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Objective: This study aims to explore the association between outdoor artificial 
light at night (ALAN) exposure and gestational diabetes mellitus (GDM).

Methods: This study is a retrospective case–control study. According with 
quantiles, ALAN has been classified into three categories (Q1-Q3). GDM was 
diagnosed through oral glucose tolerance tests. Conditional logistic regression 
models were used to evaluate the association between ALAN exposure and 
GDM risk. The odds ratio (OR) with 95% confidence interval (CI) was used to 
assess the association. Restricted cubic spline analysis (RCS) was utilized to 
investigate the no liner association between ALAN and GDM.

Results: A total of 5,720 participants were included, comprising 1,430 individuals 
with GDM and 4,290 matched controls. Pregnant women exposed to higher levels 
of ALAN during the first trimester exhibited an elevated risk of GDM compared to 
those with lower exposure levels (Q2 OR = 1.39, 95% CI 1.20–1.63, p < 0.001); (Q3 
OR = 1.70, 95% CI 1.44–2.00, p < 0.001). Similarly, elevated ALAN exposure during 
the second trimester also conferred an increased risk of GDM (second trimester: 
Q2 OR = 1.70, 95% CI 1.45–1.98, p < 0.001; Q3 OR = 2.08, 95% CI 1.77–2.44, p < 0.001). 
RCS showed a nonlinear association between ALAN exposure and GDM risk in 
second trimester pregnancy, with a threshold value of 4.235.

Conclusion: Outdoor ALAN exposure during pregnancy is associated with an 
increased risk of GDM.
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1 Introduction

Exposure to artificial light at night (ALAN) has emerged as a progressively ubiquitous 
environmental hazard within contemporary society (1). Over the past several decades, 
urbanization and shifts in modern lifestyle have led to a continuous escalation of ALAN in 
our daily lives (2). While ALAN offers convenience and safety, it also brings forth an array of 
potential health concerns (3).
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It is worth noting that recent research has employed satellite remote 
sensing data to validate the correlations between ALAN and a range of 
human health issues, including obesity (4), metabolic syndrome (5), 
sleep disorder (6, 7), and cancer (8). Furthermore, emerging evidence 
suggests an association between ALAN and the risk of type 2 diabetes 
(Minjee (9–11)). However, the relationship between outdoor ALAN 
exposure and gestational diabetes mellitus (GDM) remains 
poorly understood.

The mechanisms through which ALAN impacts human health 
remain unclear; however, research indicates that ALAN can disrupt 
circadian rhythms in humans and other organisms, thereby influencing 
various physiological processes and behavioral patterns (12, 13). 
Exposure to ALAN may even lead to suppressed secretion of melatonin, 
a hormone that plays a crucial role in regulating sleep and other 
physiological functions (14). Furthermore, ALAN may impact the 
functioning of other endocrine systems, such as the secretion of adrenal 
corticosteroids and insulin regulation (15).

GDM is a condition characterized by abnormal blood glucose levels 
during pregnancy (16). Reports indicate that the prevalence of GDM 
varies across different countries and regions, with a notably higher 
incidence of 14.8% reported in China, making it a noteworthy public 
health concern in the country (17). This increased prevalence can 
primarily be attributed to behavioral and environmental risk factors 
(18). For mothers, having GDM can lead to heightened risks of 
pregnancy complications such as hypertension (19) and preterm birth 
(20), along with an elevated risk of developing type 2 diabetes later in 
life (21). Additionally, GDM can have enduring consequences for the 
newborn, including neonatal cardiovascular health (22) and respiratory 
distress syndrome (23). Consequently, the identification of potential risk 
factors for gestational diabetes is of paramount importance in mitigating 
the risks posed to both mothers and their offspring.

