Skip to main content

ORIGINAL RESEARCH article

Front. Public Health, 21 October 2024
Sec. Infectious Diseases: Epidemiology and Prevention
This article is part of the Research Topic Global Infectious Disease Surveillance Technologies and Data Sharing Protocols View all 8 articles

Advanced optimal control approaches for immune boosting and clinical treatment to enhance dengue viremia models using ABC fractional-order analysis

  • 1Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
  • 2Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
  • 3Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India

Introduction: This work focuses on the Dengue-viremia ABC (Atangana-Baleanu Caputo) fractional-order differential equations, accounting for both symptomatic and asymptomatic infected cases. Symptomatic cases are characterized by higher viremia levels, whereas asymptomatic cases exhibit lower viremia levels. The fractional-order model highlights memory effects and other advantages over traditional models, offering a more comprehensive representation of dengue dynamics.

Methods: The total population is divided into four compartments: susceptible, asymptomatic infected, symptomatic infected, and recovered. The model incorporates an immune-boosting factor for asymptomatic infected individuals and clinical treatment for symptomatic cases. Positivity and boundedness of the model are validated, and both local and global stability analyses are performed. The novel Adams-Bash numerical scheme is utilized for simulations to rigorously assess the impact of optimal control interventions.

Results: The results demonstrate the effectiveness of the proposed control strategies. The reproduction numbers must be reduced based on specific optimal control conditions to effectively mitigate disease outbreaks. Numerical simulations confirm that the optimal control measures can significantly reduce the spread of the disease.

Discussion: This research advances the understanding of Dengue-viremia dynamics and provides valuable insights into the application of ABC fractional-order analysis. By incorporating immune-boosting and clinical treatment into the model, the study offers practical guidelines for implementing successful disease control strategies. The findings highlight the potential of using optimal control techniques in public health interventions to manage disease outbreaks more effectively.

1 Introduction

Worldwide, thousands of dengue cases are reported every year. The world's tropical and subtropical regions are affected by dengue infection, which is a mosquito-carrying disease. A high temperature and flu-like symptoms are signs of mild illness or asymptomatic to stern disease. DHF (Dengue Hemorrhagic Fever) or DSS (Dengue Show Syndromes Syndromes) is a highly infectious form of dengue fever that causes serious bleeding, shock, and death. Generally, it was noticed that only one out of four dengue contagions is symptomatic. Dengue virus occurs in four major types (DENV types 1, 2, 3, and 4), all of which can cause serious illness. The usual signs of DENV type 1 are like a common cold and mild fever, which will not lead directly to DHF; conversely, later DENV types can lead to DHF (13).

To understand the dynamical behavior of dengue transmission, we formulated a mathematical model, particularly focusing on vector-borne disease transmission from mosquitoes to humans. Esteva and Vargas (4, 5) pioneered the creation of a fundamental dengue model and explored numerous fundamental mathematical concepts and their accompanying numerical simulations. Feng et al. (6) presented a two-strain dengue infection model and examined competitive exclusion. Researchers have conducted numerous studies to better understand the transmission of dengue fever (79).

The importance of fractional-order models lies in their ability to capture the complex dynamics and long-term dependencies within the transmission process. By incorporating fractional derivatives, these models provide a more comprehensive understanding of disease spread, which is crucial for designing effective intervention strategies. The fractional-order models can accommodate the nuanced behavior of dengue transmission, offering insights that integer-order models may overlook, thereby enhancing the accuracy and effectiveness of disease control measures.

The fractional order model has been conclusively demonstrated by a recent study to be capable of controlling the trend of complex diffusion disorder (1014). Many have emphasized various mathematical models for Dengue transmission and prevention (1519). All cited references explain the transmission process of Dengue infection from different perspectives, including dynamic analysis, evaluation of vaccination, and optimal control measures (2024). The most updated studies on Dengue with real-life data are presented in (25, 26). The mathematical description of Dengue is briefly described in Deterministic and Stochastic terms. The evolution of dengue with asymptomatic carriers using optimal control measures was investigated in (27).

Therefore, motivated by the aforementioned literature, we propose a computational framework for the dissemination of dengue at a given viremia level. We investigated whether symptom-free people were markedly more susceptible to mosquitoes than clinically symptom-positive patients. The new idea of a mathematical model to analyse the immune-boosting factor for asymptomatic infected cases and the waning immunity that cases re-infect is reported. To make practical applications and simulations easier, we utilize the Adams-Bash forth numerical scheme, which is renowned for its accuracy and stability. This choice ensures that our model reflects real-world scenarios while maintaining computational efficacy. A key highlight of this study is the incorporation of optimal control strategies into the ABC fractional order Dengue viremia model. These strategies are designed to explore how interventions, such as self-prevention and vector control, can be optimized to curtail disease spread. The analysis extends to investigating disease-free and endemic stability, providing crucial insights into the long-term behavior of the system under various control scenarios.

This article is prepared as follows: In portion 2, we review the fundamental definitions for the fractional-order operator and provide a list of mathematical properties that were used throughout the work. The dengue viral mathematical model with fractional order was presented in portion 3. Portion 4 examines the local as well as global consistency of the suggested model through the Routh-Hurwitz criteria and the Lyapunov function. An optimal control solution and discussion are present in portion 5. The final section focuses on numerical simulations and a comprehensive conclusion.

2 Fundamental results

This section introduces fractional derivation and some of its properties, which will be used in the following components.

Definition 2.1.

Consider ψ ∈ ℍ′ (0, T) and η ∈ [0, ȶ], then Atangana-Baleanu fraction component in Caputo case is

AC0𝔇ȶηψ (ȶ) = N(η)¯1- η0ȶddx  ψ(S)Nη[-η1- η(ȶ-S)]dS    (1)

The method yields a variation operator Caputo-Fabrizio that replaces

Nη[-η1- η(ȶ-S)]dS  by  N1= exp[-η1- η(ȶ-S) ]

It's noteworthy that AC0𝔇ȶη[constant] = 0. Here N(η)¯ is the typical function and it is defined as N(0)¯=1 and N(1)¯=1.  N(η)¯ depict the familiar Mittag–Leffler operator, it also reflects the exponential function generality.

Definition 2.2.

The fractional integral of ABC with order η given by

AC0𝔗ȶηψ(ȶ)= 1- ηN(η)¯ ψ(ȶ) + ηN(η) Γ(η) ¯0ȶ  ψ(S)(ȶ-S)η -1dS    (2)

Lemma 2.1.

Consider a fractional-order system

AC0𝔇ȶηx(ȶ)=f(ȶ,x),  t>t0    (3)

Where ηϵ(0, 1) in the initial case x(ȶ0).

If f(ȶ,x) fulfills the Lipschitz condition in relation to x, then system (Equation 3) exhibits a unique solution in the region [t0, +∞) × φ and φ ⊆ ℝn.

Lemma 2.2.

If x(ȶ)+ become an ongoing and attainable consequence. Then

AC0𝔇ȶη(x(ȶ)-x*-x*lnx(ȶ)x*) (1-x*x(ȶ))AC0𝔇ȶηx(ȶ)    (4)

Here t > t0, η ϵ (0, 1) and x* +.

3 Evaluation of dengue dynamics

In this section, we expand upon the previously described Dengue SIR-SI model (18) by incorporating additional factors and refining the classification of both human and mosquito populations. Our model includes viremia levels, an immune-boosting factor for asymptomatic infected cases, and clinical treatment for symptomatic infected cases.

