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Introduction: Understanding and identifying the immunological markers and

clinical information linked with HIV acquisition is crucial for e�ectively

implementing Pre-Exposure Prophylaxis (PrEP) to prevent HIV acquisition. Prior

analysis on HIV incidence outcomes have predominantly employed proportional

hazards (PH) models, adjusting solely for baseline covariates. Therefore, models

that integrate cytokine biomarkers, particularly as time-varying covariates, are

sorely needed.

Methods: We built a simple model using the Cox PH to investigate the impact of

specific cytokine profiles in predicting the overall HIV incidence. Further, Kaplan-

Meier curves were used to compare HIV incidence rates between the treatment

and placebo groups while assessing the overall treatment e�ectiveness. Utilizing

stepwise regression, we developed a series of Cox PH models to analyze 48

longitudinally measured cytokine profiles. We considered three kinds of e�ects

in the cytokine profile measurements: average, di�erence, and time-dependent

covariate. These e�ects were combined with baseline covariates to explore their

influence on predictors of HIV incidence.

Results: Comparing the predictive performance of the Cox PH models

developed using the AIC metric, model 4 (Cox PH model with time-dependent

cytokine) outperformed the others. The results indicated that the cytokines,

interleukin (IL-2, IL-3, IL-5, IL-10, IL-16, IL-12P70, and IL-17 alpha), stem cell

factor (SCF), beta nerve growth factor (B-NGF), tumor necrosis factor alpha

(TNF-A), interferon (IFN) alpha-2, serum stem cell growth factor (SCG)-beta,

platelet-derived growth factor (PDGF)-BB, granulocyte macrophage colony-

stimulating factor (GM-CSF), tumor necrosis factor-related apoptosis-inducing

ligand (TRAIL), and cutaneous T-cell-attracting chemokine (CTACK) were

significantly associated with HIV incidence. Baseline predictors significantly

associated with HIV incidence when considering cytokine e�ects included: age

of oldest sex partner, age at enrollment, salary, years with a stable partner, sex

partner having any other sex partner, husband’s income, other income source,

age at debut, years lived in Durban, and sex in the last 30 days.

Discussion: Overall, the inclusion of cytokine e�ects enhanced the predictive

performance of the models, and the PrEP group exhibited reduced HIV

incidences compared to the placebo group.
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1 Introduction

HIV continues to be a serious worldwide health concern, with

South Africa having the world’s highest HIV epidemic, with an

estimated 8.45 million people living with HIV (1). The primary

mode of transmission in this endemic setting is heterosexual

intercourse, and women 18–40 years account for more than 60% of

new infections where the young women bear the greatest burden

(2). It is well known that sex workers are at a greater risk of

HIV acquisition (3). Significant effort has been made in South

Africa over the last decade to search for new technologies that

prevent sexually transmitted HIV infections in women such as the

pre-exposure prophylaxis (PrEP) products. Initiatives have been

undertaken to scale up education and access to these products for

example the tenofovir gel an antiretroviral microbicide that can be

applied to the vagina or rectum with intentions of reducing the

acquisition of HIV (4).

The initial stages of HIV infection are characterized by

inflammation and profound immune dysregulation in the gut

mucosa (5, 6) and genital inflammation at this stage also

correlates with an increased plasma viral load (7). Taken together,

inflammation is a key mediator of HIV pathogenesis. The levels of

inflammatory cytokines and chemokines, which signal the presence

of infection and recruit activated immune cells to the mucosa,

are frequently used as biomarkers of inflammation in the female

reproductive tract (FRT) (8). As such, we hypothesize it might

be expected that elevated mucosal cytokines would be correlated

with increased rates of HIV acquisition. The increased levels of

pro-inflammatory cytokine is associated with increased rates of

HIV acquisition (9) and cytokine profile is a strong predictor of

subsequent HIV acquisition. Understanding the interplay between

cytokine biomarkers and HIV incidence by identifying specific

cytokine profiles associated with increased or decreased HIV

susceptibility is crucial for optimizing PrEP strategies.

Cytokines serve a vital role in maintaining immune system

homoeostasis (10), and HIV infection causes dysregulation of the

cytokine profile (11). Changes in the cytokine signature directly

affect HIV disease progression (12), with an intense cytokine

“storm” during acute HIV infection (13). T-helper type 1 (Th1)

cytokines such as interleukin (IL)-2 and antiviral interferon (IFN)-

gamma are generally decreased during HIV infection, whereas T-

helper type 2 (Th2) cytokines such as IL-4, IL-10, pro-inflammatory

cytokines (IL-1, IL-6, IL-8) and tumor necrosis factor (TNF)-

alpha are increased (10). IFN-alpha, IFN-beta, and IL-16 are

HIV-suppressive cytokines that inhibit HIV replication in T cells

while IFN-gamma, IL-4, and granulocyte-macrophage colony-

stimulating factor, for example, have been demonstrated to have

both inhibitory and stimulatory effects on HIV (14).

In clinical research, it is a common phenomenon for covariate

data to be collected longitudinally and for the covariates to change

over time during the follow up period. For example, patients in a

clinical trial to asses the safety and effectiveness of tenofovir gel,

a vaginal microbicide in sexually active women at risk for HIV,

cytokine profiles were measured repeatedly up to infection or until

censorship (4). Inmany instances, while examining the relationship

between time to HIV infection and covariate(s), investigators will

only consider the baseline covariates, leaving out covariates that

change over time hence failing to consider the relation of the

survival outcome as a function of the change of the time dependent

covariates (15). It appears natural and suitable to use time-varying

covariate information in an appropriate statistical model. The

Cox PH model can be used to link survival times with either

fixed covariates whose values remain constant during the follow-

up period or predictor variables that fluctuate over time (16).