Pregnant women constitute a unique population group, as they are 
more susceptible to the influence of environmental factors during 
pregnancy due to hormonal effects (24). Current research suggests that 
exposure to ALAN may have adverse effects on fetal size and the 
metabolism of offspring (25, 26). Hence, this study postulates that 
ALAN among pregnant women may is the risk of GDM through 
alterations in circadian rhythms and metabolism. The primary objective 
of this study is to investigate the association between outdoor ALAN 
exposure and gestational diabetes, aiming to address existing knowledge 
gaps and offer pertinent public health recommendations.

2 Materials and methods

2.1 Study population

This retrospective case–control study was conducted at the 
China-Japan Friendship Hospital. The geographic distribution of 

the study participants is illustrated in Figure 1. Participants were 
selected based on specific inclusion criteria, which included: (1) 
residence in Beijing; (2) delivery at the China-Japan Friendship 
Hospital; (3) maternal age ≥ 18 years; (4) singleton pregnancies; (5) 
live-born infants. Exclusion criteria encompassed: (1) missing 
residential address (n = 1,122); (2) presence of complications 
during pregnancy, such as gestational hypertension, placental 
abruption, etc. (n = 320); (3) missing information on age, delivery 
date, last menstrual period (LMP) date, and other related data 
(n = 670). A 1:3 propensity score matching was performed based 
on nation and offspring sex to select the control group. The final 
study comprised 5,720 participants, and the workflow is depicted 
in Figure 2.

The retrospective case–control study design precluded the 
acquisition of informed consent from the participants. Nevertheless, 
this approach aligns with the ethical review approved by the Ethics 
Committee of the China-Japan Friendship Hospital (Ethics Review 
Number: 2023-KY-137), which acknowledges the impracticality of 
obtaining informed consent in retrospective research studies.

2.2 Assessment of outdoor ALAN

In this study, ALAN measurements were obtained using the 
Suomi National Polar-Orbiting Partnership Visible Infrared Imaging 
Radiometer Suite (NPP-VIIRS), which offers superior spatial 
resolution, enhanced temporal resolution, an extended spectral range, 
and advanced calibration and correction when compared to the 
Operational Linescan System of Defense Meteorological Satellite 
Program (OLS-DMSP) (27). Commencing in April 2012, NPP-VIIRS 
captures data within the wavelength range of 500 nm to 900 nm, with 
a spatial resolution of 500 m × 500 m at the Equator (28). Monthly 
NPP-VIIRS nighttime light data for the period from 2013 to 2020 were 
obtained from the Earth Observation Group.1 The unit of 
measurement is nanowatts per square centimeter per steradian (nW/
cm2/sr), which quantifies the radiative intensity per unit area, 
accounting for solid angles in all directions.

2.3 Outcomes and covariates

In this study, we  directly acquired the diagnosis of GDM in 
participants from electronic health records. This diagnosis was based 
on the results of the 75 g oral glucose tolerance test (75 g OGTT) 
conducted on participants between gestational weeks 24–28. 
Participants were diagnosed with GDM if they met any of the 
following diagnostic criteria: fasting blood glucose level ≥ 5.1 mmol/L 
(92 mg/dL); 1-h blood glucose level ≥ 10.0 mmol/L (180 mg/dL); 2-h 
blood glucose level ≥ 8.5 mmol/L (153 mg/dL) (29). This study 
concurrently collected data on fetal sex and birth weight. Additionally, 
information on the following covariates was gathered: maternal race 
(Han, non-Han), age (years), parity (primiparous, multiparous), 
gravidity (1, 2, >2 times), pre-pregnancy body mass index (BMI, kg/
m2), and conception season (Spring, Summer, Autumn, and Winter).