To study the mode of spread of dengue sickness, the human species (N𝔥) is subdivided into four classes: susceptible (Ȿ𝔥), symptomatic infectious (𝔗𝔥), asymptomatic infectious (𝔗A𝔥) and recovered human populations (𝔎𝔥). We classified female mosquito species (N𝔪) into Susceptible (Ȿ𝔪) and infective mosquitoes (𝔗𝔪). A Susceptible individual among as one who is not infected and immune, infected humans are both asymptomatic and symptomatic are those who have acquired Dengue viremia from an infected mosquito populations and are all capable of spreading dengue virus to susceptible mosquitoes. Let we examines π𝔥 and π𝔪 the acquisition rates of humans and mosquitoes. The proposed model, illustrated in the flowchart, demonstrates the dengue transmission dynamics. Based on Figure 1, we developed the following differential equation.

d𝔥dȶ=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪 -  δ𝔥𝔥+θ𝔎𝔥d𝔗shdȶ= α𝔪χ𝔥𝔥𝔗𝔪 - (τ+γ+δ𝔥)𝔗𝔥d𝔗A𝔥dȶ= α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 d𝔎𝔥dȶ= γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ𝔗A𝔥 d𝔪dȶ=π𝔪 -α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔪 d𝔗𝔪dȶ= α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪    (5)

Where

α𝔪- individual mosquito‘s biting rate

χ𝔥- Dissemination to human by mosquitoes, which leads to a symptomatic infectious in humans

χA𝔥- Dissemination to human by mosquitoes, which leads to a asymptomatic infectious in humans

χ𝔪 - Viremia dissemination to mosquito by human species

δ𝔥 - Human Fatality rate

τ - Symptomatic infected human treatment rate

γ - Recovering rate.

θ - Transition rate at which a recovered person becomes defenseless due to loss of immunity

ϱ − Rates of immunosuppression for asymptomatic victims

δ𝔪 - Rate of mosquito natural mortality (an average mosquito life span)

From the basic cases (h , Th, TAh,Kh,m, Tm)0.

Figure 1
www.frontiersin.org

Figure 1. The process diagram in dengue dynamics.

In this approach, the aggregate human and mosquito population ratios are provided by

N𝔥=𝔥+ 𝔗𝔥+ 𝔗A𝔥+𝔎𝔥 and  N𝔪=𝔪+ 𝔗𝔪.

In addition, the area of biologically significance for the aforementioned dengue model is indicated and presented by the covered set

Φ={𝔥 , 𝔗𝔥, 𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪 +6:𝔥+𝔗𝔥+ 𝔗A𝔥+𝔎𝔥N𝔥,𝔪+𝔗𝔪N𝔪} 

A fractional representation of the 𝔄𝔅ℭ model as

AC0𝔇ȶη𝔥=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪   -δ𝔥𝔥+θ𝔎𝔥 AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥𝔥𝔗𝔪 -  (τ+γ+δ𝔥)𝔗𝔥 AC0𝔇ȶη𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 AC0𝔇ȶη𝔎𝔥 = γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ 𝔗A𝔥 AC0𝔇ȶη𝔪=π𝔪 - α𝔪 χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪     (6)

A fractional derivation of Atangana-Baleanu of order 0 < η < 1 is denoted AC0𝔇ȶη in Caputo notation.

4 Model analysis

This section examines the validity, singularity and positive variance of the solution of the SIR-SI type model. Additionally, a reliability estimate for Model (Equation 6) has also been developed.

4.1 Existence and uniqueness

Theorem 4.1.

For each non- negative initial stage (𝔥(0), 𝔗𝔥(0),  𝔗A𝔥(0), 𝔎𝔥(0),𝔪(0), 𝔗𝔪(0))+6, then there survives a oneness solution of fractional order model (Equation 6).

Proof

Let Φ={𝔥 , 𝔗𝔥,  𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪 +6:max(|𝔥|, |𝔗𝔥|,| 𝔗A𝔥|,|𝔎𝔥|,|𝔪|,|𝔗𝔪|)ε }.

Define a mapping

𝕄(x)=(𝕄1(x),𝕄2(x),𝕄3(x),𝕄4(x),𝕄5(x),𝕄6(x)) and

𝕄1(x)=π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪   -δ𝔥𝔥+θ𝔎𝔥 𝕄2(x)=α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥 𝕄3(x)=α𝔪χA𝔥𝔥𝔗𝔪 - (ϱ+γ+δ𝔥)𝔗A𝔥 𝕄4(x)=γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥 𝕄5(x)=π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪 𝕄6(x)=α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪 

Where x=(𝔥 , 𝔗𝔥,  𝔗A𝔥,𝔎𝔥,𝔪, 𝔗𝔪) Φ

For any x,x¯  Φ, we have

||𝕄(x)-𝕄(x)¯||=|𝕄1(x)-𝕄1(x)¯|+|𝕄2(x)-𝕄2(x)¯|+|𝕄3(x)-𝕄3(x)¯|+|𝕄4(x)-𝕄4(x)¯|+|𝕄5(x)-𝕄5(x)¯|+|𝕄6(x)-𝕄6(x)¯||π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪  - δ𝔥𝔥+θ𝔎𝔥-π𝔥+α𝔪(χ𝔥+χA𝔥)𝔥¯𝔗𝔪¯  +δ𝔥𝔥¯θ𝔎𝔥¯|+|α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥-α𝔪χ𝔥𝔥¯𝔗𝔪¯  +(τ+γ+δ𝔥)𝔗𝔥¯|+|α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥- α𝔪χA𝔥𝔥¯𝔗𝔪¯ +(ϱ+γ+δ𝔥) 𝔗A𝔥¯| +|γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥-γ(𝔗𝔥¯+ 𝔗A𝔥¯)+θ𝔎𝔥¯+δ𝔥𝔎𝔥¯-τ𝔗𝔥¯-ϱ 𝔗A𝔥¯|+|π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪-π𝔪+α𝔪χ𝔪(𝔗𝔥¯+ 𝔗A𝔥¯)𝔪¯+δ𝔪𝔪¯|+|α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-α𝔪χ𝔪(𝔗𝔥¯+ 𝔗A𝔥¯) 𝔪¯ +δ𝔪𝔗𝔪¯|. [2α𝔪(χ𝔥+χA𝔥)P+δ𝔥]|𝔥 -𝔥¯|+(2τ+2γ+δ𝔥)|𝔗𝔥-𝔗𝔥¯|+(2ϱ+2γ+δ𝔥) | 𝔗A𝔥-  𝔗A𝔥¯|+(2θ+δ𝔥)|𝔎𝔥- 𝔎𝔥¯|+[2α𝔪(Q+R)χ𝔪+δ𝔥]|𝔪 -𝔪¯|+δ𝔪|𝔗m-𝔗m¯|K||x-x¯ ||.

Where K=max[2α𝔪(χ𝔥+χA𝔥)P+δ𝔥,2(τ+γ)+δ𝔥,2(ϱ+γ)+δ𝔥,2θ+δ𝔥,2α𝔪(Q+R)χ𝔪+δ𝔥,δ𝔪]

Basically, since 𝕄(x) satisfies the Lipschitz requirement. Model (Equation 6) has a singular solution based on Lemma 1.

4.2 Positivity solution

Since system (Equation 6) deals with mosquitoes and populace, all components of system are positive. Following is our discussion:

Theorem 4.2.

Let (Ȿ𝔥, 𝔗𝔥,  𝔗A𝔥, 𝔎𝔥, Ȿ𝔪, 𝔗𝔪) > 0 be represent the system (Equation 6) solution for the primary points  𝔥(0), 𝔗𝔥(0),  𝔗A𝔥(0),𝔎𝔥(0),𝔪(0), 𝔗𝔪(0) and represents an immutable set

Φ={𝔥 ,  𝔗𝔥,  𝔗A𝔥, 𝔎𝔥,𝔪, 𝔗𝔪 +6: N𝔥=π𝔥 δ𝔥, N𝔪=π𝔪δ𝔪}, then, all elements of the closed set

Φ is traveling in +6 space is positive invariant.