The mentioned covariates can be dealt with as a time dependent

covariates into the Cox PH model or incorporated as a derived

longitudinal variables as further elaborated in the Section 2.2.

A previous analysis was conducted by Abdool Karim et al. (4)

and Mansoor et al. (17) to investigate the effectiveness, safety and

adherence in the CAPRISA 004 tenofovir gel microbicide trial.

They used Proportional Hazards (PH) regressionmodel to calculate

the hazard ratios while adjusting for potentially important baseline

covariates (age, site, anal sex history, contraceptive method, HSV-2,

antibody status and condom use). They reported a hazard ratio of

0.63 (CI: 0.42,0.94, p = 0.025). In their analysis they did not include

cytokine profile neither did they report on significant baseline

covariates associated with HIV incidence. Masson et al. (18)

used the same dataset to investigate whether genital inflammation

influenced HIV acquisition in women. Their study selected 12

cytokines for their analysis. They employed conditional logistic

regression and unsupervised hierarchical clustering in their

statistical analysis.

Naranbhai et al. (19) investigated the role of immune activation

in HIV acquisition in the CAPRISA 004 trial. They selected 13

cytokines and used logistic regression and principal component

analysis (PCA) in their statistical analysis. On the other hand,

Ngcobo et al. (20), in their study examining whether pre-

infection plasma cytokine concentrations predicted the rate of

HIV disease progression in the same study cohort, considered

all 48 cytokines. They used linear regression to assess the impact

of each cytokine on viral load (VL) and the CD4:CD8 ratio

in both bivariate and multivariable models, adjusting for age,

contraceptive use, HSV-2 status at baseline, study site, and

study arm at randomization. Ignacio et al. (21) used the Sabes

dataset and LASSO machine learning algorithms to study how

dynamic immune markers predict HIV acquisition and strengthen

associations with sociobehavioral factors related to HIV exposure.

They selected 10 cytokines for their analysis. Other studies (22,

23) that have utilized CAPRISA 004 data set to investigate HIV

progression, did not include time varying cytokine profile as a

covariate in their analysis. To the best of our knowledge, cytokine

profile as a time-varying covariate or as derived covariate has not

been used with baseline covariate in previous studies to identify

significant predictors of HIV incidence.

This study therefore, seeks to investigate the effect of time-

varying cytokine biomarkers in determining significant predictors

of HIV incidence among individuals randomized to PrEP vs.

control exposure. We achieved that by building a series of Cox

PH models that include different forms of the covariates that

change over time and further asses the overall effectiveness of the

tenofovir treatment by comparing the two groups using Kaplan–

Meier estimator and survival curves. The variations in individual

immune responses, particularly in cytokine profiles, may influence

the efficacy of PrEP therefore this research aims to contribute to
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the development of personalized PrEP interventions tailored to

individual immune responses.

2 Materials and methods

2.1 Dataset

The data was accessed from Center for the Aids Programme

of Research in South Africa (CAPRISA 004) (4), a two arm

double blinded randomized trial, placebo and tenofovir group

conducted on HIV negative and sexually active women aged 18–

40 years in South Africa for a period of 30 months; 18 months

Accrual period and 12 months follow up. It was conducted between

May 2007 and March 2010, and the dataset consist of survival

and longitudinal data. The variables considered in this study

were baseline characteristics and longitudinally measured cytokine

profiles as described in the Supplementary Table S1.

2.1.1 Cytokine measurement
Plasma samples and cervicovaginal lavage specimens from

cases and control were collected and stored for assessment. There

were a total of 48 cytokines from 812 (tenofovir group = 405,

placebo group = 407) women with 96 HIV infections (tenofovir

group = 37, placebo = 59). The measurements were taken at

irregular follow up times as shown in Figure 1 where majority of

patients had their cytokine measurements recorded three times

during the course of study. The average interval between the first

and second cytokine measurements was 12 months, while the

interval between subsequent cytokinemeasurements was 6months.

2.1.2 Data pre-processing
The data underwent pre-processing to prepare it for subsequent

analysis. The pre-processing steps involved eliminating variables

with excessive missing values (Figure 2) i.e with more than 50%

missingness and very small frequency percentages for the levels

of some categorical variables. Additionally, in our efforts to

enhance the robustness of our statistical analysis, we appropriately

combined certain levels of categorical variables and renamed the

strings. This step is crucial because a categorical variable with too

many levels can compromise the model’s performance due to small

frequencies in some of the levels (24). Moreover, variables with

only one level fail to positively impact the model due to very low

variation, while levels that rarely occur have minimal chance of

significantly affecting the model fit (25). These adjustments ensure

that our analysis accurately captures the relationships within the

data. Furthermore, Figure 2 demonstrates the completeness of our

dataset, with almost 84.93% of variables containing no missing

information, 10.46%missing income value data, and the remaining

variables displaying other missing patterns.

The data preparation and the statistical analysis was done

using the R version (R-4.3.2). The R code file for this analysis

is available in the Supplementary Table S2. As a result of the

pre-processing step, 24 baseline characteristics and 48 cytokines

covariates were used as initial variables at the start of the analysis.

The categorical variables were summarized using frequency and

percentages depicted in the Supplementary Table S2. The patient

baseline characteristics in relation to HIV status and treatment

group is summarized in Table 1, where the number of years with

stable partner (p = 0.034) and the patients receiving income from

husband (p = 0.026) were significantly associated with HIV status

and treatment group. The statistical analysis was conducted on

complete cases only in two stages; the first is survival analysis

on baseline covariates without the cytokine covariates effects then

survival analysis when including the cytokine covariate effects.

