the Qubit dsDNA HS Assay kit (Thermo Fisher 
Scientific, Waltham, USA). Following this, libraries were manually 
normalized based on DNA concentration and the average fragment size of 
the libraries. Of the 121 culture-positive isolates, WGS was performed on 
96 randomly selected isolates at the JCVI laboratory in the United States. 
This was done using Illumina NovaSeq 6000 technology with 2 × 150 
paired-end chemistry, producing paired-end FastQ files (20).

Bioinformatics analysis

Quality check and de novo assembly
To ensure data quality, FastQC (v0.12.1) (21) was employed to verify 

the quality of the raw reads both before and after trimming, which 
involved removing adapter sequences, low-quality reads, and filtering for 

a minimum read length. Trimming of the raw FastQ Illumina reads was 
carried out to eliminate Illumina adapter and low-quality reads using 
Trimmomatic v0.39 (22) with the following parameters: phred33, 
LEADING: 3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. 
Subsequently, the de novo assembly of MTB genomes was executed using 
SPAdes v3.15.5 (23). Various odd k-mer sizes within the range k = 21 to 
k = 87 were employed for this assembly process.

Variant calling

The trimmed paired-end reads of the investigated strains 
underwent analysis using the MTBseq pipeline (v1.0.4) (24), a semi-
automated bioinformatics pipeline specifically designed for the 
analysis of MTBC isolates. Variant calling, encompassing single 
nucleotide polymorphisms (SNPs) and insertions/deletions (InDels), 
was carried out with stringent filtering criteria. These criteria included 
a minimum coverage requirement of 10 forward reads and 10 reverse 
reads indicating the allele, a 75% allele frequency, and a minimum of 
four read calls with a phred score of at least 20. Automatic exclusion 
criteria were applied for variants that appeared within a 12 bp window 
in the same isolate, positions in drug resistance-associated genes, 
those detected in PE/PPE, and sites with ambiguous calls in over 5% 
of isolates, along with other hard-to-map regions. Datasets with a 
mean coverage depth below 20x and less than 80% alignment to the 
reference genome were excluded from further analysis.

Genomic cluster definition and analysis

Genomic clusters were identified without relying on 
epidemiological data, defining a cluster as patient isolates exhibiting a 
genomic difference of 12 or fewer single-nucleotide polymorphisms 

FIGURE 1

Map of the study area (Nekemte City), western Ethiopia. Patients were recruited from two hospitals within the city: Nekemte Specialized Hospital and 
Wallaga University Referral Hospital, both located in Nekemte City. These hospitals were selected because they are the only facilities with pathologists 
serving the four Wallaga Zones and the surrounding areas.
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(SNPs). This threshold of 12 SNPs was established based on prior 
definitions, serving as the upper limit for genomic relatedness within 
genome-based clusters (25, 26). In our study, we  applied an SNP 
threshold of 12, and the MTBseq (24) pipeline was employed for 
cluster analysis (26). The size of a cluster was determined based on the 
total number of genomes it encompassed, categorized as small (2 
genomes), medium (3–5 genomes), or large (>5 genomes). 
We calculated the clustering rate and RTI using the ‘n method’ (n/
N100) and ‘n-1 method’ ((n-c)/N100), respectively. Here, N represents 
the total number of sampled cases, c is the number of clusters, and n 
is the total number of cases within the clusters (25).

In silico spoligotyping

For next-generation sequencing reads, in silico spoligotyping was 
conducted using the SpoTyping program version v2.0 (27) with 
default parameters. The SITVIT2 server was then utilized, based on 
the identified spoligotypes, to determine the lineage (28). Isolates 
exhibiting a similar pattern to those in the SITVIT database were 
assigned a Spoligo International Type (SIT) number. Isolates that did 
not match any SIT numbers were categorized as “Orphan” 
spoligotypes.

In silico drug resistance, lineage typing, 
and mixed infection identification

To identify the MTB species, lineages, sub-lineages, and drug 
resistance mutations (SNPs, indels, and frameshifts), the isolated 
strains were analyzed using TB-Profiler v5.0.1 (29). This involved 
aligning raw paired-end reads against the reference genome MTB 
H37Rv. The resistance mutations predicted by TB-Profiler were 
further validated using mykrobe (v0.12.1) (30), along with the results 
from MTBseq (24), which provides a list of mutations in genes 
associated with antimicrobial resistance for each processed strain. 
These tools were also employed to detect mixed infections.