Proof

The given equation is used to construct the Lyapunov function:

𝕃(ȶ)=(𝕃1(ȶ), 𝕃2(ȶ))=(𝔥+ 𝔗𝔥+ 𝔗A𝔥+𝔎𝔥, 𝔪+𝔗𝔪) 

The function 𝕃(ȶ) satisfies

𝕃(ȶ)˙=(𝕃1(ȶ),˙ 𝕃2(ȶ),˙)=(𝔥˙+  𝔗𝔥˙+ 𝔗A𝔥˙+𝔎𝔥˙,𝔪˙+ 𝔗𝔪˙ )=(π𝔥- δ𝔥𝔥-𝔗𝔥δ𝔥- 𝔗A𝔥δ𝔥- δ𝔥𝔎𝔥,π𝔪-δ𝔪𝔪-δ𝔪𝔗𝔪) =(π𝔥- δ𝔥𝕃1,π𝔪-δ𝔪𝕃2)    (7)

Therefore, it is simple to demonstrate Equation 7 as regards:

{𝕃1(ȶ)˙=π𝔥- δ𝔥𝕃10,   for 𝕃1π𝔥 δ𝔥𝕃2(ȶ)˙=π𝔪-δ𝔪𝕃20,   for 𝕃2π𝔪δ𝔪    (8)

Inferring 𝕃(ȶ)˙0 from the above equations, which indicates that f is positively stable collection. On the other hand, by solving system (Equation 6)

0 (𝕃1(ȶ),𝕃2(ȶ))<(π𝔥 δ𝔥+𝕃1(0)e- δ𝔥t,π𝔪δ𝔪+𝕃2(0)e- δ𝔪t)

Where 𝕃1(0) and 𝕃2(0) are the primary states of 𝕃1(ȶ) and 𝕃2(ȶ) respectively. Therefore, t → ∞, 0 (𝕃1(ȶ),𝕃2(ȶ)) (π𝔥 δ𝔥,π𝔪δ𝔪) and we can conclusion that Φ is a desirable set.

This establishes the theorem.

4.3 Basic reproduction value R0

Let Cf=(𝔥* , 𝔗𝔥*, 𝔗A𝔥*,𝔎𝔥*,𝔪*, 𝔗𝔪*) be the contagious free equilibrium of Equation 6. We have Cf= (π𝔥 δ𝔥, 0, 0, π𝔪δ𝔪, 0). The algorithm of the next iteration matrix is utilized to estimate R0. Obviously, the infected compartments are 𝔗𝔥,  𝔗A𝔥 and 𝔗𝔪 as a consequence of Equation 6. There are

AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥 AC0𝔇ȶη 𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪     (9)

Then we derive

F=(00α𝔪χ𝔥𝔥00α𝔪χA𝔥𝔥α𝔪χ𝔪𝔪α𝔪χ𝔪𝔪0),V=(τ+γ+δ𝔥000ϱ+γ+δ𝔥000δ𝔪)

The basic reproduction value is given by

R0= ρ(FV-1)= π𝔥π𝔪χ𝔪α𝔪2(χ𝔥+χA𝔥)δ𝔥(δ𝔪)2(τ+γ+δ𝔥)(ϱ+γ+δ𝔥) 

Where ρ(FV-1) denote the spectral radius. Surmise that Cp=(𝔥**, 𝔗𝔥**, 𝔗A𝔥**, 𝔎𝔥**, 𝔪**, 𝔗𝔪**) represents the endemic equilibrium for Equation 6. So that

𝔥**=π𝔥(θ+δ𝔥)u1u2(α𝔪(χ𝔥+χA𝔥)𝔗𝔪+δ𝔥)u1u2(θ+δ𝔥)-θα𝔪𝔗𝔪u4𝔗𝔥**= α𝔪χ𝔥𝔥𝔗𝔪u1 𝔗A𝔥**=α𝔪χA𝔥𝔥𝔗𝔪u2 𝔎𝔥**=α𝔪𝔥𝔗𝔪u4(θ+δ𝔥)u1u2 𝔪**=u1u2π𝔪α𝔪2χ𝔪𝔥𝔗𝔪u3+δ𝔪u1u2 𝔗𝔪**=(θ+δ𝔥)u3α𝔪π𝔥𝔪 -δ𝔥u1u2δ𝔪(χ𝔥+χA𝔥)u5- θu4 

Where u1= τ+γ+δ𝔥, u2= ϱ+γ+δ𝔥,  u3= u1χA𝔥+ u2χ𝔥,  u4= u1χA𝔥(τ+γ)+ u2χ𝔥(ϱ+γ), and u5 = u1u2 (θ + δ𝔥) δ𝔪.

4.4 Local stability

In this part, we are covering the analysis of firmness conditions of contagious free equilibrium Cf and contagious persistence equilibrium Cp points. A steady state analysis of this equilibrium results in the following Theorem 4.3 and Theorem 4.4.

The obtained Jacobian matrix is:

=(-α𝔪(χ𝔥+χA𝔥)𝔗𝔪 -δ𝔥00θ0-α𝔪(χ𝔥+χA𝔥)𝔥α𝔪χ𝔥𝔗𝔪-(τ+γ+δ𝔥)000α𝔪χ𝔥𝔥α𝔪χA𝔥𝔗𝔪0-(ϱ+γ+δ𝔥)00α𝔪χA𝔥𝔥0τ+γϱ+γ-(θ+δ𝔥)000-α𝔪χ𝔪𝔪-α𝔪χ𝔪𝔪0-(α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)+δ𝔪)00α𝔪χ𝔪𝔪α𝔪χ𝔪𝔪0α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)-δ𝔪)    (10)

Theorem 4.3.

If R0<1, the non - contagious equilibrium C f is locally stable.

Proof

The structure (Equation 6) in the Jacobian matrix of Cf follows

(Cf)=( -δ𝔥00θ0-α𝔪(χ𝔥+χA𝔥)π𝔥δ𝔥0-(τ+γ+δ𝔥)000α𝔪χ𝔥π𝔥δ𝔥00-(ϱ+γ+δ𝔥)00α𝔪χA𝔥π𝔥δ𝔥0τ+γϱ+γ-(θ+δ𝔥)000-α𝔪χ𝔪π𝔪δ𝔪-α𝔪χ𝔪π𝔪δ𝔪0δ𝔪00α𝔪χ𝔪π𝔪δ𝔪α𝔪χ𝔪π𝔪δ𝔪00-δ𝔪)    (11)

To determine the eigenvalue from the above-described matrix det((Cf)-λ𝔗)= 0

We obtain the Eigen values λ1 = −δ𝔥, λ2 = −(τ+γ+δ𝔥), λ3 = δ𝔪, λ4 = θ+δ𝔥 and the characteristic relation is

 λ2+(ϱ+γ+δ𝔥+δ𝔪) λ+δ𝔪(τ+γ+δ𝔥)(ϱ+γ+δ𝔥)[1-R0]=0 

When R0<1, it is obvious that λ5 < 1 and λ6 < 1, all the Eigen values satisfy the condition |arg(λi)|>ηπ2, i=1,2,,6. the without contagious equilibrium Cf is locally asymptotically stable.

Theorem 4.4.

If R0>1, the equilibrium point Cp is locally stable, then system (Equation 6) has ubiquitous contagion.

Proof

Jacobian matrix evaluated in static equilibrium:

det((Cp)-λ𝔗)=0     (12)

We obtain the Eigen values are λ1 = (θ+δ𝔥), λ2=(α𝔪χ𝔪(𝔗𝔥**+𝔗A𝔥**)+ δ𝔪),

λ3=α𝔪(χ𝔥+χA𝔥)𝔗𝔪**+δ𝔥 and the characteristic relation

λ3+a1λ2+a2λ+a3=0     (13)

Where

a1=(τ+ϱ+2(γ+δ𝔥)) a2=(ϱ+γ+δ𝔥+δ𝔪)[(τ+γ+δ𝔥)-α𝔪2(χ𝔥+χA𝔥)χ𝔪𝔥**𝔪**] a3=(τ+γ+δ𝔥)[(ϱ+γ+δ𝔥)δ𝔪-α𝔪2(χ𝔥+χA𝔥)χ𝔪𝔥**𝔪**] 

By using Routh-Hurwitz Criteria (22, 23), if the following provisions are handling

a1>0,a2>0,a3>0 and a1a2-a3> 0.

Then Cp is approximately stable locally. The evidence is conclusive.

4.5 Global stability

Theorem 4.5.

If R0<1, the point of without contagious equilibrium Cf  is global stability on Φ.