Cytokine variable profiles are time-varying covariates since they

change over time through the follow-up period. Therefore, the

cytokine information was included in three ways; firstly we

averaged all measurements throughout the follow-up time to better

capture their average effects, secondly we took the difference

between the last and first measurement to model the effect of

change and lastly we treated the cytokine as a time-dependent

covariate.

2.2 Statistical methods

Four separate Cox PH models were fitted in an increasing

complexity based on how the cytokine effects are included. Model

1 (Equation 8): Cox regression model with baseline variables

only, model 2 (Equation 9): Cox regression model with baseline

variables plus cytokine effects using the mean value of the cytokine

measurements as covariate, model 3 (Equation 10): Cox regression

model with baseline variables plus cytokine effects using the

difference between the last observed cytokine value and the first

value as covariate in the model and model 4 (Equation 11): Cox

regression model with baseline variables plus time dependent

cytokine effects.

2.2.1 Kaplan–Meier survival curves
The Kaplan–Meier estimator is a non-parametric statistic that

is used to estimate the survival function based on lifetime data (26).

The estimate is frequently used in medical research to examine

recovery rates, likelihood of deaths and whether or not a treatment

was effective. Furthermore, it is used to compare two groups of

subjects, the control group and treatment group (27). The Kaplan–

Meier survival curve is a graphical representation of the survival

function defined as the probability of surviving in a given length of

time while considering time in many small intervals (28).

To estimate the survival function S(t) (the probability that life is

longer than t), we consider survival time ti = t1, t2, ..., tn including

censored observations (ordered by increasing observation) of a

group of n subjects. The proportion of individuals, S(t), who

survive after any follow up time ti is estimated by (Equation 1)

S(t) =
∏

ti<t

ni − di

ni
=
∏

ti<t

(

1−
di

ni

)

(1)

where ti is the largest survival time less than or equal to t, ni is

the number of individuals uninfected just before time ti (the ith

ordered survival time) and di denotes the number who got HIV

infection at time ti (29). S(t0) = 1 before the first infection of
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FIGURE 1

Total count for the frequency of cytokine profile measurements.

FIGURE 2

Missing data aggregation plot. Proportion of missing values for all variables in the dataset, sorted by decreasing order (left). Combinations of missing

values (right): yellow squares in a matrix entry denote the presence of missing values for the variable associated to the column in the samples

corresponding to the row; the bars on the right show the cardinality of each set of points. The x-axis displays the variable names (not all variables are

displayed due to limited space).

HIV. The survival S(t) at time ti given the number of infections

di and the number of uninfected patients ni just before ti is given

by (Equation 2),

S(ti) =
ni − di

ni
× S(ti−1). (2)

Maximum likelihood estimation of the discrete hazard

function hi, (the probability of an individual experiencing an

event at time ti), yields the Kaplan–Meier estimator as shown

(Equation 3),

Ŝ(t) =
∏

i : ti≤t

(

1− ĥi

)

=
∏

i : ti≤t

(

1−
di

ni

)

. (3)

Moreover, The Kaplan–Meier estimator is a

statistic, and its variance is approximated by numerous
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TABLE 1 Summary description of patient’s baseline characteristics stratified by HIV status and treatment group.

Variables 0:Placebo 1:Placebo 0:Tenofovir 1:Tenofovir p

n 327 51 353 33

Treat = Tenofovir (%) 0 (0.0) 0 (0.0) 353 (100.0) 33 (100.0) <0.001

Site = Vulindlela (%) 215 (65.7) 33 (64.7) 239 (67.7) 21 (63.6) 0.917

months (mean [SD]) 19.25 (5.86) 8.54 (5.52) 19.25 (5.57) 10.86 (7.28) <0.001

Partner live together = No (%) 288 (88.1) 46 (90.2) 298 (84.4) 30 (90.9) 0.367

Highest education (%) 0.262

High school 289 (88.4) 46 (90.2) 311 (88.1) 26 (78.8)

Primary 12 (3.7) 1 (2.0) 21 (5.9) 4 (12.1)

Tertiary 26 (8.0) 4 (7.8) 21 (5.9) 3 (9.1)

Self generated Income = Yes (%) 19 (5.8) 1 (2.0) 19 (5.4) 0 (0.0) 0.361

Salary = Yes (%) 38 (11.6) 6 (11.8) 36 (10.2) 6 (18.2) 0.565

Husband’s income = Yes (%) 49 (15.0) 4 (7.8) 39 (11.0) 9 (27.3) 0.026

Social grants = Yes (%) 257 (78.6) 42 (82.4) 283 (80.2) 24 (72.7) 0.701

Other income source = Yes (%) 30 (9.2) 5 (9.8) 27 (7.6) 5 (15.2) 0.499

Income amount = < R10001 (%) 293 (89.6) 46 (90.2) 321 (90.9) 29 (87.9) 0.908

Years in Durban (mean [SD]) 16.49 (9.05) 17.94 (7.94) 17.23 (9.46) 15.48 (8.55) 0.466

Age at enrollment (mean [SD]) 24.02 (5.11) 22.63 (3.55) 24.60 (5.37) 23.64 (4.74) 0.053

Marital status (%) 0.761

Casual 7 (2.1) 2 (3.9) 6 (1.7) 0 (0.0)

Married 20 (6.1) 2 (3.9) 25 (7.1) 1 (3.0)

Stable & Casual 11 (3.4) 4 (7.8) 16 (4.5) 2 (6.1)

Stable 289 (88.4) 43 (84.3) 306 (86.7) 30 (90.9)