Phylogenetic and minimum spanning tree 
construction

Whole-genome single nucleotide polymorphisms (wgSNPs) were 
extracted from the assemblies utilizing kSNP v4.0 (31). A k-mer size 
of 21 bp was applied, and the alignments of wgSNPs were utilized to 
construct a maximum likelihood (ML) phylogenetic tree using 
RAxML (32). The nucleotide substitution model used was a general 
time reversible (GTR), with 100 bootstrap estimates, and the tree was 
visualized using iTOLv6 (33). Additionally, GrapeTree software (34) 
was employed to generate and visualize a minimum spanning tree 
from the multi-fasta formatted SNP output obtained from MTBseq.

Data analysis

The study results were presented using descriptive statistics. In 
this context, “clustered” referred to two or more isolates with identical 
spoligotyping patterns and <12 SNPs using spoligotyping and WGS, 

respectively. Conversely, “unique” denoted isolates with no common 
patterns and >12 SNPs. The clustering rate and RTI were calculated 
employing the formulas proposed by Small et al. (25). The clustering 
rate was determined using the formula n/N, and the RTI was 
calculated as (n-c)/N, where n equals the total number of clustered 
isolates, c is the number of clusters, and N represents the total number 
of isolates (25, 35).

Results

Clinical isolates and sequencing data 
quality

Out of the 96 isolates subjected to sequencing, 89 genomes met 
the quality criteria for genetic diversity and drug resistance analysis. 
Seven isolates were excluded from the analysis for the following 
reasons: two exhibited technical errors attributed to adapter 
sequences, two were identified as nontuberculous mycobacteria 
(NTM), and three isolates were found to consist of mixed infections. 
Among the 92 isolates (including mixed infections), 83 (90.22%) 
were collected from lymph nodes, six (6.52%) were isolated from skin 
lesions, one was from the abdominal area, and the remaining two 
(2.17%) were obtained from breast abscesses (Supplementary  
Table S1). For the clustering rate calculation, 87 WGS datasets were 
analyzed, with isolates not meeting the above quality criteria and 
having a mean coverage below 20× being excluded (Supplementary  
Table S2). Detailed characteristics of the participants and features of 
the MTB genome are presented in Supplementary Tables S1, S2, 
respectively.

Population structure of MTB in samples 
from western Ethiopia

The WGS data analysis identified 28,154 informative SNPs that 
differentiated among the 92 MTB strains. These SNPs were used to 
calculate a maximum likelihood phylogeny based on a concatenated 
SNP alignment (Figure 2). Based on these SNP signatures, the 92 
strains were classified into three main MTBC lineages: L3, L4, and 
L7 (Figure 2). Notably, three isolates (EN061, EN068, and EN261) 
exhibit a combination of sub-lineages: EN061 demonstrates a 
blend of L4.8 and L4.3, EN068 manifests a mixture involving L3, 
L4.6.3, L4.2.2.2, and L4.3.4.2, while EN261 showcases a coexistence 
of L3 and L4 (Figure  2). This information underscores the 
complexity of genetic variation within the MTB population 
under study.

In western Ethiopia, L4 emerged as the predominant lineage, 
constituting 87.64% (78 out of 89 isolates), followed by L3 at 
11.24%. The remaining 1.13% of the isolates belonged to L7 
(Figure  3). Additionally, the isolates underwent further 
classification into sublineages. Within L3, there were two 
sub-lineages identified: L3 and L3.1.1 (Figure  2). L4 was 
subdivided into 13 distinct sub-lineages. Notably, L4.6.3 and 
L4.2.2.2 emerged as the predominant sub-lineages, constituting 
34.62 and 26.92% of the total, respectively (Figures  2, 3). This 
detailed sub-lineage classification enhances our understanding of 
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FIGURE 2