Proof

Create a Lyapunov function 𝕍1(ȶ),

 𝕍1(ȶ)=(𝔥-𝔥*ln𝔥)+𝔗𝔥+ 𝔗A𝔥+𝔎𝔥+(𝔪-𝔪*ln𝔪) + 𝔗𝔪    (14)

Calculating the fractional order derivatives of 𝕍1(ȶ) in the solution direction of Equation 6, from Lemma 2, we obtain

AC0𝔇ȶη 𝕍1(ȶ)(1-𝔥*𝔥)AC0𝔇ȶη𝔥+AC0𝔇ȶη𝔗𝔥+AC0𝔇ȶη 𝔗A𝔥+AC0𝔇ȶη𝔎𝔥+(1-𝔪*𝔪)AC0𝔇ȶη𝔪+AC0𝔇ȶη𝔗𝔪 (1-𝔥*𝔥)(π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪-δ𝔥𝔥+θ𝔎𝔥)+(α𝔪χ𝔥𝔥𝔗𝔪  - (τ+γ+δ𝔥)𝔗𝔥) +(α𝔪χA𝔥𝔥𝔗𝔪  - (ϱ+γ+δ𝔥) 𝔗A𝔥) +(γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ 𝔗𝔥+ϱ 𝔗A𝔥) +(1-𝔪*𝔪)(π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪)+(α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪) π𝔥(1-𝔥*𝔥)+ α𝔪χ𝔥𝔥*𝔗𝔪+α𝔪χA𝔥𝔥*𝔗𝔪-δ𝔥𝔥+δ𝔥𝔥*+θ𝔎𝔥(1-𝔥*𝔥)-δ𝔥𝔗𝔥-δ𝔥𝔗A𝔥-θ𝔎𝔥-δ𝔥𝔎𝔥+π𝔪(1-𝔪*𝔪)+α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪*-δ𝔪(1-𝔪*𝔪)-δ𝔪𝔗𝔪 

Substituting the reaction of without contagious free Cf= (π𝔥 δ𝔥, 0, 0, π𝔪δ𝔪, 0), we obtain:

AC0𝔇ȶη 𝕍1(ȶ)(π𝔥+δ𝔥)(2-𝔥*𝔥-𝔥𝔥*)+(π𝔪-δ𝔪)(2-𝔪*𝔪-𝔪𝔪*)    (15)

It is clear that each term in Equation 15 must be negative. We have AC0𝔇ȶη 𝕍1(ȶ)0 due to LaSalle's invariance principle (24), the function AC0𝔇ȶη 𝕍1(ȶ) is required to be negative finite.

The maximally invariant sets 𝔥= 𝔥*, 𝔪=𝔪* which is singleton Cf=(𝔥* , 𝔗𝔥*, 𝔗A𝔥*,𝔎𝔥*,𝔪*, 𝔗𝔪*) contains the limit set for each solution. This demonstrates Cf   is globally asymptotically stable on Φ.

Theorem 4.6.

When R0>1, the positive contagious equalization level of system (Equation 6) arises and is globally stable on Φ.

Proof

Let's create a lyapunov function of the following form

 𝕍2(ȶ)=(𝔥-𝔥**ln𝔥)+(𝔗𝔥-𝔗𝔥**ln𝔗𝔥)+( 𝔗A𝔥-𝔗A𝔥**ln 𝔗A𝔥)+(𝔎𝔥-𝔎𝔥**ln𝔎𝔥)+(𝔪-𝔪**ln𝔪)+(𝔗𝔪-𝔗𝔪**ln𝔗𝔪) AC0𝔇ȶη 𝕍2(ȶ)(1-𝔥**𝔥)AC0𝔇ȶη𝔥+(1-𝔗𝔥**𝔗𝔥)AC0𝔇ȶη𝔗𝔥+(1-𝔗A𝔥** 𝔗A𝔥)AC0𝔇ȶη 𝔗A𝔥+ (1-𝔎𝔥**𝔎𝔥)AC0𝔇ȶη𝔎𝔥+(1-𝔪**𝔪)AC0𝔇ȶη𝔪+(1-𝔗𝔪**𝔗𝔪)AC0𝔇ȶη𝔗𝔪 (1-𝔥**𝔥)(π𝔥 -α𝔪(χ𝔥+χA𝔥)𝔥𝔗𝔪 -δ𝔥𝔥+θ𝔎𝔥)+(1-𝔗𝔥**𝔗𝔥)(α𝔪χ𝔥𝔥𝔗𝔪 -(τ+γ+δ𝔥)𝔗𝔥) +(1-𝔗A𝔥** 𝔗A𝔥)(α𝔪χA𝔥𝔥𝔗𝔪-(ϱ+γ+δ𝔥) 𝔗A𝔥)+(1-𝔎𝔥**𝔎𝔥)(γ(𝔗𝔥+𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ ϱ 𝔗A𝔥) +(1-𝔪**𝔪)(π𝔪 -α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔪)+(1-𝔗𝔪**𝔗𝔪)(α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-δ𝔪𝔗𝔪) π𝔥(1-𝔥**𝔥)+α𝔪(χ𝔥+χA𝔥)𝔥**𝔗𝔪 -δ𝔥𝔥(1-𝔥**𝔥)+θ𝔎𝔥𝔥**𝔥+𝔗𝔥**(τ+γ) -δ𝔥𝔗𝔥(1-𝔗𝔥**𝔗𝔥)-α𝔪𝔥(χ𝔥𝔗𝔥**𝔗𝔥+χA𝔥𝔗A𝔥** 𝔗A𝔥)𝔗𝔪+(ϱ+γ)𝔗A𝔥**-δ𝔥 𝔗A𝔥(1-𝔗A𝔥** 𝔗A𝔥)-γ(𝔗𝔥+𝔗A𝔥)𝔎𝔥**𝔎𝔥+θ𝔎𝔥**-δ𝔥𝔎𝔥(1-𝔎𝔥**𝔎𝔥)+(τ𝔗𝔥+ϱ 𝔗A𝔥)𝔎𝔥**𝔎𝔥+π𝔪(1-𝔪**𝔪)-δ𝔪(1-𝔪**𝔪)-δ𝔪(1-𝔗𝔪**𝔗𝔪)+α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)(𝔪**+𝔪𝔗𝔪**𝔗𝔪) AC0𝔇ȶη 𝕍2(ȶ)(π𝔥-δ𝔥+θ𝔎𝔥)(2-𝔥**𝔥-𝔥𝔥**)+(τ+γ-δ𝔥)(2-𝔗𝔥**𝔗𝔥-𝔗𝔥𝔗𝔥**)+(ϱ+γ-δ𝔥) (2-𝔗A𝔥** 𝔗A𝔥- 𝔗A𝔥𝔗A𝔥**)+(γ+δ𝔥-θ)(2-𝔎𝔥**𝔎𝔥-𝔎𝔥𝔎𝔥**)+(π𝔪-δ𝔪)(2-𝔪**𝔪𝔪𝔪**)+δ𝔪(2-𝔗𝔪**𝔗𝔪-𝔗𝔪𝔗𝔪**)     (16)

Hence, the condition in Equation 16 ensures

AC0𝔇ȶη 𝕍2(ȶ)0 for all (𝔥** , 𝔗𝔥**, 𝔗A𝔥**,𝔎𝔥**,S𝔪**, 𝔗𝔪**)Φ   and strict the quality holds for S𝔥=𝔥=𝔥**,𝔗S𝔥= 𝔗S𝔥**, 𝔗A𝔥= 𝔗A𝔥**,𝔎𝔥= 𝔎𝔥**,𝔪=𝔪** and 𝔗𝔪=𝔗𝔪**. therefore the equilibrium point Cp becomes globally stable on Φ.

5 Optimum control approach

In this portion, we will discuss how to optimize the problem and analyze the performance of the control function. Consolidation of optimal controlling problem a dynamics of control system can be described as system (Equation 6).

AC0𝔇ȶη𝔥=π𝔥 -α𝔪(χ𝔥+χA𝔥)S𝔥𝔗𝔪 - δ𝔥S𝔥+θ𝔎𝔥-𝕌1(ȶ)S𝔥 AC0𝔇ȶη𝔗𝔥=α𝔪χ𝔥S𝔥𝔗𝔪  -(τ+γ+δ𝔥)𝔗S𝔥 AC0𝔇ȶη𝔗A𝔥= α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥)𝔗A𝔥 AC0𝔇ȶη𝔪=π𝔪-α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔪-𝕌2(ȶ)𝔪 AC0𝔇ȶη𝔗𝔪= α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-𝕌2(ȶ)𝔗𝔪    (17)

Where

𝕌1− Self-precaution (long sleeved pants and shorts, increase immune system, consultation at

the neatest health care) minimizes the susceptible individuals.