Age at debut (mean [SD]) 6.53 (2.03) 6.16 (1.86) 6.43 (2.24) 6.24 (1.92) 0.618

Number of partners (mean [SD]) 3.53 (12.45) 3.06 (3.16) 3.12 (6.50) 2.45 (1.70) 0.893

Years with stable partner (mean [SD]) 1.02 (0.21) 1.06 (0.31) 1.06 (0.28) 1.18 (1.04) 0.034

Years with casual partner (mean [SD]) 0.77 (6.51) 0.31 (0.73) 0.56 (4.50) 0.15 (0.57) 0.865

Stable partners in 30 days (mean [SD]) 0.99 (0.11) 0.98 (0.14) 0.99 (0.13) 1.00 (0.00) 0.867

Casual partners in 30 days (mean [SD]) 0.17 (1.23) 0.12 (0.38) 0.41 (4.20) 0.12 (0.33) 0.712

Times sex in 30 days (mean [SD]) 8.71 (10.19) 7.20 (4.85) 8.91 (8.99) 7.58 (6.52) 0.573

Age of oldest sex partner (mean [SD]) 27.69 (6.30) 26.24 (3.82) 28.20 (6.75) 26.88 (5.02) 0.149

Sex partner have other partner (%) 0.228

No 53 (16.2) 2 (3.9) 56 (15.9) 5 (15.2)

Don’t know 199 (60.9) 35 (68.6) 232 (65.7) 21 (63.6)

Yes 75 (22.9) 14 (27.5) 65 (18.4) 7 (21.2)

Frequency of condom use = Occasionally (%) 227 (69.4) 37 (72.5) 254 (72.0) 20 (60.6) 0.533

Vaginal abnormal discharge = Yes (%) 97 (29.7) 16 (31.4) 114 (32.3) 17 (51.5) 0.085

0: HIV negative, 1: HIV positive.

estimators such as Greenwoods’s formula (30) that gives

(Equation 4),

V̂ar
(

Ŝ(t)
)

= Ŝ(t)2
∑

i : ti≤t

di

ni(ni − di)
(4)

The log-Rank test: Is used to compare the hazards between two

groups or more by testing the null hypothesis that the probability of

an event at any time point between the two or more populations do

not differ. Thus, log-rank test compares the survival function of the

two groups (27). The null hypothesis will be rejected if the p-value

is <0.05.

2.2.2 Stepwise Cox proportional hazard model
(Cox PH)

Stepwise Cox proportional hazards regression is a method

of selecting a subset of relevant variables for a Cox regression
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model from a larger set (31). Cox PH is the most widely used

statistical method for analyzing the time-to-event data (16). The

Cox PH model assesses the impact of multiple factors on survival

simultaneously. Essentially, it enables one to investigate how

specified predictors influence the rate of a specific event happening

such as infection or death at a given point in time (32). This rate is

commonly known as hazard rate.

In order to evaluate the association of the baseline and cytokine

effects covariate and survival time, consider sample size n from

sample k = 1, 2, ..., n and Ck = (Ck1,Ck2, ...,Ckp) is a vector

of p covariates (baseline plus cytokine effect covariates) of the

different models. The kth patient survival data can be represented

by (Tk, θk,Ck), where Tk and θk are the survival time and censor

status, respectively. Mathematically, the general Cox PH (33) in

Equation 5 is represented as

hk(t;Ck) = h0(t)e
β ′Ck (5)

where β is the parameter vector of the regression coefficients and

Ck is the covariate (baseline and cytokine effects) vector. h0(t) is an

unspecified baseline hazard function that corresponds to the value

of the hazard if all Ck are equal to zero. The hazard ratio for two

patients (Equation 6), k and i is

hk(t;Ck)

hi(t;Ci)
=

eβ
′Ck

eβ
′Ci

(6)

and is independent of time t. Cox PH model parameters are

estimated by the maximum partial likelihood method given below

(Equation 7);

L(β) =
∏

r∈E

eβ
T
Cr

∑

i∈Rr
eβ

T
Cr

(7)

where E is the indices of the HIV infection and Rr represent vector

of indices for individuals at risk at time tr .

The stepwise Cox proportional hazards regressionmethod adds

or removes predictor variables from the model based on some

criteria, such as the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC) (34). The AIC and BIC are

measures of how well the model fits the data, and they penalize

models that have too many parameters. The lower the AIC or

BIC, the better the model (35). The stepwise Cox PH regression

method can be performed using different methods, such as forward

selection, backward elimination, bidirectional selection, or score

selection (36). Forward selection starts with an empty model and

adds one variable at a time until it reaches a stopping criterion,

such as a minimum AIC or BIC value. Backward elimination starts

with a full model and removes one variable at a time until it reaches

a stopping criterion. Bidirectional selection starts with an empty

model and adds one variable at a time in both directions until it

reaches a stopping criterion. Score selection starts with an empty

model and adds one variable at a time based on its score in terms of

AIC or BIC.

We used the packages StepReg (37) to implement stepwise

regression, Survival and survminer to implement Cox PH model

in R. The specific Cox PH models for model 1, model 2, model 3,

and model 4, as described above, are formulated as follows:

2.2.3 Model 1
The model that includes the baseline covariates only. We call

this the naive Cox PH model. The assumption is that regression

parameters remain constant over time (38). Consequently, the

hazard ratio for any two individuals remains constant over time.

The Model is given by,

hk(t;Xk) = h0(t)× exp(β ′Xk) (8)

with h0(t) as the baseline hazard function, β is the vector of

regression coefficients for baseline covariates Xk.

