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Background: This paper asks whether Dynamic Causal modelling (DCM) can 
predict the long-term clinical impact of the COVID-19 epidemic. DCMs are 
designed to continually assimilate data and modify model parameters, such as 
transmissibility of the virus, changes in social distancing and vaccine coverage—
to accommodate changes in population dynamics and virus behavior. But as a 
novel way to model epidemics do they produce valid predictions? We presented 
DCM predictions 12  months ago, which suggested an increase in viral 
transmission was accompanied by a reduction in pathogenicity. These changes 
provided plausible reasons why the model underestimated deaths, hospital 
admissions and acute-post COVID-19 syndrome by 20%. A further 12-month 
validation exercise could help to assess how useful such predictions are.

Methods: we compared DCM predictions—made in October 2022—with actual 
outcomes over the 12-months to October 2023. The model was then used to 
identify changes in COVID-19 transmissibility and the sociobehavioral responses 
that may explain discrepancies between predictions and outcomes over this 
period. The model was then used to predict future trends in infections, long-
COVID, hospital admissions and deaths over 12-months to October 2024, as a 
prelude to future tests of predictive validity.

Findings: Unlike the previous predictions—which were an underestimate—
the predictions made in October 2022 overestimated incidence, death and 
admission rates. This overestimation appears to have been caused by reduced 
infectivity of new variants, less movement of people and a higher persistence of 
immunity following natural infection and vaccination.

Interpretation: despite an expressive (generative) model, with time-dependent 
epidemiological and sociobehavioral parameters, the model overestimated 
morbidity and mortality. Effectively, the model failed to accommodate the “law 
of declining virulence” over a timescale of years. This speaks to a fundamental 
issue in long-term forecasting: how to model decreases in virulence over 
a timescale of years? A potential answer may be available in a year when the 
predictions for 2024—under a model with slowly accumulating T-cell like 
immunity—can be assessed against actual outcomes.
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Background

Dynamic causal modelling (DCM) stands apart from most 
modelling in epidemiology by predicting mitigated outcomes and 
quantifying the uncertainty associated with those outcomes (1–3). 
This contrasts with quantitative epidemiological forecasts that do not 
consider the effect of prevalence on sociobehavioral responses. 
Usually, epidemiological projections are over few weeks—and rest 
upon fitting curves to the recent trajectory of various data; e.g., (4). 
DCM considers what is most likely to happen based upon a generative 
model that best explains all the data available. This mandates a model 
of sociobehavioral responses that mitigate viral transmission, such as 
social distancing, lockdown, testing and tracing, etc. In turn, this 
requires a detailed consideration of how various sorts of data are 
generated. For example, it has to model fluctuations in testing capacity 
and sampling bias due to people self-selecting when symptomatic. The 
advantage of this kind of modelling is that any data generated by the 
model can be used to inform the model parameters that underwrite 
fluctuations in latent states, such as the prevalence of infection. Latent 
states refer to those states of the population that cannot be estimated 
directly and have to be inferred from observable data.

In October 2022, the predictions carried out 12 months earlier 
using a Dynamic Causal model were assessed and found to 
underestimate the waves of new COVID-19 infections in the period 
October 2021 to October 2022 by 43%, deaths by 20%, tests by 24%, 
hospital admissions by 31% and long COVID by 21% (5). This method 
of modelling besides predicting health outcomes can also estimate 
changing characteristics of the epidemic, such as the properties of 
viral transmission, immunity induced by vaccine or infection, and the 
propensity to leave home thereby increasing the risk of catching the 
infection. We concluded that the underestimation of predictions could 
be explained by the arrival of the Omicron variants and the changes 
in public health policies in the UK (6–8).

This paper is a sequel to the previous paper which, besides seeking 
to validate the previous 12-month predictions, makes predictions to 
October 2023. It sets out to assess the underlying properties of the 
epidemic during that period from October 2022 to October 2023. It 
also seeks to predict what will happen in the 12 months to October 
2024 assuming the current properties of the epidemic remain as they 
are in October 2023. We take the opportunity to provide predictions 
under priors based upon recent empirical estimates of latent, 
incubation and infectious periods. In 2024, the accuracy of predictions 
should speak to the usefulness of constraining parameter estimates 
with informative (empirical) priors of this sort.