𝕌2− Use of chemical insecticide sprays destroying the susceptible and infected mosquito cases

The optimal solution being minimized could be expressed as:

(𝕌1,𝕌2)=0ȶf(a𝔥+b𝔗𝔥+c𝔗A𝔥+d𝔪+e𝔗𝔪+f𝕌12+g𝕌22)dȶ    (18)

To reduce the cost of two controls 𝕌1 and 𝕌2 the objective is reduced  𝔥 , 𝔗S𝔥, 𝔗A𝔥 and S𝔪, 𝔗𝔪.

Therefore, we need to obtain optimal controls 𝕌1* and 𝕌2*

(𝕌1*,𝕌2*)=min 𝕌1,𝕌2{(𝕌1,𝕌2)|𝕌1,𝕌2Φ}    (19)

A set of constraints Φ={(𝕌1, 𝕌2)|𝕌i :[0,ȶf][0,) lebesque quantifiable i=1,2 }.

The expense of minimizing 𝔥, 𝔗𝔥, 𝔗A𝔥, Ȿ𝔪 and 𝔗𝔪 is represented by the term a𝔥, b𝔗𝔥, c𝔗A𝔥, d𝔪 and e𝔗𝔪 respectively. Likewise, f𝕌12,g𝕌22 represents the cost for controls 𝕌1, 𝕌2. The most prevalent PMP can be used to find the adequacy condition required for the control system to be satisfied. Equations 17, 19 can be transformed into the following point-wise Hamiltonian ℍ for (𝕌1, 𝕌2) regression problem using the aforesaid principle.

={a𝔥+b𝔗S𝔥+c𝔗A𝔥+dS𝔪+e𝔗𝔪+f𝕌12+g𝕌22}+λ𝔥{π𝔥-α𝔪(χS𝔥+χA𝔥)𝔥𝔗𝔪-δ𝔥𝔥+θ𝔎𝔥-𝕌1(ȶ)𝔥}+ λ𝔗𝔥{α𝔪χ𝔥S𝔥𝔗𝔪-(τ+γ+δ𝔥)𝔗S𝔥}+λ𝔗A𝔥{α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥)𝔗A𝔥}+ λ𝔪{π𝔪-α𝔪χ𝔪(𝔗S𝔥+𝔗A𝔥)𝔪-δ𝔪S𝔪-𝕌2(ȶ)S𝔪}+λ𝔗𝔪{α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)𝔪-δ𝔪𝔗𝔪-𝕌2(ȶ)𝔗𝔪}     (20)

Where λ𝔥,λ𝔗𝔥, λ𝔗A𝔥, λSm and λ𝔗𝔪 are the ad-joint variable or co-state variable.

dλ𝔥dȶ=𝔥=a+λ𝔥{-α𝔪(χS𝔥+χA𝔥)𝔗𝔪-δ𝔥}-(λ𝔗𝔥+λ𝔗A𝔥)α𝔪(χ𝔥+χA𝔥)𝔗𝔪 dλ𝔗𝔥dȶ=𝔗𝔥=b-λ𝔥𝕌1(ȶ)+λ𝔗𝔥{-(τ+γ+δ𝔥)}+λ𝔗𝔪α𝔪χ𝔪𝔪 dλ𝔗A𝔥dȶ=𝔗A𝔥=c-λ𝔥𝕌1(ȶ)+λ𝔗A𝔥{-(ϱ+γ+δ𝔥)}+λ𝔗𝔪α𝔪χ𝔪𝔪dλ𝔪dȶ=𝔪=d+λ𝔪{-α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)-δ𝔪-𝕌2(ȶ)}+λ𝔗𝔪(α𝔪χ𝔪(𝔗𝔥+𝔗A𝔥)) dλ𝔗𝔪dȶ=𝔗𝔪=e+λ𝔗𝔪{-δ𝔪-𝕌2(ȶ)}-(λ𝔗𝔥+λ𝔗A𝔥)α𝔪(χ𝔥+χA𝔥)S𝔥+λS𝔥{-α𝔪(χ𝔥+χA𝔥)𝔥 }    (21)

The conditions for transversality are

λ𝔥(ȶf)=λ𝔗𝔥(ȶ)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)= 0.

For 0<𝕌i<1, i=1 ,2. From the interior of controls, we have:

𝕌1=2f𝕌1-λ𝔥(𝔗S𝔥+𝔗A𝔥) 𝕌2=2g𝕌2-λ𝔪𝔪-λ𝔗𝔪𝔗𝔪     (22)

From where:

𝕌1= λ𝔥(𝔗𝔥+𝔗A𝔥)2f 𝕌2=λ𝔪𝔪+λ𝔗𝔪𝔗𝔪2g    (23)

5.1 Utilization of optimal solutions

Theorem 5.1. (𝕌1*,𝕌2*) is a control factor can reduce over 𝕌 provided by

𝕌1*=max {0,min{1,12fλ𝔥(𝔗𝔥+𝔗A𝔥)}} 𝕌2*=max{0,min{1,12gλ𝔪𝔪+λ𝔗𝔪𝔗𝔪}}     (24)

Where λ𝔥,λ𝔗𝔥, λ𝔗A𝔥, λ𝔪 and λ𝔗𝔪 are co-state variable that satisfy the condition (Equations 1724) in addition, the transversality characteristic that follows

λ𝔥(ȶf)=λ𝔗𝔥(ȶf)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)=0. 
𝕌1*={0                                        if  𝕌10, 𝕌1                              if 0<𝕌1<1,1                                          if 𝕌10.

And

𝕌2*={0                                        if  𝕌20 ,𝕌2                               if 0<𝕌2<1,1                                           if 𝕌20.    (25)

Proof

To demonstrate the survival of optimal control solutions, the configuration of the Lipschitz criterion of the system and the convexity of the integral in Equation 21 are related and state variable that constrains 𝕌1 and 𝕌2 to the boundary of the state solution. So we employ PMP and get the following:

AC0𝔇ȶηλ𝔥(ȶ)=𝔥;AC0𝔇ȶηλ𝔗𝔥(ȶ)=𝔗𝔥;AC0𝔇ȶηλ𝔗A𝔥(ȶ)=𝔗A𝔥; AC0𝔇ȶηλ𝔪(ȶ)=𝔪;AC0𝔇ȶηλ𝔗𝔪(ȶ)=𝔗𝔪;    (26)

with,

λ𝔥(ȶf)=λ𝔗𝔥(ȶf)=λ𝔗A𝔥(ȶf)= λ𝔪(ȶf)=λ𝔗𝔪(ȶf)= 0.

The Hamilton can be differentiated with regard to achieve the conditional optimum:

𝕌1=0,𝕌2 =0.     (27)

The ad-joint system (Equations 20, 21) derived from Equation 17, the optimum system (Equation 23) is accessible from Equation 24. The optimal method is the constrained system (Equation 17) and its initial state is ad-joint the system includes (Equation 20), and condition for intersection.

6 Adams-Bash forth method

Here, we formulate the system of Equation 6 a recently invented numerical approach, the Adams-Bash forth method (24). The framework (Equation 6) can be used to test the essential theorem from fractional calculus,

𝔥(ȶ) =𝔥(0)+1-ηABC(η)𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂1(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ),𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (28)
𝔗𝔥(ȶ)=𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂2(ϖ, 𝔥(ϖ),𝔗𝔥(ϖ),  𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (29)
 𝔗A𝔥(ȶ) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ηABC(η)η0ȶ𝕂3(ϖ, 𝔥(ϖ),Th(ϖ),  TAh(ϖ),Kh(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (30)
𝔎𝔥(ȶ) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ), 𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂4(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ),𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (31)
𝔪(ȶ) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ, 𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂5(ϖ, 𝔥(ϖ),𝔗S𝔥(ϖ), 𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ    (32)
𝔗𝔪(ȶ) = 𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ), 𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))+ ηABC(η)η0ȶ𝕂6(ϖ, 𝔥(ϖ),𝔗𝔥(ϖ), 𝔗A𝔥(ϖ),𝔎𝔥(ϖ),𝔪(ϖ),𝔗𝔪(ϖ))(ȶ-ϖ)η-1dϖ     (33)