2.2.4 Model 2
The model that includes the baseline covariates plus cytokine

effects using the mean value of the cytokine measurements as

the covariate. Here the derived cytokine is the average of all

the cytokine measurements for an individual patient recorded at

different follow up time. It models the average effect of the time-

varying cytokine covariate (15). The Cox model is;

hk(t;Xk,Gk) = h0(t)× exp
(

β ′Xk + δ′Ḡk

)

= h0(t)× exp
(

β ′Xk +
v
∑

j=1
δjḠkj

)

(9)

where h0(t) is the baseline hazard function, β is the regression

coefficient vector for time invariant covariates Xk, Ḡkj =

1
mkj

∑mkj

r=1 Gkrj for r = 1, 2, ...,mkj, represents the average value of

the cytokine level measured longitudinally for the kth subject with

mkj observations for cytokine j (j = 1, 2, ..., v). The scalar δj ∈ R is

the parameter that links the average to the hazard.

2.2.5 Model 3
The model that includes the baseline covariates plus cytokine

effects using the difference between the last observed cytokine value

and the first value as the covariate in the model. It models the effect

of change in the cytokine covariates (39).

hk(t;Xk,Dk) = h0(t)× exp
(

β ′Xk + δ′Dk

)

= h0(t)× exp
(

β ′Xk +
v
∑

j=1
δjDkj

)

(10)

where h0(t) is the baseline hazard function, β is the regression

coefficient vector for the time invariant covariates Xk, Dkj =
[

Gkmkj
− Gk1j

]

represents the difference between the last and first

cytokine levels observed longitudinally for the kth subject, withmkj

measurements for cytokine j (j = 1, 2, ..., v). The scalar δj ∈ R is the

parameter that links the change to the hazard. The model answers

the question whether a big or small change in cytokine has an effect

on HIV acquisition.
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FIGURE 3

Kaplan–Meier survival curves: left panel showing overall survival curve for all participants and right panel compares overall survival curves by

treatment groups, placebo vs. tenofovir participants.

2.2.6 Model 4
The model that includes the baseline covariates plus time

dependent cytokine effects. When a covariate changes over time

throughout the follow-up period, this is referred to as time-

varying/time dependent covariate (40). For this it is critical to

structure the data in a counting process format. We code the

time-dependent covariate using time intervals (41). The hazard

is assumed to be proportional to the instantaneous probability of

an event at a specific time conditional on the variables at that

time (42). The interpretation of the results of this approach is

more complicated than a naïve baseline approach as the covariate

information changes over time. Here we consider sample size n

subjects, consisting of
[

Tk, θk,
[

Gk(t), 0 ≤ t ≤ Tk

]

, k = 1, 2, ..., n
]

,

Tk is the time-to event for the kth subject, θk is the event indicator

and Gk(t) is the time varying covariate. The Cox PH model

becomes,

h(t;Xk,Gk) = h0(t)× exp
(

β ′Xk + δ′Gk(t)
)

= h0(t)× exp
(

β ′Xk +
∑v

j=1 δjGkj(t)
)

(11)

where h0(t) is the baseline hazard function, β is the regression

coefficient vector for time invariant covariates, Gkj(t) =
[

Gk1j(t),Gk2j(t), ...,Gkmkj
(t)
]

is a set of covariates for the number

of longitudinal measures mkj for the k
th subject of cytokine j (j =

1, 2, ..., v). The scalar δj ∈ R represent the parameter that links the

time dependent covariates to the hazard.

3 Results

3.1 Kaplan–Meier survival curves analysis

Figure 3 shows the overall survival curve over time and the

overall survival comparison between the two treatment group. It

is clear that patients from Tenofovir treatment arm have a better

chance of surviving (less probability of HIV acquisition) more

than the patients from placebo group. The placebo curve has a

steeper slope indicating a higher HIV infection rate, therefore a

worse survival prognosis. The curve have plateaus from 24thmonth

indicating no change in survival. The curves comparing the two

treatment cross in the first few months and consistently separate

afterwards. The log-rank test performed gives χ2 = 5.7, df =

1 and p-value = 0.02. Since p-value is <0.05 we reject the null

hypothesis to conclude that there is sufficient evidence indicating

that the two treatment groups are significantly different in terms

of survival.

3.2 Stepwise Cox proportional hazard
analysis

The results of the survival problem based on the effects

of cytokine biomarkers (mean, difference, and time dependent

effect) were obtained. As a first step, we employed the stepwise

regression using the stepwiseCox function. Within the function we

specified the following arguments; model selection procedure to

be bidirectional, model selection metric as the AIC, significance

level of entry and exit value in the model as 0.15 and

model approximation method as Efron. Bidirectional selection

procedure is the appropriate since it adds variables in both

directions. Moreover, backward selection produces same results

as bidirectional while forward selection produces results with

more covariates and larger AIC. The model selection criterion

AIC was used to determine the order in which effects enter and

leave at each step of the specified model selection procedure

(bidirection). The value 0.15 is a commonly used p value threshold

which is a statistical significance level that a predictor variable

must meet to be included or to stay in the model. Several

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1393627
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ogutu et al. 10.3389/fpubh.2024.1393627

TABLE 2 Multivariable Cox PH results for predictors of HIV survival

among women aged 18–40 years (model 1).