This article can be read as a technical report, following up on 
previous reports, in which certain predictions were made. 
We anticipate a follow-up report evaluating the predictions made in 
this article over the forthcoming year, which will also provide an 
overall synthesis of long-term forecasting with dynamic causal 
modelling. This report provides the opportunity to compare long-
term forecasts with what actually happened over timescales of years. 
We therefore take the opportunity to compare the predictions and 
actual outcomes quantitatively. Crucially, this comparison is in the 
latent state space of the causes of epidemiological (and behavioral) 
measurements. In other words, because we are using a generative or 
forward model of the epidemic, we  can revisit the predicted 
fluctuations in time-dependent epidemiological and behavioral 
parameters in the light of post-hoc estimates using the same model. This 

effectively identifies where prior assumptions about key time-
dependent parameters were not endorsed by empirical outcomes. This 
may be useful for future modelling initiatives along these lines.

Methods

Dynamic causal models

The dynamic causal model (DCM) used in this research has been 
continually updated with data as the epidemic has unfolded. It is 
designed to allow modification of model parameters, such as 
transmissibility of the virus, changes in social distancing, and vaccine 
coverage—to accommodate changes in population dynamics and virus 
behavior. A recent model (26th September 2023) was used to explore 
the effect of changing transmission of the various Omicron variants and 
the likely seasonal effect of the coming winter. One modification was 
tightening the constraints on changes in antibody immunity over time. 
The potential benefit of a successful Find, Test, Trace, Isolate and 
Support scheme was also incorporated into the model.

General and specific features of DCMs
The general and specific features of Dynamic Causal Models have 

been described in our previous publication (9). Since October 2022 
our DCM COVID-19 model has been updated 20 times with the 
recent update on 26th September 2023 (10).

Data sources and assumptions

16 of the 24 data sources used in the model and in our previous 
report have been discontinued (Supplementary Table S1):

 • UKHSA COVID-19 data dashboard (11)
 o Deaths within 28 days of COVID-19 infection – June 2023
 o Critical care bed admissions – May 2023
 o Hospital occupancy of COVID-19 cases – May 2023
 o COVID-19 antibody tests – October 2022

 • Office of National Statistics (12)
 o Deaths by age – July 2023
 o Vaccinations by age – July 2023

 • UK Government dashboard - Mobility – April 2022
 • Google mobility Report (13)– October 2022
 • IHME estimate of Incidence (confirmed and non-confirmed 

cases) – April 2023 (14)

The UK Government COVID-19 dashboard still provides eight 
key input variables such as confirmed cases, hospital admissions, 
certified deaths, tests and vaccine coverage (11). The Office of National 
Statistics (ONS) discontinued the Coronavirus (COVID-19) infection 
survey in March 2023 (15) which had provided the best estimates of 
incidence using routine antibody tests and symptom questionnaires 
on a regular basis to a random population sample.

The trend in the use of non-pharmaceutical interventions by the 
UK government is measured using the Oxford Tracker stringency index 
(7). The incidence of long COVID is calculated using the findings of a 
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global meta-analysis of post-acute COVID-19 syndrome (with defined 
clusters of self-reported symptoms occurring 3 months after initial 
infection) which found the risk of long COVID following symptoms in 
the community is 7.9%, in hospital admissions is 27.9% and ARDS 
(acute respiratory distress syndrome) is 41.4% (16). The image of the 
proportion of variants in circulation used in Figures K-T is taken from 
Our World in Data (17) which uses data sourced from Gisaid (18).

For the predictions to October 2024, it is assumed that mitigation 
efforts such as improved ventilation in schools and workplaces will not 
take place, that lockdown will not be re-imposed, and that no new more 
virulent variants will arrive.

Model priors

To predict outcomes over the next year, the model was run using 
the latest available data and prior estimates used by the DCM dashboard 
(19). To address the predictive validity of empirical priors we ran the 
model to furnish predictions with changes to the prior estimates of the 
model parameters, where recent research suggests appropriate values. 
These empirical priors were as follows: prior time constant for the latent 
period is 5.5 days and for the incubation period is 6.5 days in line with 
the results of a recent meta-analysis (20). The infectious period is given 
a prior time constant of 4.3 days in line with a recent paper (21), Table 1 
[mean growth phase 1.6 days; mean decline phase 2.7 days]. 
Supplementary Table S2 provides a comparison of the priors that 
maximize model evidence and the new (empirical) priors.

For completeness, three scenarios were modelled to identify the 
likely effect of improving the Find Test Trace Isolate Support (FTTIS) 
system from a baseline of 25% effective to 40 and 60% effective.