A maximum likelihood phylogenetic tree, lineage classification, clustering rate, and drug resistance patterns generated from 89 MTB isolates and 3 
mixed infections collected from western Ethiopia. The lineage/sublineages, cluster assignment, and genotypic resistance to first- and second-line 
antituberculosis drugs were presented. The tree was annotated using iTOL v6 (33). The star symbol on the tip of each branch represents sub-lineages 
of MTB and the triangle shows the mixed infections. The first column denotes the main lineages. The next 5 columns show genomic relatedness within 
clusters (CL12, CL5, CL2, and CL0 set the maximum number of SNPs that differ from the genetically closest isolate). Next to 5 columns of the cluster, 
the drug resistance pattern was depicted with different colors, and mutations encoded resistance are represented by the filled square (presence of 
mutation) or empty square (absence of mutation) icons. The red squares are for first-line anti-TB whereas the light blue squares are for second-line 
drugs. To calculate cluster rate, only 87 WGS data were used; isolates consisting of mixed infections and with a mean coverage of below 20× were 
excluded. MDR, multi-drug resistant; XDR, extensively drug-resistant, drug-resistant (including mono and poly-resistant); L, lineage; CL, cluster.
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the genetic diversity within the main lineages and sublineages of 
the MTB isolates.

In silico spoligotyping

The results of in silico spoligotyping are summarized in Table 1. 
According to the spoligotyping findings, 89.89% (80 out of 89) of the 
isolates were classified into 26 shared types (SIT numbers), while the 
remaining nine isolates (10.11%) were categorized as orphans. Among 
L3 strains, the most prevalent spoligotype was SIT 25, while among 
L4 strains, SIT 149 and SIT 37 were the dominant spoligotypes 
(Table 1).

Moreover, the SITVIT analysis facilitated the identification of 16 
major genotypic families, with T3 representing the predominant 
family at 23.6% (21 out of 89), followed by the T3-ETH family, 
comprising 19.1% (17 out of 89) of the isolates. Intriguingly, 8.99% (8 
out of 89) of the strains corresponded to spoligotypes not previously 
documented in the SITVIT2 database (Table 1).

Recent disease transmission through 
cluster analysis

The cluster analysis revealed the presence of 11 distinct 
clusters, each comprised of two to five isolates, resulting in an 
overall clustering rate of 30% and an RTI of 17.24% (where n = 26, 
c = 11, and N = 87; Figure 2). The SNP differences between isolates 
within these clusters ranged from zero to 12. Among these clusters, 
only one isolate from the clustered strain (CL6) exhibited 
resistance to the tested TB drugs. Notably, the majority of the 
clustered strains belonged to L4, with a few from L3. Specifically 

within L4, the predominant sub-lineages were L4.6.3 and L4.2.2.2 
(Figure 2).

A difference of 0–2 SNPs between patients was observed in 13 
cases (Figure  2, CL1, CL5, CL6, CL7, CL8), indicating recent 
transmission events. On the other hand, a difference of 6–12 SNPs was 
documented in 13 patients, suggesting older transmission events 
(Figure  2, CL5). The genetic distance between individual clusters 
ranged from 23 SNPs (between CL5 and CL6) to 638 SNPs (between 
CL3 and CL1; Figure  4). These findings provide insights into the 
dynamics of transmission events and genetic relationships within the 
MTB population under study.

Mutations associated with drug-resistant 
tuberculosis

In this study, 7.87% of the isolates exhibited resistance to at least 
one first-line and/or second-line anti-TB drug, with only 1.12% 
classified as MDR isolates. Isoniazid had the highest predicted 
resistance, with 4.49% of the isolates demonstrating resistance to it. 
Additionally, 2.25% of the isolates showed resistance to rifampicin, 
while 1.12% exhibited resistance to each of streptomycin and 
ethambutol. The sequencing analysis identified a total of 11 mutations 
known to confer resistance to first- and second-line anti-TB drugs 
across seven genes (Table 2).

Remarkably, one isolate (EN068) presented with mixed infection 
and multidrug resistance, featuring resistance mutations in the rpoB 
(Asn437Thr, Ser441Ala, Leu464Met) and katG (Asn218Lys) genes 
(Supplementary Table S3; Figure 2). Importantly, all resistant isolates, 
both to first-line and second-line drugs, belonged to L4 (Figure 2). 
These findings underscore the genetic basis of drug resistance within 
the L4 lineage and highlight the importance of ongoing surveillance 
and management strategies to address drug-resistant TB.
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L7  =  orange). A bar graph denoting the distribution of MTB L4 sublineages and the numbers on top of the bars indicate the percentage of sub-lineages. 
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TABLE 1 Spoligotype patterns of clustered MTB isolates (n  =  89) of EPTB patients in western Ethiopia.