Where,

{𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))    =π𝔥 -α𝔪(χ𝔥+χA𝔥)S𝔥𝔗𝔪 - δ𝔥𝔥+θ𝔎𝔥𝕂2(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χ𝔥𝔥𝔗𝔪  -(τ+γ+δ𝔥)𝔗S𝔥𝕂3(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χA𝔥𝔥𝔗𝔪  -(ϱ+γ+δ𝔥) 𝔗A𝔥𝕂4(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =γ(𝔗𝔥+ 𝔗A𝔥)-θ𝔎𝔥-δ𝔥𝔎𝔥+τ𝔗𝔥+ϱ 𝔗A𝔥𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))    =π𝔪-α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)𝔪-Ω𝔪-δ𝔪𝔪𝕂6(ȶ, S𝔥(ȶ),𝔗S𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), S𝔪(ȶ),𝔗𝔪(ȶ))    =α𝔪χ𝔪(𝔗𝔥+ 𝔗A𝔥)m-(Ω+δ𝔪)𝔗𝔪    (34)

The following structure is obtained at time t𝔫+ 1,

𝔥(ȶ𝔫+1) =𝔥(0)+1-ηABC(η)𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (35)
𝔗𝔥(ȶ𝔫+1) =𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (36)
𝔗A𝔥(ȶ𝔫+1) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (37)
𝔎𝔥(ȶ𝔫+1) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (38)
𝔪(ȶ𝔫+1) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (39)
𝔗𝔪(ȶ𝔫+1) = 𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (40)

While, at t𝔫 we have

𝔥(ȶ𝔫) =S𝔥(0)+1-ηABC(η)𝕂1(ȶ𝔫-1,  𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)+ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (41)
𝔗𝔥(ȶ𝔫) =𝔗𝔥(0)+1-ηABC(η)𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (42)
𝔗A𝔥(ȶ𝔫) = 𝔗A𝔥(0)+1-ηABC(η)𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1, 𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)+ηABC(η)η0ȶ𝔫𝕂3(ȶ, 𝔥(ȶ0),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (43)
𝔎𝔥(ȶ𝔫) = 𝔎𝔥(0)+1-ηABC(η)𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1,𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (44)
𝔪(ȶ𝔫) = 𝔪(0)+1-ηABC(η)𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (45)
𝔗𝔪(ȶ𝔫) =𝔗𝔪(0)+1-ηABC(η)𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (46)

By subtracting Ȿ𝔥𝔫) from Ȿ𝔥𝔫+1), 𝔗𝔥𝔫) from 𝔗𝔥𝔫+1),  𝔗A𝔥(ȶ𝔫) from  𝔗A𝔥(ȶ𝔫+1), 𝔎𝔥𝔫) from 𝔎𝔥𝔫+1), Ȿ𝔪𝔫) from S𝔪𝔫+1) and 𝔗𝔪𝔫) from 𝔗𝔪𝔫+1), we get the following

𝔥(ȶ𝔫+1)=S𝔥(ȶ𝔫)+1-ηABC(η)[𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (47)
𝔗𝔥(ȶ𝔫+1)=𝔗𝔥(ȶ𝔫)+1-ηABC(η)[𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +ηABC(η)η0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (48)
𝔗A𝔥(ȶ𝔫+1)= 𝔗A𝔥(ȶ𝔫)+1-ηABC(η)[𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- ηABC(η)η0ȶ𝔫𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (49)
𝔎𝔥(ȶ𝔫+1)=𝔎𝔥(ȶ𝔫)+1-ηABC(η)[𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (50)
𝔪(ȶ𝔫+1)=S𝔪(ȶ𝔫)+1-ηABC(η)[𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (51)
𝔗𝔪(ȶ𝔫+1)=𝔗𝔪(ȶ𝔫)+1-ηABC(η)[𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+ ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ- +ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ),𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ    (52)

The Equations 4752 become

𝔥(ȶ𝔫+1)=S𝔥(ȶ𝔫)+1-ηABC(η)[𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫,𝔪𝔫,𝔗𝔪𝔫(-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,11-𝔸η,21    (53)
𝔗𝔥(ȶ𝔫+1)=𝔗𝔥(ȶ𝔫)+1-ηABC(η)[𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫,𝔪𝔫,𝔗𝔪𝔫(-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1,𝔪𝔫-1,𝔗𝔪𝔫-1(]+𝔸η,12-𝔸η,22    (54)
𝔗A𝔥(ȶ𝔫+1)+𝔗A𝔥(ȶ𝔫)+1-ηABC(η)[𝕂3(ȶ𝔫,𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,13- 𝔸η,23    (55)
𝔎𝔥(ȶ𝔫+1)=𝔎𝔥(ȶ𝔫)+1-ηABC(η)[𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,14-𝔸η,24     (56)
𝔪(ȶ𝔫+1)=S𝔪(ȶ𝔫)+1-ηABC(η)[𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,15-𝔸η,25     (57)
𝔗𝔪(ȶ𝔫+1)=𝔗𝔪(ȶ𝔫)+1-ηABC(η)[𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)]+𝔸η,16- 𝔸η,26    (58)

Where

𝔸η,11=ηABC(η)η0ȶ𝔫+1𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (59)
𝔸η,12=ηABC(η)η 0ȶ𝔫+1𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (60)
𝔸η,13=ηABC(η)η0ȶ𝔫+1𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (61)
𝔸η,14=ηABC(η)η0ȶ𝔫+1𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (62)
𝔸η,15=ηABC(η)η0ȶ𝔫+1𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ    (63)
𝔸η,16=ηABC(η)η0ȶ𝔫+1𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫+1-t)η-1dȶ     (64)

and

𝔸η,21=ηABC(η)η0ȶ𝔫𝕂1(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (65)
𝔸η,22=ηABC(η)η0ȶ𝔫𝕂2(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (66)
𝔸η,23=ηABC(η)η0ȶ𝔫𝕂3(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (67)
𝔸η,24=ηABC(η)η0ȶ𝔫𝕂4(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ𝕃),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1d     (68)
𝔸η,25=ηABC(η)η0ȶ𝔫𝕂5(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (69)
𝔸η,26=ηABC(η)η0ȶ𝔫𝕂6(ȶ, 𝔥(ȶ),𝔗𝔥(ȶ),  𝔗A𝔥(ȶ),𝔎𝔥(ȶ), 𝔪(ȶ),𝔗𝔪(ȶ))(ȶ𝔫-t)η-1dȶ     (70)

Now, approximating 𝔸η,11 , 𝔸η,12, 𝔸η,13, 𝔸η,14, 𝔸η,15, 𝔸η,16 and 𝔸η,21 , 𝔸η,22, 𝔸η,23, 𝔸η,24, 𝔸η,25, 𝔸η,26 with the help of Lagrange's polynomials

(ȶ)ȶ - t𝔫-1ȶ𝔫- t𝔫-1f(ȶ𝔫,y𝔫)+ȶ - t𝔫ȶ𝔫-1 - t𝔫f(ȶ𝔫-1,y𝔫-1), =ȶ -t𝔫-1𝔥f(ȶ𝔫,y𝔫-1)+ȶ - t𝔫𝔥f(ȶ𝔫-1,y𝔫-1)     (71)

Now, only consider the Equation 59 to evaluate under the Equation 71, that is given as

𝔸η,11=ηABC(η)η0ȶ𝔫+1(ȶ𝔫+1-t)η-1[ȶ-t𝔫-1𝔥𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)+ȶ-t𝔫𝔥𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗S𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] dȶ𝔸η,11=η𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[0ȶ𝔫+1(ȶ𝔫+1-t)η-1𝕂1(ȶ-t𝔫-1)]dȶ-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[0ȶ𝔫+1(ȶ𝔫+1-t)η-1𝕂1(ȶ-t𝔫-1)]dȶ 𝔸η,11=η𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]- 𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]     (72)

Similarly, for 𝔸η,12𝔸η,16

𝔸η,12=η𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]    (73)
𝔸η,13=η𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]    (74)
𝔸η,14=η𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]    (75)
𝔸η,15=η𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]    (76)
𝔸η,16=η𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]    (77)

And, from 𝔸η,21 to 𝔸η,26 are given as

𝔸η,21=η𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1]- 𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (78)
𝔸η,22=η𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (79)
𝔸η,23=η𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (80)
𝔸η,24=η𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (81)
𝔸η,25=η𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (82)
𝔸η,26=η𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (83)