1 https://eogdata.mines.edu/

Abbreviations: ALAN, artificial light at night; GDM, gestational diabetes mellitus; 

CI, confidence interval; OR, odds ratio; OLS-DMSP, Operational Linescan System 

of Defense Meteorological Satellite Program; NPP-VIIRS, Suomi National Polar-

Orbiting Partnership Visible Infrared Imaging Radiometer Suite; PM10, ambient 

inhalable particulate matter; PM2.5, ambient fine particulate matter; CHAP, China 

High Air Pollutants; NDVI, normalized difference vegetation index; RMSE, root 

mean square error; R2, coefficient of determination.
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FIGURE 1

Geographical distribution of participants in Beijing. ALAN: artificial light at night; Red dots represent GDMs, and green dots represent controls. GDM, 
gestational diabetes mellitus.

FIGURE 2

Flowchart of the study. LMP, Last Menstrual Period; GDM, Gestational diabetes mellitus; NDVI, normalized difference vegetation index; PM2.5, ambient 
fine particulate matter; PM10, ambient inhalable particulate matter.
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2.4 Other environmental variables

Given the role of environmental factors in GDM, 
we  incorporated environmental covariates including inhalable 
particulate matter (PM10) and fine particulate matter (PM2.5), as well 
as green space, into the study. The data for PM2.5 and PM10 were 
sourced from the China High-resolution Air Pollutants (CHAP) 
database. PM2.5 and PM10 data were obtained using a spatiotemporal 
extreme random tree model that leveraged model data to fill spatial 
gaps in Moderate Resolution Imaging Spectroradiometer Multi-
Angle Implementation of Atmospheric Correction Aerosol Optical 
Depth satellite products. This approach integrated ground 
observations, atmospheric reanalysis, emissions inventories, and 
other large-scale data sources, generating seamless nationwide 
surface PM2.5 and PM10 data from 2000 to 2021. The ten-fold cross-
validation coefficient of determination (R2) for PM2.5 data was 0.92, 
with a root mean square error (RMSE) of 10.76 μg/m3 (30). For the 
PM10 data, the ten-fold cross-validation yielded an R2 of 0.9 and an 
RMSE of 21.12 μg/m3 (31). The Normalized Difference Vegetation 
Index (NDVI) was employed as a surrogate indicator for residential 
greenness. NDVI is a widely utilized metric in environmental 
research for quantifying the density and health status of vegetation 
in various regions (32). This index ranges from 0 to 1, where higher 
NDVI values indicate denser and healthier vegetation, while lower 
values suggest sparse or stressed vegetation (33). In our study, NDVI 
was estimated based on 16-day composite images from the NASA 
Terra Moderate Resolution Imaging Spectroradiometer satellite.2 
After obtaining annual data for PM2.5, PM10, and NDVI, 
we performed weighting matching for the residential locations of 
pregnant women and computed annual prenatal environmental 
pollution exposures.

2.5 Exposure time window

Participants’ residential addresses were geocoded using Baidu 
Maps.3 Subsequently, we proceeded to estimate the average exposure 
levels during the first and second trimesters of pregnancy to investigate 
potential heterogeneity in the association between ALAN and GDM 
across different exposure windows. These exposure windows 
corresponded to the first and second trimesters of pregnancy, 
corresponding to 3 and 6 months after the last menstrual period, 
respectively.

2.6 Statistical analysis

Continuous variables, normally distributed, are presented as 
mean ± standard deviation, while categorical variables are presented 
as counts (percentages). Differences between groups for continuous 
variables were compared using t-tests or Wilcoxon tests. Differences 
between groups for categorical variables were compared using 
chi-square tests or Fisher’s exact tests.