Octal code Binary code SIT Main line ages Family n (%)

777777777760771 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 53 EA T1 6(6.74)

777777777760751 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■□■■ 612 EA T1 1(1.12)

777777777760731 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■□■■■ 52 EA T2 1(1.12)

777777777420771 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□■□□□□■■■■■■■ 777 EA Ural-1 2(2.25)

777777777420731 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□■□□□□■■■□■■■ 817 EA Ural-1 2(2.25)

777777775760771 ■■■■■■■■■■■■■■■■■■■■■■■■■□■■■■■■□□□□■■■■■■■■ 122 EA T1 2(2.25)

777777607760771 ■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■■■□□□□■■■■■■■ 42 EA LAM9 1(1.12)

777777606760701 ■■■■■■■■■■■■■■■■■■■■□□□□■■□■■■■■□□□□■■■□□□■ Orphan EA Not defined 1(1.12)

777777405760771 ■■■■■■■■■■■■■■■■■■■□□□□□■□■■■■■■□□□□■■■■■■■ Orphan EA Not defined 2(2.25)

777777404760771 ■■■■■■■■■■■■■■■■■■■□□□□□■□□■■■■■□□□□■■■■■■■ 41 EA Turkey 2(2.25)

777776777760731 ■■■■■■■■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■■■□■■■ 336 EA X1 4(4.49)

777776777760601 ■■■■■■■■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■■□□□□■ 137 EA X2 2(2.25)

777737777760771 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 37 EA T3 13(14.6)

777737777760731 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■□■■■ 73 EA T 1(1.12)

777737777760371 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■■■■ 2,040 EA T3 1(1.12)

777737743760771 ■■■■■■■■■■■■□■■■■■■■■■□□□■■■■■■■□□□□■■■■■■■ 2,550 EA Cameroon 1(1.12)

777737377760771 ■■■■■■■■■■■■□■■■■■□■■■■■■■■■■■■■□□□□■■■■■■■ 442 EA T 1(1.12)

777737374020771 ■■■■■■■■■■■■□■■■■■□■■■■■■□□□□□□■□□□□■■■■■■■ 3,330 EA H1 2(2.25)

777720007760771 ■■■■■■■■■■■■□■□□□□□□□□□□■■■■■■■■□□□□■■■■■■■ 3,341 EA LAM-RUS 1(1.12)

777000377760771 ■■■■■■■■■□□□□□□□□□□■■■■■■■■■■■■■□□□□■■■■■■■ 149 EA T3-ETH 16(17.98)

776737777760771 ■■■■■■■■□■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 3,137 EA T3 7(7.87)

776737377760771 ■■■■■■■■□■■■□■■■■■□■■■■■■■■■■■■■□□□□■■■■■■■ 3,324 EA T 2(2.25)

762737777740771 ■■■■■□□■□■■■□■■■■■■■■■■■■■■■■■■□□□□□■■■■■■■ Orphan EA Not defined 1(1.12)

703777740003471 ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■■□□■■■■ 247 EAI CAS1-Delhi 1(1.12)

703777740003171 ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□■■■■■ 25 EAI CAS1-Delhi 6(6.74)

703777700003771 ■■■□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□■■■■■■■■■ 142 EAI CAS1-Delhi 1(1.12)

703377400001771 ■■■□□□□■■□■■■■■■■■■□□□□□□□□□□□□□□□□■■■■■■■■ 21 EAI CAS1-Kili 2(2.25)

700000007177771 ■■■□□□□□□□□□□□□□□□□□□□□□■■■□□■■■■■■■■■■■■■■ 910 L7 Ethiopian 1(1.12)

600000077760731 ■■□□□□□□□□□□□□□□□□□□□■■■■■■■■■■■□□□□■■■□■■■ Orphan EA Not defined 1(1.12)

577000377760771 ■□■■■■■■■□□□□□□□□□□■■■■■■■■■■■■■□□□□■■■■■■■ Orphan EA T3-ETH 1(1.12)

(Continued)

https://doi.org/10.3389/fpubh.2024.1399731
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chekesa et al. 10.3389/fpubh.2024.1399731

Frontiers in Public Health 08 frontiersin.org

Discussion

The current study stands as a pioneering effort, utilizing WGS to 
explore the genetic diversity of MTB isolates, identify mixed 
infections, analyze drug-resistant mutations, and unveil actively 
ongoing transmission chains in cases of EPTB from western 
Ethiopia. The adoption of WGS is noteworthy as it is increasingly 
recognized as a valuable tool for aiding epidemiological 
investigations, clinical diagnosis, and control programs, contributing 
to decision-making in the management of infectious diseases. 
Despite the widespread use of WGS in developed countries, its 
application as a diagnostic and disease surveillance tool is slowly 
gaining traction in low-resource and high-tuberculosis burden 
settings (36, 37). This study, by employing WGS in the context of 
EPTB, not only fills a critical gap in the existing literature but also 
showcases the potential of advanced genomic techniques in 
enhancing our understanding of TB dynamics in resource-
constrained regions.