Finally, using Equations 7277, and Equations 7882 in Equations 5358 therefore, we obtain the numerical solution of model (Equation 6), as a result

𝔥(ȶ𝔫+1)=S𝔥(ȶ𝔫)+1-ηABC(η)[𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η𝕂1(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1) ×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]-η𝕂1(ȶ𝔫, 𝔥(ȶ𝔫),𝔗S𝔥(ȶ𝔫),  𝔗A𝔥(ȶ𝔫),𝔎𝔥(ȶ𝔫), S𝔪(ȶ𝔫),𝔗𝔪(ȶ𝔫))ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂1(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (84)
𝔗𝔥(ȶ𝔫+1)=𝔗𝔥(ȶ𝔫)+1-ηABC(η)[𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]-𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -η𝕂2(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] - 𝕂2(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (85)
 𝔗A𝔥(ȶ𝔫+1)= 𝔗A𝔥(ȶ𝔫)+1-ηABC(η)[𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥
[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -η𝕂3(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] - 𝕂3(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥    (86)
𝔎𝔥(ȶ𝔫+1)=𝔎𝔥(ȶ𝔫)+1-ηABC(η)[𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] - 𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -η𝕂4(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] - 𝕂4(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (87)
𝔪(ȶ𝔫+1)=S𝔪(ȶ𝔫)+1-ηABC(η)[𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η 𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[2𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1]-𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×ηABC(η)η𝔥[𝔥t𝔫+1ηη-ȶ𝔫+1η+1η+1] -η𝕂5(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)ABC(η)η𝔥[𝔥t𝔫ηη-ȶ𝔫η+1η+1] -𝕂5(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, 𝔪𝔫-1,𝔗𝔪𝔫-1)×1ABC(η)η𝔥     (88)
𝔗𝔪(ȶ𝔫+1)=𝔗𝔪(ȶ𝔫)+1-ηABC(η)[𝕂6(ȶ𝔫, 𝔥𝔫,𝔗𝔥𝔫,  𝔗A𝔥𝔫,𝔎𝔥𝔫, 𝔪𝔫,𝔗𝔪𝔫)-𝕂6(ȶ𝔫-1, 𝔥𝔫-1,𝔗𝔥𝔫-1,  𝔗A𝔥𝔫-1,𝔎𝔥𝔫-1, S𝔪𝔫-1,𝔗𝔪𝔫-1)] +η𝕂6(ȶn,  hn,Thn,    TAhn,Khn,  mn,Tmn)AC(η)η  h[2htn+1ηηȶn+1η+1η+1]𝕂6(ȶn1, hn1,Thn1,  TAhn1,Khn1, mn1,Tmn1)×ηAC(η)η h[htn+1ηηȶn+1η+1η+1] η𝕂6(ȶn, hn,Thn,  TAhn,Khn, mn,Tmn)AC(η)η h[htnηηȶnη+1η+1]𝕂6(ȶn1, hn1,Thn1,  TAhn1,Khn1, mn1,Tmn1)×1AC(η)η h     (89)

6.1 Outcomes and results of simulation

In this section, we analyzed the dynamics of dengue disease spread using both fractional and non-fractional models across different compartments of the human and mosquito populations. Simulations based on dengue case data collected from Karnataka by NVBDC from August 2023 to May 2024, as detailed in reference (28), revealed notable differences in the behavior of each population compartment under fractional versus non-fractional conditions.

In Figure 2A, the susceptible population decreases with values of η = 0.3, 0.5, 0.7, and 0.9, indicating a more realistic and variable decline due to the complex interactions and memory effects incorporated. In contrast, the non-fractional model shows a constant value of η = 1, reflecting a simpler and less dynamic decrease. This suggests that the fractional model captures a more nuanced reduction in the susceptible population over time compared to the non-fractional approach. This suggests that the fractional model captures a more nuanced reduction in the susceptible population over time compared to the non-fractional approach.

Figure 2
www.frontiersin.org

Figure 2. (A–D) Illustrate the time series of susceptible, infected, and recovered human populations for fractional orders and respectively. (E, F) Depict the time series of susceptible and infected mosquito populations for the same fractional orders. (A) Simulation of Ȿ𝔥 for different fractional order. (B) Simulation of   𝔗A𝔥 for different fractional order. (C) Simulation of 𝔗𝔥 for different fractional order. (D) Simulation of 𝔎𝔥 for different fractional order. (E) Simulation of Ȿ𝔪 for different fractional order. (F) Simulation of 𝔗𝔪 for different fractional order.

For infected asymptomatic humans  𝔗A𝔥 and infected symptomatic humans 𝔗𝔥, both populations will initially increase as the infection spreads but will eventually decrease as individuals recover or move between compartments in the Figures 2B, C.

Similarly, for the recovered human population 𝔎𝔥 in Figure 2D, the fractional model reflects a slower recovery rate, acknowledging the variability in recovery times, while the non-fractional model suggests a quicker recovery that might not align with real-world scenarios. In the mosquito populations, the susceptible mosquito population Ȿ𝔪 decrease in Figure 2E, more slowly in the fractional model, indicating that mosquitoes remain susceptible for longer periods. The infected mosquito population 𝔗𝔪 in Figure 2F, also rises gradually in the fractional model, unlike the rapid increase seen in the non-fractional model. Overall, the fractional models provide a more realistic representation of the disease dynamics by incorporating memory effects and delays, which better reflect the natural progression and spread of dengue compared to the more immediate transitions observed in non-fractional models.

The comparison clearly shows that fractional-order models provide a more nuanced understanding of how diseases like dengue evolve over time, influencing both human and mosquito populations. The ability of these models to incorporate memory effects allows them to better simulate the slow and cumulative impacts of disease control measures and environmental changes, offering a more realistic depiction of disease dynamics and aiding in the development of more effective intervention strategies.

Under this section, simulation results are performed, and values of specification are stated in Table 1.

Table 1
www.frontiersin.org

Table 1. Description of parameter values.

The disease trajectory can be seen in Figure 3, when optimal control strategies are implemented and their effectiveness in reducing infection rates is highlighted. Comparing the two control strategies, it is evident that self-precautionary measures have a more immediate and direct effect on reducing human infection rates. This suggests that public education campaigns and community involvement can be impactful tools in controlling dengue viremia. Controlling both susceptible and infected mosquito populations is crucial for interrupting the disease transmission cycle. The impact of this strategy on reducing mosquito populations can be observed in the control diagram, illustrating the importance of vector management. Timing is critical for control strategies. The effect effectiveness of vector control may be contingent on seasonal variation in mosquito populations, while self-precaution can be promoted consistently. To maximize their impact, it is crucial to assess the optimal timing and deployment of these strategies.

Figure 3
www.frontiersin.org

Figure 3. The influence of optimal control on the proposed model dynamics is illustrated.

7 Conclusions

The aim of this study is to explore the effect of dengue viremia on the occurrence of different illnesses. We have presented a comprehensive exploration of ABC fractional order Dengue viremia, a novel mathematical model that incorporates critical factors such as relapse and temporary immunity. After the model is created, the positivity and range of solution is evaluated, and the system survival and originality are verified. The basic reproduction value R0 is determined by evaluating the equilibrium points. The Rough Hurwitz technique is commonly used to estimate local stability, while lyapunov functions are used to estimate global stability. Specifically, when R0<1 in Cf, it indicates that the disease is unlikely to establish itself. If R0>1 at  Cp, it indicates that the disease is likely to continue to spread. Through the utilization of the Adams-Bash forth numerical scheme, we have successfully simulated disease dynamics, achieving a balance between computational efficiency and accuracy. In addition, we have developed the optimum measures by eradicating the population of mosquitoes and reducing the number of victims. The numerical simulation findings show the behavior of Dengue sickness model affected by different fractional orders, and they can serve as Dengue prevention and control recommendation. The research underscores the importance of mathematical modeling and optimal control techniques in addressing complex infectious disease like Dengue viremia. To develop interventions that reduce and control dengue, it is important to ensure that R0 is below as a guideline. For future studies, our model can refine control strategies and adapt them to specific regions and epidemics, which is a promising way to treat infectious diseases and safeguard public health on a global scale.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