Findings

Comparing projected with actual 
COVID-19 deaths, cases, tests, hospital 
admissions and incidence of long COVID

Last year’s projections overestimated incidence three-fold, 
confirmed cases two-fold, deaths and tests by 1.4 times, hospital 

admissions by 2.2 times and long COVID by 2.7 times (Table 1). 
The actual estimates of incidence and long COVID are only 
available for the first half of the year but the overestimates will still 
be substantial.

The reasons for the overestimations are found in the following 
two sets of graphics, which compare various outcome and 
parameters of model results made in October 2022 with and 
without knowledge of the course of the epidemic over the recent 
12-month period to October 2023 (Figures 1–5). In other words, 
we were able to compare the time course of key epidemiological 
parameters estimated with and without the data covering that 
period (from October 2022 until October 2023). The discrepancy 
between these predicted and post-dictive estimates provides one 
account of the overestimates above.

The key overestimate was the projected large spike of infections 
over the winter period of 2022/2023 which did not materialize 
(Figure  1, top graph). Instead, we  had continuous spikes of 
infection at lower numbers than in the previous year (Figure 1, 
bottom graph). The winter wave was predicted to be accompanied 
by large numbers of deaths and hospital admissions which did not 
materialize (Figures 2–3). In short, the predicted winter wave was 
much greater than what transpired, partly due to a projected high 
level of mobility (i.e., contact rates) (Figure  4) and despite a 
sustained level of immunity (Figure 5).

To understand the overestimates, one can look at the trajectory 
of the time-dependent parameters used for both predictions 
(Figures 6–10). The post-hoc or post-dictive estimates showed a 
tiny reduction but starting at a much longer starting point of 4.4 as 
compared to 2.8 days in the latent period (Figure 6). The incubation 
period, however, was longer than originally anticipated, falling not 
to 1.94 days but only to 4.6 days from a starting point of 5.1 as 
compared to 2.1 days (Figure  7). Transmission strength had 
increased from each infected person infecting 1 in 3 contacts to 
infections to infecting 80% of contacts (Figure 8). What may also 
be key is the change in expected antibody persistence, falling in the 
original from 197 to 159 days but assumed to remain constant in 
the late model with a posterior prior value of 105 days (Figure 9). 
Another key difference is the less than expected rise in the 
proportion of people leaving their homes, for example with only 
30% of the older adult leaving home as compared to 60% in the 

TABLE 1 Cumulative numbers of COVID-19 cases, deaths, tests, hospital admissions and post COVID-19 Syndrome – 1st February 2020 – 1st October 
2023 and 12  month projected numbers for 1st October 2023–2024 – UK.

Scenario assuming 
FTTIS is 25% effective

DCM 2022 projection Actual Data source DCM 2023 projection

Cumulative totals from 1st 

February 2020 to

1st October 2023 1st October 2023 1st October 2023 to 1st October 

2024

Estimated incidence 485,603,813 131,242,140 IHME - 1 Apr 2023 40,692,662

Confirmed cases by PCR and 

LFT 53,409,837 24,743,787 Our World in Data - 30 Sep 2023 524,351

Deaths within 28 days of a 

positive PCR test 330,957 229,765 Our World in Data - 30 Sep 2023 24,100

Tests (both PCR and LFD) 821,181,901 602,512,524 UK Covid-19 dashboard - 30 Sep 2023 14,080,675

Hospital admissions 1,867,580 862,553 UK Covid-19 dashboard - 30 Sep 2023 175,303

Post COVID-19 Syndrome 4,726,602 1,734,000 ONS Infection survey - 30 Mar 2023 3,139,699
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earlier model (Figure  10). Unfortunately, the empirical data 
stopped at the start of the 12-months under review so we cannot 
be sure of the actual level of movement. By March 2023 18% of 
people were still wearing face masks outside and 11% in public 
transport (22) and 14% of adults avoided contact with vulnerable 
people, so it is likely that mobility increased but did not return to 
pre-pandemic levels.

Future predictions

For the period October 2023 to October 2024 the model was used 
to predict the cumulative effect of the epidemic on case numbers, 
deaths, tests, hospital admissions and long COVID (Table  1 and 
Figures 1–3). The predictions using empirical priors suggest a wave 
this coming winter but with few deaths and tests but still plenty of 

FIGURE 1

Epidemic curves of COVID-19 incidence from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
can estimate incidence including cases not tested; each figure offers three projections: blue if the contact tracing system remains at 24% effective, 
green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% 
credible intervals. Interpretation: The predictions with October 2022 priors are more than double the predictions using empirical priors in October 
2023.
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hospital admissions and long COVID patients. Under the empirical 
priors COVID-19 cases will fall but still over 40 million cases and 
over 3 million long-COVID cases will occur in next the 12-month 
period. The effect of a more efficient Test and Trace system would 
have little influence in reducing cases using either set of priors 
(Figures 2, 3).