The WGS results indicate that strains of L4 and L3 constituted 
87.64 and 11.24%, respectively, of the isolates causing EPTB in western 
Ethiopia. This observation aligns with findings from previous studies 
in Ethiopia that utilized spoligotyping (38, 39), MIRU-VNTR (40), 
and WGS (41–43). Furthermore, the predominance of L4 as a lineage 
causing EPTB has been documented in neighboring countries of 
Ethiopia, such as Kenya (44) and Sudan (45), as well as in other 
African nations like Sierra Leone (46), Botswana (47), Sothern Africa 
(48). The prevalence of L4 MTB in Ethiopia is not unexpected, as this 
lineage is commonly found circulating in several countries. The 
success of L4 strains in Ethiopia might be attributed to their genotypic 
and phenotypic diversity (6, 49), their ability to evade the host 
immune response, and their rapid progression to TB disease, which 
potentially facilitates their transmission across a broader geographic 
scope (50, 51). Moreover, host risk factors associated with the 
extrapulmonary dissemination of MTB include HIV infection, 
younger age, female sex, and non-white race (52). This insight 
contributes to our understanding of the genetic diversity and regional 
prevalence of specific MTB lineages, shedding light on factors 
influencing their success in causing EPTB.

The prevalence of sub-lineages within L4 was notable in western 
Ethiopia, mirroring findings from prior studies in the country (39, 40, 
42). Specifically, strains belonging to L4.6.3 and L4.2.2.2 were 
identified as the most prevalent genotypes in the region. According to 
the SITVIT2 database, 21 out of 27 L4.6.3 isolates and 19 out of 21 
L4.2.2.2 isolates were classified as T3/Ethiopian_2 and T3-ETH/
Ethiopian_3, respectively. These designations suggest that these 
isolates may be phylogeographically specific to Ethiopia, exhibiting a 
specialist profile. Such geographical restriction in genotypes could 
indicate a local adaptation of the strain to a particular human 
population, highlighting the concept of host-pathogen compatibility 
and then the more likely to transmit and cause disease in the same 
ethnicity (53). This insight enhances our understanding of the regional 
genetic diversity and adaptation of MTB strains in western Ethiopia.

Additionally, less common L4 sublineages, including L4.1.2.1, 
L4.8, and L4.3.4.2, were identified as globally distributed sublineages, 
often referred to as generalists (49, 54). The presence of L4.2/Ural was 
noted in high proportions in Asia and Africa but was largely absent 
from the Americas, earning it the designation of intermediate (49). 
The diverse geographic distributions of generalist and specialist O
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FIGURE 4

Minimum spanning tree based on SNP differences between the strains collected in western Ethiopia. The maximum distance is set to 12 SNPs for 
linked transmission. A distant matrix was generated from MTBseq v1.0.4 (24) and a minimum spanning tree was constructed using GrapeTree (34) 
software. The number indicates the SNP differences that exist between the two isolates/clusters. CL, cluster.

TABLE 2 Drug resistance pattern and associated resistance-conferring mutation of MTB in western Ethiopia (n  =  89).

Drug Gene Locus tag Genome 
position

Mutations Variant type n (%)

Rifampicin rpoB Rv0667 761135 Leu443Phe Missense_variant 2(2.25)

761155 Ser450Leu

Isoniazid katG Rv1908c 2155700 Asn138His Missense_variant 4(4.49)

2155168 Ser315Thr

2154841 Ala424Val

2154973 Thr380Ile

Isoniazid, Ethionamide fabG1 Rv1483 1673425 −15C > T Upstream_gene_

variant

1(1.12)

Streptomycin rpsL Rv0682 781821 Lys88Gln Missense_variant 1(1.12)

Ethambutol embB Rv3795 4248003 Gln497Arg Missense_variant 1(1.12)

Capreomycin tlyA Rv1694 1918647 Asn236Lys Missense_variant 2(2.25)

Ethionamide ethA Rv3854c 4326765 708delC Frameshift_variant 2(2.25)
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sublineages may be attributed to intrinsic biological factors, extrinsic 
factors such as human migration, or a combination of both (49). It is 
plausible that these sublineages were introduced into Ethiopia during 
European contact through human migration and trade (55), 
contributing to the regional diversity of MTB strains.