GMV: Conceptualization, Investigation, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing. MA: Conceptualization, Data curation, Methodology, Resources, Validation, Writing – original draft, Writing – review & editing. LC: Data curation, Formal analysis, Funding acquisition, Investigation, Writing – review & editing. KK: Data curation, Investigation, Validation, Visualization, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Acknowledgments

We are thankful to the editors and the reviewers for many valuable suggestions to improve this paper.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. World Health Organization. Epidemiology (WHO). (2021). https://www.whho.int/denguecontrol/disease/en/2021

Google Scholar

2. Kautner I, Robinson MJ, Kuhnle U. Dengue virus infection: epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention. J Pediatr. (1997) 131:516–24. doi: 10.1016/S0022-3476(97)70054-4

PubMed Abstract | Crossref Full Text | Google Scholar

3. Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. (2002) 10:100–3. doi: 10.1016/S0966-842X(01)02288-0

PubMed Abstract | Crossref Full Text | Google Scholar

4. Esteva L, Vargas C. Analysis of a dengue disease transmission model. Math Biosci. (1998) 150:131–51. doi: 10.1016/S0025-5564(98)10003-2

PubMed Abstract | Crossref Full Text | Google Scholar

5. Esteva L, Vargas C. A model for dengue disease with variable human population. J Math Biol. (1999) 38:220–40. doi: 10.1007/s002850050147

PubMed Abstract | Crossref Full Text | Google Scholar

6. Feng Z, Velasco-Hernández JX. Competitive exclusion in a vector-host model for the dengue fever. J Math Biol. (1997) 35:523–44. doi: 10.1007/s002850050064

PubMed Abstract | Crossref Full Text | Google Scholar

7. Owolabi KM, Atangana A. Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative. Chaos, Solitons Fractals. (2017) 105:111–9. doi: 10.1016/j.chaos.2017.10.020

PubMed Abstract | Crossref Full Text | Google Scholar

8. Pongsumpun P. Mathematical model of dengue disease with the incubation period of virus. World Acad Sci Eng Technol. (2008) 44:328–32.

Google Scholar

9. Pinho STRD, Ferreira CP, Esteva L, Barreto FR, Morato e Silva VC, Teixeira MGL. Modelling the dynamics of dengue real epidemics. Philosoph Trans Royal Soc A: Mathem Phys Eng Sci. (2010) 368:5679–93. doi: 10.1098/rsta.2010.0278

PubMed Abstract | Crossref Full Text | Google Scholar

10. Kongnuy R. Mathematical modeling for dengue transmission with the effect of season. Int J Biol Med Sci. (2010) 5:74–8. doi: 10.5281/zenodo.1327917

Crossref Full Text | Google Scholar

11. Side S, Noorani SM. A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia). World J Model Simul. (2013) 9:96–105. doi: 10.13140/RG.2.1.5042.6721

Crossref Full Text | Google Scholar

12. Gakkhar S, Chavda NC. Impact of awareness on the spread of dengue infection in human population. Appl Math. (2013) 4:142–7. doi: 10.4236/am.2013.48A020

Crossref Full Text | Google Scholar

13. Diethelm K, Ford NJ. Analysis of fractional differential equations. J Math Anal Appl. (2002) 265:229–48. doi: 10.1006/jmaa.2000.7194

Crossref Full Text | Google Scholar

14. Soewono E, Supriatna AK. A two-dimensional model for the transmission of dengue fever disease. Bullet Malaysian Mathem Sci Soc. (2001) 24:1.

Google Scholar

15. Jan R, Khan MA, Kumam P, Thounthong P. Modeling the transmission of dengue infection through fractional derivatives. Chaos, Solitons Fractals. (2019) 127:189–216. doi: 10.1016/j.chaos.2019.07.002

Crossref Full Text | Google Scholar

16. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Different Appl. (2015) 1:73–85. doi: 10.12785/pfda/010201

Crossref Full Text | Google Scholar

17. Fatmawati Khan MA, Alfiniyah C, Alzahrani E. Analysis of dengue model with fractal-fractional Caputo–Fabrizio operator. Adv. Diff. Equat. (2020) 2020:422. doi: 10.1186/s13662-020-02881-w

Crossref Full Text | Google Scholar

18. Boulaaras S, Kan R. Dynamical analysis of the transmission of dengue fever via caputo – fabrizio fractional derivative. Chaos, Solitons Fractals. (2022) 2022:100072. doi: 10.1016/j.csfx.2022.100072

Crossref Full Text | Google Scholar

19. Sanusi W, Badwi N, Zaki A, Sidjara S, Sari N, Pratama MI, et al. Analysis and simulation of SIRS model for dengue fever transmission in South Sulawesi, Indonesia. J Appl Mathem. (2021) 2021:1–8. doi: 10.1155/2021/2918080

Crossref Full Text | Google Scholar

20. Ahmad S, Javeed S, Ahmad H, Khushi J, Elagan SK, Khames A. Analysis numerical solution of novel fractional model for dengue. Results Physics. (2021) 28:104669. doi: 10.1016/j.rinp.2021.104669

Crossref Full Text | Google Scholar

21. Nur W, Rachman H, Abdal NM, Abdy M, Side S. SIR model analysis for transmission of dengue fever disease with climate factors using lyapunov function. J Phys. . (2018) 1028:012117. doi: 10.1088/1742-6596/1028/1/012117

Crossref Full Text | Google Scholar

22. Khan MA. Dengue infection modeling and its optimal control analysis in East Java, Indonesia. Heliyon. (2021) 7:1. doi: 10.1016/j.heliyon.2021.e06023

PubMed Abstract | Crossref Full Text | Google Scholar

23. Bonyah E, Juga ML, Chukwu CW. A fractional order dengue fever model in the context of protected travelers. Alexandria Eng J. (2022) 61:927–36. doi: 10.1016/j.aej.2021.04.070

Crossref Full Text | Google Scholar

24. Khan FM, Khan ZU, Lv YP, Yusuf A, Din A. Investigating of fractional order dengue epidemic model with ABC operator. Results Physics. (2021) 24:104075. doi: 10.1016/j.rinp.2021.104075

Crossref Full Text | Google Scholar

25. Agarwal P, Singh R, ul Rehman A. Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme. Chaos, Solitons and Fractals. (2021) 143:110564. doi: 10.1016/j.chaos.2020.110564

Crossref Full Text | Google Scholar

26. Anggriani N, Supriatna AK, Soewono E. A critical protection level derived from dengue infection mathematical model considering asymptomatic and symptomatic classes. J Phys. (2013) 423:012056. doi: 10.1088/1742-6596/423/1/012056

Crossref Full Text | Google Scholar

27. Jan R, Khan MA, Gómez-Aguilar JF. Asymptomatic carriers in transmission dynamics of dengue with control interventions. Optimal Cont Appl Meth. (2020) 41:430–47. doi: 10.1002/oca.2551

Crossref Full Text | Google Scholar

28. Vijayalakshmi GM, Ariyanatchi M. Adams–Bashforth Moulton numerical approach on dengue fractional atangana baleanu caputo model and stability analysis. Int J Appl Comput Mathem. (2024) 10:32. doi: 10.1007/s40819-023-01652-x

Crossref Full Text | Google Scholar

Keywords: dengue fractional-order mathematical modeling, Atangana-Baleanu operator, Lyapunov stability, basic reproduction value, optimal control, Adams-Bashforth method

Citation: Vijayalakshmi GM, Ariyanatchi M, Cepova L and Karthik K (2024) Advanced optimal control approaches for immune boosting and clinical treatment to enhance dengue viremia models using ABC fractional-order analysis. Front. Public Health 12:1398325. doi: 10.3389/fpubh.2024.1398325

Received: 09 March 2024; Accepted: 17 September 2024;
Published: 21 October 2024.

Edited by:

Jiaying Li, The University of Queensland, Australia

Reviewed by:

Soufiane Bentout, Centre Universitaire Ain Temouchent, Algeria
Suani Tavares Rubim De Pinho, Federal University of Bahia (UFBA), Brazil

Copyright © 2024 Vijayalakshmi, Ariyanatchi, Cepova and Karthik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Lenka Cepova, lenka.cepova@vsb.cz; Krishnasamy Karthik, karthikmeed@gmail.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.