2 https://ladsweb.modaps.eosdis.nasa.gov

3 https://map.baidu.com

We employed conditional logistic regression to assess the link 
between ALAN exposure and GDM, calculating odds ratios (ORs) 
with 95% confidence intervals (CIs). Initially, we  established an 
unadjusted model, without considering any potential confounding 
factors. Subsequently, we adjusted for potential confounders including 
age, ethnicity, gravidity, parity, pre-pregnancy body mass index, and 
conception season. Covariate selection guided by Directed Acyclic 
Graph Analysis (Supplementary Figure S1). Finally, while controlling 
for potential confounding, we further controlled for PM2.5, PM10, and 
NDVI. Employing Pearson correlation analysis, we identified a strong 
correlation between PM2.5 and PM10 (correlation coefficient = 0.97, 
p < 0.001). To mitigate issues of multicollinearity, principal component 
analysis was utilized to reduce the dimensionality of PM2.5 and PM10, 
incorporating the first principal component (PC1), which accounted 
for 71.65% of the variance, into the final model as a substitute for both 
PM10 and PM2.5.

To investigate the association between exposure to ALAN and 
GDM, restricted cubic spline (RCS) analysis was utilized in this study. 
The analysis was focused on ALAN exposure in first and second 
trimester pregnancy, assessing its nonlinear relationship with the risk 
of GDM. Additionally, we conducted a stratified analysis by infant sex 
to examine potential effect modification and assessed the interaction 
between ALAN and infant sex. The inclusion of interaction terms in 
the model was employed to assess whether fetal sex modifies the effect 
of exposure on the risk of GDM.

All statistical analyses were performed using R (version 4.1.0, 
available at https://www.r-project.org/).

2.7 Sensitivity analyses

This study conducted multiple sensitivity analyses: (1) ALAN per 
SD increase was employed to assess the relationship with GDM 
(Supplementary Tables S1, S2). (2) Evaluation of Han ethnicity 
participants was performed to assess potential influences related to 
ethnicity (Supplementary Table S3). (3) Similar analyses were 
conducted within the primiparous population to assess potential 
differences that might arise from multiple pregnancies 
(Supplementary Table S4). (4) Excluding participants with pre-existing 
diabetes prior to pregnancy (Supplementary Table S5). (5) Using 
linear regression to investigate the effect of ALAN exposure on 
participants’ fasting blood glucose levels (Supplementary Table S6).

3 Results

3.1 Characteristics of the study population

Table 1 provides an overview of the characteristics of pregnant 
women and newborns in the control group (n = 4,290) and GDM 
group (n = 1,430). While there were no significant differences in Han 
Chinese ethnicity between the group, the GDM group had a slightly 
higher mean age (GDM: 31.85 ± 3.96 years; Controls: 30.69 ± 3.41 years, 
p < 0.001). Furthermore, the GDM group showed a higher proportion 
of multiparous women (23.92% compared to 19.91% in the control 
group, p = 0.001). Gravidity distribution also significantly differed 
between the groups (p < 0.001). The distribution of neonatal sex was 
similar, with 51.40% males in the control group and 51.89% males in 
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the GDM group. Additionally, there were slight differences in neonatal 
length (Control: 50.67 ± 2.39 cm; GDM: 50.47 ± 2.51 cm, p = 0.007), 
birth weight (Control: 3302.70 ± 479.89 g; GDM: 3270.36 ± 510.18 g, 
p = 0.030), and gestation duration (Control: 276.77 ± 12.90 days; GDM: 
274.92 ± 33.59 days, p = 0.003) between the groups.

3.2 Distribution of environmental factors in 
different trimesters

Table  2 presents the differences in outdoor ALAN levels 
between the GDM and Control groups. There were no statistically 

significant differences in PM10 levels (Control: 102.85 ± 21.33 μg/
m3; Case: 103.41 ± 20.70 μg/m3, p = 0.391) or PM2.5 levels (Control: 
64.87 ± 17.72 μg/m3; Case: 65.90 ± 17.47 μg/m3, p = 0.054) between 
the two groups. Similarly, the NDVI showed no significant 
difference (Control: 0.32 ± 0.07; Case: 0.31 ± 0.07, p = 0.216). 
However, there were substantial differences in ALAN levels 
between the groups. In the first trimester (T1), ALAN levels were 
significantly higher in the GDM group (27.46 ± 16.86 nW/cm2/sr) 
compared to the Control group (24.42 ± 16.64 nW/cm2/sr, 
p < 0.001). This trend was consistent in the second trimester (T2) 
(Control: 24.69 ± 16.81 nW/cm2/sr; Case: 27.34 ± 16.61 nW/cm2/
sr, p < 0.001).