The second most prevalent lineage identified in this study was L3, 
aligning with observations from previous studies conducted in 
different regions of Ethiopia (38–40, 42). It has been previously 
proposed that L3 strains have an evolutionary origin in South Asia. 
However, L3 strains have been frequently isolated from TB patients in 
East and North Africa (50, 56), leading to speculation about whether 
these strains have coevolved with and adapted to their East African 
hosts, potentially developing specific biological or phenotypic traits 
within this particular host population (56). The prevalence of L3 
strains in Ethiopia might also be linked to historical and contemporary 
movements of people from South Asia, such as the Indian 
subcontinent, to East Africa, involving migration, tourism, and trade. 
These factors collectively contribute to the genetic diversity and 
distribution of MTB lineages in the region.

L7 was identified as the least prevalent lineage in the present study, 
constituting 1.13% of the isolates. Interestingly, L7 is geographically 
restricted to Ethiopia, making it a specialist lineage. Similar 
observations were noted in previous studies in southern Ethiopia (40) 
and eastern Ethiopia (39), where the proportion of L7 was low. In 
contrast, northern Ethiopia exhibited a higher proportion of L7 (57). 
This geographical variability in the prevalence of L7 suggests host-
pathogen compatibility and relative specificity of strains to specific 
segments of the human population. It emphasizes that the distribution 
of Ethiopia-specific lineages moderately differs from one area to 
another within the country. This information holds significance for 
the country’s TB Control Program. Notably, about 8.99% of all MTB 
isolates in this study were not previously documented in the SITVIT2 
database, emphasizing the need for further investigation and their 
inclusion in the genotype database.

TB disease can arise from either recent transmission of TB 
bacilli from active TB cases or reactivation of a previous infection. 
The clustering of two or more strains with similar genetic patterns 
indicates recent and active TB transmission within the community 
(58). Using the 12-SNP threshold, the overall clustering and RTI 
were determined to be 30 and 17.24%, respectively, suggesting high 
TB transmission in the area. This provides direct evidence that the 
high incidence rate of EPTB in western Ethiopia is not solely 
attributable to the reactivation of latent TB. Instead, the finding 
suggests the rapid progression of clinical illness from primary 
infection or a short latency period. Our findings are consistent with 
a recent WGS-based study conducted on TB Lymphadenitis 
(TBLN), which reported a cluster rate and RTI of 31.1 and 18%, 
respectively (41). However, the RTI observed in our study is higher 
than that reported in a study from southern Ethiopia (3.9%) (40) 
and northern Ethiopia (11.8%) (43). Furthermore, our RTI is lower 
than the overall clustering rate and RTI reported in previous studies 
from other regions of Ethiopia, including central Ethiopia (59), 
nationwide Ethiopia (60), and northern Ethiopia (42). The 
variations in TB transmission status could be  attributed to 
differences in genotyping methods utilized; most studies employed 
spoligotyping and MIRU-VNTR typing, which have lower 
resolution power than WGS (60, 61). Additionally, differences in 
circulating MTB strains, study populations, types of TB patients 

(drug-susceptible vs. MDR or XDR-TB), and geographical locations 
could also contribute to these variations (62).

Early detection of resistance to anti-TB drugs is crucial for the 
successful treatment and control of drug-resistant TB (63). In this 
study, 7.87% of MTB strains were found to be resistant to at least one 
anti-TB drug, with 1.12% being MDR strains. This proportion of MDR 
strains is higher than those previously reported in southern Ethiopia 
(0.8%) (64). However, higher proportions of MDR strains have been 
reported in central Ethiopia (61.9%) (65), east Ethiopia (10.2%) (66), 
southwest Ethiopia (10.2%) (67), and at the national level in Ethiopia 
(11.6%) (68). The variations in resistance rates observed in our study 
and previous studies in Ethiopia could be attributed to differences in 
molecular drug resistance testing tools, virulence of circulating MTB 
strains in the respective geographic areas, strength of TB control 
programs at the study sites, various clinical characteristics of the 
patients (such as history of previous TB treatment, cigarette smoking, 
treatment compliance), economic status (nutritional status) of the 
patients, and immunological status of the patients (43, 69).