Discussion

The overestimates of the 12-month projections to October 
2023 seem to relate to better retained immunity from previous 

infections and vaccines at the same time as a reduction in the 
trend of the new variants becoming more infectious. The reason 
the predicted large winter wave did not occur probably relates to 
these factors plus a more than anticipated caution by individuals 
in leaving home (i.e., exposing themselves to higher transmission 
risk). We  have no way of assessing how many infections did 
actually occur because the ONS infection study was stopped and 
estimates from other models were discontinued. Tests became 
infrequent and not freely available, but many particularly older 
adult people still observed isolation periods when thought to 
be  infected despite pressure to ignore such practices and the 
removal of legal sanctions in February 2022. The year also saw 

FIGURE 2

Epidemic curves of COVID-19 mortality from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
can estimate projections of daily mortality certified as occurring within 28 days of a positive COVID-19 test; actual data in black is shown up till 16 June 
2023—the last day of available data; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it 
improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible 
intervals. Interpretation: The model is able to ape the empirical mortality series closely; the model with empirical priors offers a prediction which is half 
the 2022 estimates in the Oct 22 to Oct 23 period.
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FIGURE 3

Epidemic curves of COVID-19 hospital admissions from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The 
model estimates number of hospital admissions; actual data in black; each figure offers three projections: blue if the contact tracing system remains at 
24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom 
graph: CIs, 90% credible intervals. Interpretation: The 2022 estimates follow the available actual data closely until August 2022 and predicted a much 
larger admission rate than what occurred later. The 2023 predictions with up-to-date priors got the admission rate more or less right.
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antiviral therapies improve associated with a drop in 
case fatalities.

Finally, we have specified predictions for the upcoming year, until 
October 2024 based on empirical priors over the successive periods of 
infection. It will be interesting to see whether these empirical priors 
improve the model’s predictive validity.

In the next of these technical reports, we will use the current 
and previous reports as documentary evidence of predictions to 
assess the predictive accuracy of dynamic causal modelling over 

a forecasting timescale of weeks, months and years. We anticipate 
doing this by adopting the final structure of the generative model 
but estimating epidemiological and behavioral parameters from 
limited timeseries—up until a certain point in time—and 
assessing the posterior predictive accuracy at a series of points in 
the future, as the pandemic evolved. This may provide a useful 
reference for future pandemic modelling that leverages the 
unprecedented amount of data and insights generated by the 
COVID pandemic.

FIGURE 4

Epidemic curves of COVID-19 mobility from Jan 2020 – UK estimated by a DCM on two occasions (October 2022 and October 2023). The model 
estimates the number of people leaving home each day; actual data in black taken from Google Global Mobility Report; the top figure offers three 
projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to 40% and red to 60% from 1st October 
2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible intervals. Interpretation: The model is able to ape the actual data 
with exceptions in Dec 2021. The empirical 2023 priors model is able to moderate the swings in estimates seen in the model using the 2022 priors.
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FIGURE 5

Epidemic curves of population immunity to COVID-19 from January 2020 – UK estimated by a DCM on two occasions (October 2022 and October 
2023). The model estimate of population immunity to COVID-19 (% of population) including that induced by infection, natural resistance and 
immunization; each figure offers three projections: blue if the contact tracing system remains at 24% effective, green if it improves effectiveness to 
40% and red to 60% from 1st October 2022 in the top graph and 1st October 2023 in the bottom graph: CIs, 90% credible intervals. Interpretation: 
Both models share similar estimates of population immunity. Neither have been able to take into account the probable declining virulence over years 
found in pandemics with novel viruses.
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Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and 

accession number(s) can be  found at: https://www.fil.ion.ucl.
ac.uk/spm/covid-19/. The figures in Figure 1 can be reproduced 
using annotated (MATLAB/Octave) code that is available as part 
of the free and open source academic software SPM (23). The 