Variable HR (SE) 95% CI p-value

Age at enrollment 0.949 (0.026) (0.902, 0.998) 0.042*

Treatment group

Placebo 1.000

Tenofovir 0.6286 (0.225) (0.405, 0.977) 0.039*

Self generated income

No 1.000

Yes 0.225 (1.013) (0.031, 1.634) 0.140

Vaginal abnormal discharge

No 1.000

Yes 1.431 (0.225) (0.920, 2.226) 0.112

Salary

No 1.000

Yes 1.658 (0.322) (0.882, 3.116) 0.116

Sex partner have other partner

No 1.000

Don’t know 1.849 (0.403) (0.840, 4.072) 0.127

Yes 2.280 (0.438) (0.966, 5.383) 0.060

∗p-value < 0.05.

approximation methods have been proposed to handle tied events

in cox regression such as Breslow, Efron, and Exact (methods of

obtaining Cox partial likelihood estimate of the baseline hazard

function). However, the Efron method performs better in terms

of time, fit statistics, and differences in parameters estimates

(43). We then tested the Cox PH assumption of the selected

covariates using Schoenfeld residuals test (44) by applying the

cox.zph function. The analysis of the results for model 1-4 are

shown in Tables 2–5.

The analysis result of model 1 in Table 2 indicates that age

at enrolment was the only significant predictor of HIV hazard.

Tenofovir treatment group reduced the hazard of HIV infection

as compared to the Placebo treatment group (HR: 0.629, 95% CI:

0.405,0.977). The adjusted hazard ratio for a 1 year increase in age

at enrolment is 0.949 (95% CI: 0.902, 0.998). This implies that HIV

incidence decreases with increasing age.

Model 2 results in Table 3 shows that tenofovir treatment group

reduced the hazard of HIV infection as compared to the placebo

treatment group (HR: 0.486, 95% CI: 0.296, 0.798). For every

average unit increase of the cytokines IL-12P70, IL-16, B-NGF,

SCGF-B, IL-17A and IL-3 there is a decrease of HIV hazard by

2.32% (HR: 0.977, 95% CI: 0.968, 0.986), 0.44% (HR: 0.996, 95%

CI: 0.999, 0.999), 19.3% (HR: 0.807, 95% CI: 0.670, 0.973), 0.07%

(HR: 0.995, 95% CI: 0.993, 0.999), 2.14% (HR: 0.979. 95% CI: 0.965,

0.992) and 1.1% (HR: 0.989, 95% CI: 0.982, 0.996) respectively. On

the other hand for every average unit increase of the cytokines SCF,

TNF-A, CTACK, IL-10, IL-5 and IFN-A2 there is an increase of

HIV hazard by 11.31% (HR: 1.113, 95% CI: 1.077, 1.151), 1.77%

(HR: 1.018, 95% CI: 1.009, 1.027), 3.94% (HR: 1.039, 95% CI:

1.016, 1.063), 4.9% (HR: 1.049, 95% CI: 1.013, 1.086), 10.6% (HR:

TABLE 3 Multivariable Cox PH results for predictors of HIV survival

among women aged 18–40 years (model 2).

Variable HR (SE) 95% CI p-value

Age of oldest sex part 0.945 (0.026) (0.898, 0.995) 0.031*

Treatment group

Placebo 1.000

Tenofovir 0.486 (0.253) (0.296, 0.798) 0.004**

M-CSF 1.004 (0.001) (1.002, 1.006) 0.000***

Salary

No 1.000

Yes 2.474 (0.358) (1.227, 4.987) 0.011*

Frequency of condom

use

Always 1.000

Occasionally 1.543 (0.272) (0.905, 2.632) 0.111

Age at debut 0.884 (0.069) (0.772, 1.012) 0.073

Number of stable partner

(past year)

1.480 (0.188) (1.025, 2.138) 0.037*

Vaginal abnormal

discharge

No 1.000

Yes 1.513 (0.249) (0.930, 2.463) 0.096

Sex partner have other

partner

No 1.000

Don’t know 2.948 (0.441) (1.241, 7.001) 0.014*

Yes 2.613 (0.492) (0.996, 6.854) 0.051

Self generated income

No 1.000

Yes 0.261 (1.040) (0.034, 2.005) 0.197

MIG 1.000 (0.000) (1.000, 1.000) 0.001**

MIP-1B 1.001 (0.000) (1.001, 1.001) 0.000***

MCP-1 0.991 (0.005) (0.982, 1.000) 0.053

SCF 1.113 (0.017) (1.077, 1.151) 0.000***

IL-12P70 0.977 (0.005) (0.968, 0.986) 0.000***

IL-16 0.996 (0.002) (0.992, 1.000) 0.034*

MIF 1.000 (0.000) (1.000, 1.0000) 0.001***

B-NGF 0.807 (0.095) (0.670, 0.973) 0.024*

SCGF-B 0.995 (0.000) (0.993, 0.999) 0.000***

TNF-A 1.018 (0.005) (1.009, 1.027) 0.000***

IL-17A 0.979 (0.007) (0.965, 0.992) 0.002**

MCP-3 0.982 (0.011) (0.961, 1.004) 0.110

CTACK 1.039 (0.012) (1.016, 1.063) 0.001***

IL-10 1.049 (0.018) (1.013, 1.086) 0.007**

IL-5 1.106 (0.049) (1.004, 1.218) 0.041*

G-CSF 1.000 (0.000) (1.000, 1.000) 0.034*

IL-3 0.989 (0.004) (0.982, 0.996) 0.003**

IL-2RA 1.023 (0.013) (0.997, 1.049) 0.085

IFN-A2 1.028, (0.011) (1.006, 1.050) 0.012*

∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001.
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TABLE 4 Multivariable Cox PH results for predictors of HIV survival

among women aged 18–40 years (model 3).