A total of 11 mutations, spanning across 7 genes known to confer 
resistance to both first- and second-line drugs used in TB treatment, 
were identified. Within the katG gene, mutations conferring resistance 
to isoniazid were found at various codons (Asn138His, Ala424Val, 
Ser315Thr, and Thr380Ile), along with the -15C > T mutation in the 
fabG1 gene. All mutations except for the Ser315Thr variant were 
undetectable using LPA. This finding aligns with previous studies that 
utilized WGS to identify mutations in the katG gene (S315T) (43, 70–72), 
T380I (71), and the fabG1 (-15C > T) (43, 70–72), which are associated 
with isoniazid resistance. For rifampicin resistance, mutations 
(Leu443Phe and Ser450Leu) in the rpoB gene were found, in line with 
other WGS studies (43). Similar to our study, additional studies have 
documented the presence of Lys88Gln mutation in the rpsL gene (71, 
72), associated with streptomycin resistance, and Gln497Arg mutation 
in the embB gene (71), linked to ethambutol resistance.

In western Ethiopia, mutations linked to resistance against 
second-line anti-TB drugs have been identified. Specifically, 
ethionamide-resistance conferring mutations were observed in the 
ethA and fabG1 genes, namely 708delC (2.25%) and -15C > T (1.12%), 
respectively. Notably, all isolates resistant to ethionamide in this study 
also exhibited resistance to isoniazid. Consistent with prior research 
(43, 73), the fabG1 gene’s -15C > T mutation, responsible for resistance 
to both isoniazid and ethionamide, was detected in the MDR-TB 
isolates. Moreover, we  identified missense mutations occurring at 
codon N236K of the tlyA gene in two isolates, conferring resistance to 
capreomycin. This mutation has also been reported in previous studies 
(43, 71, 74). It’s worth noting that mutations in the ethA, fabG1, and 
tlyA genes cannot be detected by LPA.

Drug-resistance tests for first- and second-line anti-TB drugs using 
LPA only detected resistance to rifampicin, isoniazid, fluoroquinolones, 
and second-line injectable drugs (amikacin, kanamycin, and 
capreomycin) in common resistance-conferring regions (75). However, 
in this study, including mutations from mixed infections, 68.75% of 
resistance mutations to first- and second-line anti-TB drugs were not 
detected by GeneXpert MTB/RIF and LPA. This observation is 
consistent with findings from previous studies conducted in northern 
Ethiopia (43, 76). Thus, this study confirmed the utility of WGS in the 
surveillance of drug-resistant TB strains circulating in western 
Ethiopia. Sequencing data analysis identified complete resistance 
profiles of MDR and XDR strains of MTB, suggesting that the 
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implementation of this methodology in routine diagnostics could 
improve TB control at the national level. However, our study is subject 
to certain limitations. One such limitation is the lack of collected 
social-demographic information for the enrolled subjects, which 
prevented us from establishing epidemiological links among clustered 
individuals. Additionally, due to limited funding, only a small number 
of EPTB isolates were sequenced. Consequently, these samples may not 
accurately represent the region, potentially impacting the genetic 
diversity, drug resistance profiling, and cluster analysis.

Conclusions and future directions

Our study reveals that MTBC strains isolated from EPTB patients 
in western Ethiopia display limited inter-lineage diversity, with three 
main lineages identified, of which L4 predominates, exhibiting high 
intra-lineage diversity. Among the 13 L4 sublineages identified, L4.6.3 
and L4.2.2.2 are the prevailing genotypes. The elevated clustering rate 
and recent transmission index underscore the considerable TB 
transmission in the region, emphasizing the need to enhance TB 
infection control to disrupt the transmission chain. Although the 
burden of MDR-TB is low, the high transmission rate suggests 
potential factors such as non-genetic-based mechanisms of drug 
resistance (cell envelope, efflux systems, and drug degradation and 
modification), MTB virulence, and host risk factors. The majority of 
resistance-conferring mutations identified went undetected by 
GeneXpert MTB/RIF and LPA. Therefore, to achieve comprehensive 
drug-susceptibility testing, adopting WGS as a high-resolution tool 
for TB clinical diagnosis, detecting drug resistance mutations, and 
conducting molecular epidemiological analysis is crucial. This 
approach has the potential to significantly enhance TB control efforts 
and align with the WHO TB End Strategy.
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