FIGURE 6

Changing estimates of latent period of COVID-19 infection in relation to the emergence of new variants and changes in response to public health 
policies: UK February 2020 to October 2023. Latent period (between day infected and day infectious) is measured as time constant for all age groups 
combined; prior in top graph of 3 days with initial model estimate of 2.8 days (infected period - Supplementary Table S2) dropping to 2.64 by October 
2023; prior in the bottom graph of 5.5 days with initial model estimate of 4.36 dropping to 3.9 by November 2023; stringency index dropping from 
80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in 
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The variants have evolved to increase infectivity by 
reducing the latent period between the day infected and the day infectious. This has occurred in the both models whatever the original prior 
assumption used.
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routines are called by a demonstration script that can be invoked 
by DEM_COVID, DEM_COVID_X, DEM_COVID_T, DEM_
COVID_I or DEM_COVID_LTLA at the MATLAB prompt. At 
the time of writing, these routines are available in the 
development version of the next SPM release. An archive  
of the relevant source code for each publication is  
available from figshare (https://figshare.com/articles/

Dynamic_Causal_Modelling_of_COVID-19/12174006). The 
remaining results in this paper can be  reproduced using  
modified scripts found at https://www.dropbox.com/scl/fo/
zyv10xs8sn9ueuw7mhkis/h?rlkey=ewxlffkdiki89yzgjw6tz355
g&dl=0. The routine data used in the manuscripts are available 
from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University, 

FIGURE 7

Changing estimates of incubation period of COVID-19 infection in relation to the emergence of new variants and changes in response to 
public health policies: UK February 2020 to October 2023. Incubation period (between day infected and start of symptoms) is measured as 
time constant for all age groups combined; prior in top graph of 4 days with initial model estimate of 2.06 days (asymptomatic period - 
Supplementary Table S2) dropping to 1.94 by October 2023; empirical prior in the bottom graph of 6.5 days with initial model estimate of 
5.06 dropping to 4.6 by November 2023; stringency index dropping from 80% in March 2020 to 5% by December 2021; proportion of variant 
in circulation as backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our 
World in Data). Interpretation: As with the latent period the incubation period has shrunk in both models indicating the evolution of the 
variants which became more infectious.
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Coronavirus (COVID-19) UK Historical Data by Tom White and 
GOV.UK Coronavirus (COVID-19) in the UK.
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FIGURE 8

Changing estimates of transmission strength of COVID-19 infection in relation to the emergence of. Transmission strength is measured as the 
secondary attack rate; prior value of 0.3 (i.e, an infected person infects 1 in 3 contacts) which rises with the new variants to 0.7 (i.e. an infected person 
infects 70% of contacts); top graph combines all ages, bottom graph estimates transmission strength for each age group; stringency index dropping 
from 80% in March 2020 to 5% by December 2021; proportion of variant in circulation as backdrop showing variants from the original Wuhan variant in 
2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: Despite the different prior assumptions in the two figures 
the increase in transmission strength is evident in both models.
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FIGURE 9

Changing estimates of duration of antibody immunity induced by COVID-19 infection and vaccine in days in relation to the emergence of 
new variants and changes in response to public health policies: UK February 2020 to October 2023. Duration of antibody immunity induced 
by COVID-19 infection and vaccine measured as time constant for all age groups combined in top graph and by age group in bottom graph; 
with initial model estimate of 196 days falling to 160 days by October 2023 in top graph; model estimates for each age group in bottom 
graph maintained at those values throughout the period; proportion of variant in circulation as backdrop showing variants from the original 
Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data). Interpretation: The model used in 2022 
assumed the possible time related change in the antibody immunity parameter whereas the 2023 model assumes no change. Further 
empirical data will be required to understand the changes in antibody immunity over time.

https://doi.org/10.3389/fpubh.2024.1398297
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bowie and Friston 10.3389/fpubh.2024.1398297

Frontiers in Public Health 13 frontiersin.org

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2024.1398297/
full#supplementary-material

FIGURE 10

Changing estimates of the proportion of people leaving home each day in relation to the emergence of new variants and changes in response to 
public health policies: UK February 2020 to October 2023. The proportion of people leaving home each day for each age group; for example for those 
aged 70 years and above the top graph shows an estimate of 66% leaving home prior to the epidemic falling to 5% at first lockdown and rising slowly 
to 60% by October 2023; in the bottom graph the initial estimate for the same age group was 23% leaving home falling to 0% at the first lockdown 
rising to 32% by October 2023; stringency index dropping from 80% in March 2020 to 5% by December 202; proportion of variant in circulation as 
backdrop showing variants from the original Wuhan variant in 2020 to Omicron strains more recently (reproduced from Our World in Data). 
Interpretation: The 2023 predictions estimate a much less mobile population than the 2022 model. This could partly explain the overestimate of 
infections identified in the earlier model.
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