Variable HR (SE) 95% CI p-value

Age of oldest sex partner 0.946 (0.023) (0.903, 0.990) 0.017*

Sex partner have other partner

No 1.000

Don’t know 2.6235 (0.441) (1.106, 6.223) 0.029*

Salary

No 1.000

Yes 1.887 (0.330) (0.988, 3.607) 0.055

Yes 3.991 (0.487) (1.535, 10.373) 0.005**

Treatment group

Placebo 1.000

Tenofovir 0.652 (0.238) (0.409, 1.039) 0.072

Husband’s income

No 1.000

Yes 1.901 (0.316) (1.023, 3.534) 0.042*

Self generated income

No 1.000

Yes 0.267 (1.028) (0.036, 2.003) 0.199

IL-1RA 1.000 (0.000) (1.000, 1.000) 0.004**

MIF 1.000 (0.000) (1.000, 1.000) 0.000***

B-NGF 0.896 (0.026) (0.851, 0.943) 0.000***

CTACK 1.022 (0.005) (1.013, 1.032) 0.000***

IL-5 0.923 (0.023) (0.882, 0.966) 0.001***

IL-2 1.106 (0.033) (1.037, 1.179) 0.002**

IL-1A 1.000 (0.000) (0.999, 1.000) 0.106

TRAIL 0.997 (0.001) (0.995, 0.999) 0.014*

PDGF-BB 1.005 (0.002) (1.002, 1.008) 0.003**

EOTAXIN 0.977 (0.012) (0.954, 1.000) 0.052

IL-16 0.999 (0.000) (0.998, 0.999) 0.028*

SCF 1.0138 (0.009) (0.997, 1.030) 0.107

∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001.

1.106, 95% CI: 1.004, 1.220), and 2.75% (HR: 1.028, 95% CI: 1.006,

1.050) respectively.

After including the mean value of the cytokine measurements

as covariate, the Cox model showed that age of the oldest sex

partner, salary, years with stable partner and sex partner have other

partner variables were significant baseline predictors associated

with HIV infection. For every year increase for the age of the oldest

sex partner, the hazard of HIV decreases by 5.47% (HR: 0.945,

95% CI: 0.898, 0.995). Patients who earned salary had a higher risk

of HIV infection (HR: 2.474, 95% CI: 1.227, 4.987) compared to

their counterparts who did not earn salary. It was surprising to

note that, for every one additional stable partner there was about

a 1.5 fold increase in hazard of HIV infection (HR: 1.480, 95% CI:

1.023, 2.138). Moreover, the patients whom did not know if their

TABLE 5 Multivariable Cox PH results for predictors of HIV survival

among women aged 18–40 years (model 4).

Variable HR (SE) 95% CI p-value

Other income source

No 1.000

Yes 2.807 (0.480) (1.095, 7.197) 0.032*

Age of oldest sex partner 0.920 (0.033) (0.862,0.982) 0.012*

Vaginal abnormal discharge

No 1.000

Yes 1.688 (0.318) (0.906, 3.146) 0.099

Age at debut 0.824 (0.080) (0.704, 0.963) 0.015*

Treatment group

Placebo 1.000

Tenoofovir 0.652 (0.185) (0.454, 0.938) 0.021*

Sex in last 30 days 0.930 (0.035) (0.868, 0.995) 0.037*

Salary

No 1.000

Yes 2.186 (0.454) (0.899, 5.320) 0.085

Years lived in Durban 1.039 (0.019) (1.001, 1.080) 0.045*

Site

eThekwini

Vulindlela 0.487 (0.411) (0.218, 1.089) 0.080

SCF 1.040(0.009) (1.022, 1.058) 0.000***

IL-15 0.909 (0.034) (0.851, 0.971) 0.004**

MIP-1B 1.001 (0.000) (1.000, 1.001) 0.001***

SCGF-B 0.994 (0.000) (0.992, 0.999) 0.028*

GM-CSF 0.993 (0.003) (0.988, 0.999) 0.018*

G-CSF 0.999 (0.000) (0.999, 1.000) 0.098

∗p-value < 0.05, ∗∗p-value < 0.01, ∗∗∗p-value < 0.001.

sex partners had other sex partners had a higher HIV hazard (HR:

2.948, 95% CI: 1.241, 7.001) than those who knew their sex partners

did not have other sex partners. Testing the PH assumption using

the Scaled Schoenfeld test for the significant variables indicated

that CTACK (χ2: 4.710, df: 1, p: 0.03) did not meet the Cox

PH assumptions.

The results of model 3 shown in Table 4 depicts that Tenofovir

treatment group reduced the hazard of HIV infection as compared

to the placebo treatment group (HR: 0.652, 95% CI: 0.238, 1.039).

For every unit change (difference) of the cytokines B-NGF, IL-

5, IL-16 and TRAIL there is a decrease of HIV infection by

10.38% (HR: 0.896, 95% CI: 0.851, 0.943), 7.7% (HR: 0.923, 95%

CI: 0.882, 0.966), 0.08% (HR: 0.999, 95% CI: 0.998, 0.999) and

0.3% (HR: 0.997, 95% CI: 0.995, 0.999) respectively while for the

same change in the cytokine CTACK, IL-2 and PDGF-BB there

is an increase of HIV infection by 2.23% (HR: 1.022, 95% CI:

1.013, 1.032), 10.59% (HR: 1.106, 95% CI: 1.037, 1.179) and 0.49%

(HR: 1.005, 95% CI: 1.002, 1.008) respectively. After including

the difference value (between last observed and first value) of the

cytokine measurements as covariate, the Cox model showed that
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TABLE 6 Comparative tests to evaluate Cox PH model performances.