TABLE 1 Characteristics of pregnant women and newborns.

Variables Controls (n =  4,290) GDM (n =  1,430) p

Han Chinese No 208 (4.85) 79 (5.52) 0.345

Yes 4,082 (95.15) 1,351 (94.48)

Age (years) 30.69 ± 3.41 31.85 ± 3.96 < 0.001

Multipara No 3,436 (80.09) 1,088 (76.08) 0.001

Yes 854 (19.91) 342 (23.92)

Gravidity (times) 1 2,702 (62.98) 817 (57.13) < 0.001

2 1,002 (23.36) 372 (26.01)

>2 586 (13.66) 241 (16.85)

FBG (mmol/L) 4.51 ± 0.50 5.55 ± 0.79 < 0.001

BMI (kg/m2) 20.74 ± 2.65 21.31 ± 3.02 < 0.001

Neonatal sex Male 2,205 (51.40) 742 (51.89) 0.772

Female 2085 (48.60) 688 (48.11)

Neonatal length (cm) 50.67 ± 2.39 50.47 ± 2.51 0.007

Birth weight (g) 3302.70 ± 479.89 3270.36 ± 510.18 0.030

Gestation (days) 276.77 ± 12.90 274.92 ± 33.59 0.003

Conception Season (%) Spring 1,082 (25.22) 383 (26.78) 0.045

Summer 1,149 (26.78) 345 (24.13)

Autumn 904 (21.07) 338 (23.64)

Winter 1,155 (26.92) 364 (25.45)

Values are presented as mean ± standard deviation or count (percentage). GDM, gestational diabetes mellitus; FBG, Fasting Blood Glucose; BMI, Body Mass Index.

TABLE 2 Differences in outdoor ALAN levels between the GDM and control groups.

Variables Control group Case group p

PM10 (μg/m3) 102.85 ± 21.33 103.41 ± 20.70 0.391

PM2.5 (μg/m3) 64.87 ± 17.72 65.90 ± 17.47 0.054

NDVI 0.32 ± 0.07 0.31 ± 0.07 0.216

ALAN T1 (nW/cm2/sr) 24.42 ± 16.64 27.46 ± 16.86 < 0.001

ALAN T2 (nW/cm2/sr) 24.69 ± 16.81 27.34 ± 16.61 < 0.001

ALAN T1 category (%) Q1 1,510 (35.20) 398 (27.83) < 0.001

Q2 1,414 (32.96) 491 (34.34)

Q3 1,366 (31.84) 541 (37.83)

ALAN T2 category (%) Q1 1,499 (34.94) 409 (28.60) < 0.001

Q2 1,432 (33.38) 473 (33.08)

Q3 1,359 (31.68) 548 (38.32)

ALAN, Artificial Light at Night; NDVI, Normalized Difference Vegetation Index; T1, First Trimester; T2, Second; Q1-Q3, Categorized into three groups based on percentiles.
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3.3 Association of outdoor ALAN exposure 
in different trimesters with GDM

In Table 3, we present the results of conditional logistic regression 
models examining the association between outdoor ALAN exposure 
and the risk of GDM across various trimesters (T1 and T2). In the 
initial unadjusted model (Model 1), participants in the second (Q2) 
and third (Q3) quartiles of ALAN exposure exhibited significantly 
elevated odds of developing GDM compared to those in the first 
quartile (Q1) during all trimesters (all p-values <0.001). These results 
remained consistent after accounting for potential confounders. 
Specifically, for the first trimester, the ORs were as follows: Q2 
OR = 1.39 (95%CI 1.20–1.63, p < 0.001), Q3 OR = 1.70 (95%CI 1.44, 
2.00, p < 0.001). In the second trimester, the ORs were: Q2 OR = 1.70 
(95%CI 1.45–1.98, p < 0.001), Q3 OR = 2.08 (95%CI 1.77–2.44, 
p < 0.001). No significant interaction between ALAN exposure and sex 
was observed across all models. Table  4 presents the sex-specific 
associations of ALAN exposure with the risk of GDM across different 
trimesters, along with tests for interaction. ALAN exposure exhibited 
consistent associations with GDM risk across trimesters, particularly 
among females. In our study, RCS analysis showed no significant 
nonlinear relationship between ALAN exposure and GDM risk in first 
trimester pregnancy. However, a significant nonlinear association was 
found in second trimester pregnancy, with a threshold value of 4.235 
(Figure 3).

4 Discussion

To investigate the association between outdoor ALAN exposure 
and GDM, we  conducted a retrospective case–control study. Our 
study found a significant association between exposure to outdoor 
ALAN during pregnancy and an increased risk of GDM after adjusting 
for confounding factors. Furthermore, the association between 
outdoor ALAN and the risk of GDM did not differ between male and 
female infants. Our findings provide evidence supporting the role of 
outdoor ALAN in the risk of GDM among pregnant women.

In recent decades, the impact of ALAN on human health has gained 
global attention. Numerous studies have investigated the associations 
between ALAN exposure and chronic conditions such as cardiovascular 
diseases (34), obesity (35), and mental disorders (36). Recent research 
has suggested that exposure to outdoor ALAN may increase the risk of 
type 2 diabetes mellitus (T2DM) (Minjee (9, 10)). Furthermore, a cross-
sectional study has shown a significant association between long-term 
exposure to higher-intensity outdoor ALAN and an increased risk of 
impaired glucose metabolism (11). Recent studies have elucidated the 
relationship between ALAN and GDM. In the United States, the risk 
associated with GDM has been correlated with pre-sleep exposure to 
light, as measured by wrist-worn activity monitors (37). Consistent with 
our findings, a prospective cohort study in Sichuan Province, China, 
utilizing satellite data to estimate outdoor ALAN exposure, offered a 
broader perspective on environmental exposure (38). Furthermore, a 

TABLE 3 Association of outdoor ALAN exposure with GDM.

OR (95%CI) p P for trend

Model 1

ALAN T1 Q1 ref <0.001

Q2 1.33 (1.15, 1.55) <0.001

Q3 1.54 (1.32, 1.80) <0.001

ALAN T2 Q1 ref <0.001

Q2 1.23 (1.05, 1.43) 0.009

Q3 1.51 (1.30, 1.76) <0.001

Model 2

ALAN T1 Q1 ref <0.001

Q2 1.39 (1.20, 1.61) <0.001

Q3 1.72 (1.47, 2.01) <0.001

ALAN T2 Q1 ref <0.001

Q2 1.57 (1.36, 1.82) <0.001

Q3 1.89 (1.63, 2.20) <0.001

Model 3

ALAN T1 Q1 ref <0.001

Q2 1.39 (1.20, 1.63) <0.001

Q3 1.70 (1.44, 2.00) <0.001

ALAN T2 Q1 ref <0.001

Q2 1.70 (1.45, 1.98) <0.001

Q3 2.08 (1.77, 2.44) <0.001

GDM, gestational diabetes mellitus; ALAN, artificial light at night; T1, First Trimester; T2, Second Trimester; Q1-Q3, Categorized into three groups based on percentiles; OR, Odds ratio; 
95%CI, 95% confidence interval. Model 1: Crude conditional logistic regression model; Model 2: Adjusted for age, ethnicity, gravidity, parity, pre-pregnancy body mass index, and conception 
season; Model 3: Based on model 2, further adjusted for normalized difference vegetation index (NDVI), as well as Principal Component 1 of ambient fine particulate matter (PM2.5) and 
ambient inhalable particulate matter (PM10).

https://doi.org/10.3389/fpubh.2024.1396198
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2024.1396198

Frontiers in Public Health 07 frontiersin.org

study conducted in Hefei City revealed that outdoor ALAN was 
associated with elevated early-pregnancy glucose homeostasis markers, 
yet it did not correlate with GDM risk (39). The variability in these 
findings may be  attributed to differences in study populations and 
geographical locations. Our research, conducted in Beijing, a major 
metropolitan area, underscores the significant public health implications 
of addressing light pollution in densely populated urban environments. 
Moreover, our study surpassed traditional methods by thoroughly 
adjusting for critical environmental variables, including PM2.5, PM10, 
and NDVI, thereby reinforcing the robustness and credibility of 
our findings.

Exploring the critical windows of association between maternal 
ALAN exposure and the risk of GDM is of paramount importance for 
devising targeted intervention measures. The early and mid-stages of 
pregnancy are crucial periods for embryonic and fetal development, 
being particularly susceptible to external environmental influences 
(40). In our study, we observed that pregnant women exposed to 
higher levels of ALAN during the first and second trimesters exhibited 
an increased risk of GDM. However, considering the timing of GDM 
diagnosis (41), the relationship between ALAN exposure during the 
second trimester of pregnancy and GDM may be  subject to 
constraints, necessitating further investigation.

The mechanisms underlying the relationship between ALAN 
exposure during pregnancy and the risk of GDM remain poorly 

understood. Several potential mechanisms may be involved. Firstly, 
ALAN exposure could potentially impact the risk of GDM by 
disrupting the circadian rhythms of pregnant women. Circadian 
rhythm regulation during pregnancy is critical for normal fetal and 
maternal physiological processes (42). ALAN may induce circadian 
rhythm disruption (43), leading to sleep disturbances and reduced 
sleep quality among pregnant women, consequently increasing the risk 
of GDM. Secondly, hormonal changes may play a significant role. 
ALAN exposure may influence hormone levels in pregnant women 
(44), particularly melatonin, a hormone crucial for regulating circadian 
rhythms during pregnancy (45). ALAN exposure might suppress 
melatonin secretion, potentially affecting maternal physiology and 
fetal development negatively. Lastly, ALAN exposure may contribute 
to an elevated risk of GDM by provoking alterations in inflammation 
and immune responses. Animal experiments have demonstrated that 
prolonged illumination can lead to changes in both the immune 
system and inflammatory processes (46). Although these mechanisms 
remain multifaceted and not fully elucidated, further research is 
needed to unravel these intricate pathways. In-depth investigations in 
both laboratory and epidemiological settings will contribute to a better 
understanding of the relationship between ALAN exposure and GDM, 
offering more precise directions for future intervention strategies.

This study has several limitations that warrant discussion. Firstly, in 
our research, we estimated outdoor ALAN exposure during pregnancy 

TABLE 4 Sex-specific associations of ALAN exposure with GDM.

Male Female P for 
interaction

OR (95%CI) p P for 
trend

OR (95%CI) p P for 
trend

Model 1

ALAN T1 Q1 0.100 <0.001

Q2 1.25 (0.98, 1.60) 0.077 1.73 (1.33, 2.27) <0.001 0.137

Q3 1.24 (0.96, 1.60) 0.094 1.86 (1.43, 2.43) <0.001 0.135

ALAN T2 Q1 0.003 0.003

Q2 1.10 (0.86, 1.41) 0.455 1.11 (0.86, 1.44) 0.430 0.673

Q3 1.46 (1.14, 1.87) 0.003 1.47 (1.13, 1.92) 0.004 0.883

Model 2 0.104 0.004

ALAN T1 Q1 1.10 (0.79, 1.53) 0.583 2.08 (1.45, 2.98) <0.001 0.153

Q2 1.34 (0.92, 1.94) 0.122 1.86 (1.27, 2.72) 0.001 0.321

Q3 0.001 0.003

ALAN T2 Q1 1.27 (0.92, 1.74) 0.148 1.48 (1.04, 2.10) 0.028 0.548

Q2 1.75 (1.24, 2.48) 0.001 1.79 (1.23, 2.60) 0.002 0.977

Q3 <0.001

Model 3 0.98 (0.74, 1.29) 0.887 2.51 (1.84, 3.42) <0.001 0.101

ALAN T1 Q1 1.05 (0.79, 1.41) 0.730 2.17 (1.58, 2.98) <0.001 0.127

Q2 0.004 <0.001

Q3 1.22 (0.93, 1.61) 0.149 1.83 (1.35, 2.47) <0.001 0.183

ALAN T2 Q1 1.65 (1.25, 2.19) <0.001 2.44 (1.78, 3.36) <0.001 0.515

Q2 0.135 <0.001

Q3 0.72 (0.47, 1.00) 0.051 1.86 (1.37, 2.52) <0.001 0.221

GDM, gestational diabetes mellitus; ALAN, artificial light at night; T1, First Trimester; T2, Second Trimester; Q1-Q3, Categorized into three groups based on percentiles; OR, Odds ratio; 
95%CI, 95% confidence interval. Model 1: Crude conditional logistic regression model; Model 2: Adjusted for age, ethnicity, gravidity, parity, pre-pregnancy body mass index, and conception 
season; Model 3: Based on model 2, further adjusted for normalized difference vegetation index (NDVI), as well as Principal Component 1 of ambient fine particulate matter (PM2.5) and 
ambient inhalable particulate matter (PM10).
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using high-resolution satellite images. However, we  lacked data on 
indoor light exposure and whether participants used blackout curtains 
during the night, which could potentially lead to exposure 
misclassification. Future studies should consider collecting information 
on both indoor and outdoor light exposure. Secondly, while we adjusted 
for environmental confounders related to GDM, such as environmental 
particulate matter (47) and greenness (48) at the residential area, we did 
not account for other potential confounding factors, such as temperature 
(49), household income and education level. The absence of this 

information needs to be addressed and improved in future research. 
Thirdly, our study adopted a retrospective case–control study design, 
limiting the ability to establish causality between ALAN exposure and 
GDM. Therefore, the relationship between ALAN and GDM needs 
further confirmation through prospective study designs. Fourthly, the 
annual inclusion of study participants was not uniform 
(Supplementary Table S7), which was due to the COVID-19 pandemic. 
Although the ratio of cases to controls remained consistent, this could 
potentially introduce a certain degree of bias. Finally, our single-center 

FIGURE 3

Restricted cubic spline analysis. (A) The association between first-trimester ALAN and GDM; (B) The relationship between second trimester ALAN and 
GDM; ALAN, Artificial Light at Night; GDM, Gestational Diabetes Mellitus.
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study involved participants from the Beijing area with relatively higher 
socioeconomic status. Caution is advised when extending the study 
results to regions with lower economic development. Future research 
should validate these findings in diverse socioeconomic contexts.

Despite these limitations, our study possesses several strengths. 
Firstly, we elucidated the association between ALAN exposure during 
pregnancy and GDM, identifying the critical exposure window for 
this relationship. This finding provides valuable reference for targeted 
intervention measures during the identified exposure window. 
Additionally, we  conducted a series of sensitivity analyses and 
performed stratified analyses by newborn sex to assess the consistency 
and robustness of this relationship.

5 Conclusion

In summary, our study reveals that higher outdoor ALAN 
exposure during pregnancy is associated with an elevated risk of 
GDM. These findings emphasize the need for targeted interventions 
and further research to better understand the mechanisms underlying 
this relationship and mitigate the health risks associated with light 
pollution during pregnancy.
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