Model 1 Model 2 Model 3 Model 4

AIC (df) 1,064.5 (7) 919.3 (30) 955.3 (19) 531.4 (14)

Likelihood

ratio test (df)

22.1 (7) 185.9 (30) 127.4 (19) 70.0 (14)

Wald test (df) 19.1 (7) 168.3 (30) 119.6 (19) 67.1 (14)

Logrank test

(df)

19.9 (7) 248.9 (30) 136.9 (19) 102.4 (14)

sex partner have other partner, husband’s income and age of the

oldest sex partner covariate were significant baseline predictors

associated with HIV infection. For every year increase of age for

the oldest sex partner, HIV risk decreases by 5.47% (HR: 0.945, 95%

CI: 0.898, 0.995). Both patients who did not know if their partners

had other sex partners (HR: 2.948, 95% CI: 1.241, 7.001) and those

who knew their sex partners had other partner (HR = 3.991, 95%

CI: 1.535, 10.373) had a higher HIV hazard compared to those who

knew their partners had no other sex partners. Additionally, the

ones who received income fromhusband (HR: 1.901, 95%CI: 1.023,

3.534) had a higher hazard of HIV than those who did not receive

any income from their husband. Testing the PH assumption using

the Scaled Schoenfeld test indicated that all the significant variables

from the model met the PH Cox assumptions.

Table 5 presents the analysis results of model 4 which indicates

that tenofovir treatment group reduced the hazard of HIV infection

as compared to the placebo treatment group (HR: 0.652, 95% CI:

0.454, 0.938). The cytokines IL-15, SCGF-B and GM-CSF had an

instantaneous decrease of HIV incidence by 9.11% (HR: 0.909, 95%

CI: 0.851, 0.971), 0.07% (HR: 0.994, 95% CI: 0.992, 0.999), and

0.68% (HR: 0.993, 95% CI: 0.988, 0.998) respectively at a particular

time t. Conversely, SCF had an instantaneous increase of HIV

incidence by 4.02% (HR: 1.040, 95% CI: 1.022, 1.058) at a particular

time t. When using the cytokines as time dependent covariate, the

Cox PH analysis indicated that significant baseline predictors were;

age of oldest sex partner, other source of income, age at debut,

sex in the last 30 days, and years lived in Durban. For every year

increase of the age of the oldest sex partner and patient’s age at

debut, the hazard of HIV infection increases by 7.99% (HR: 0.920,

95% CI: 0.862, 0.982) and 17.63% (HR: 0.824, 95% CI: 0.704, 0.963)

respectively. The less sex the patient had in the previous 30 days, the

lower the patient’s HIV risk by 7.04% (HR: 0.930, 95% CI: 0.868,

0.995). Furthermore, for every extra year the patient spends in

Durban, the chance of HIV infection rises by 3.94% (HR: 1.039, 95%

CI: 1.001,1.080). Likewise individuals with other sources of income

had an increased risk of HIV infection by 180.68% (HR: 2.807,

95% CI: 1.095, 7.197) compared to those without. Upon testing

the PH assumption on significant variables using scaled Schoenfeld

residual test, other sources of income (χ2: 5.288, df: 1, p: 0.022)

and age of oldest sex partner (χ2: 5.426, df: 1, p: 0.020) violated

the PH assumption.

The overall performance of the models (model 1–4) shown in

Table 6 indicate that model 4 had the lowest AIC, while model 1

the highest AIC. The overall survival of the models over time are

depicted in Figure 4.

The plot in Figure 5 show how the effects of the covariates in

model 4 (with the lowest model fit scores as shown in Table 6)

change over time. The intercept of the model 4 in Figure 5 had a

smooth increasing slope over time. The time dependent cytokine

covariates; G-CSF, GM-CSF, IL-15, MIP-1B, SCGF-B, and baseline

covariates; age at debut, sex in the last 30 days, age of oldest

sex partner and site had a decreasing slope over time. Increasing

slope over time is observed in the time-dependent covariate SCF

and baseline covariates; abnormal discharge, other income source,

salary and years lived in Durban. Table 7 indicate which cytokines

overlap between model 2–4, or which are no longer significant in

the subsequent models. Figure 6 illustrates the direction of change

for the significant cytokines identified in the analysis of models 2–4.

4 Discussion

The global HIV pandemic remains a significant public

health challenge, necessitating the continuous exploration of

innovative preventive strategies (45). Pre-exposure prophylaxis

(PrEP) particularly Antiretroviral Microbicide has emerged as

a promising intervention for individuals at high risk of HIV

acquisition (4). However, variations in individual immune

responses, particularly in cytokine profiles, may influence the

efficacy of PrEP. It is known that dynamic changes in immune states

are linked with HIV acquisition, and biomarkers, demographic and

behavioral data add complementary details to HIV risk (21). Recent

research has highlighted the potential of cytokines as biomarkers

in the Pre-exposure prophylaxis. Cytokines have been suggested as

potential predictors of HIV acquisition.

This study investigated the effect of individual cytokine

biomarkers that changes over time in determining HIV incidence

among individuals randomized to PrEP vs. control exposure by

building a series of Cox Proportional Hazard models. The Cox PH

is essentially a regression model commonly used statistical method

in medical research and in other applications for investigating the

association between the survival time and one or more predictor

variables (16). The simple form of Cox model is when it models

time fixed covariates. One of the strengths of the extended Cox

model is its ability to incorporate covariates that change over time.

This functionality is practical because, at each event time, the

Cox model compares the current covariate values of the subject

experiencing the event with the current values of all other subjects

who were at risk at that time (41). We incorporate stepwise

regression in the Cox PH model to eliminate noisy variables and

remain with the best model fit (31).

The cytokine biomarkers in our data set changes over time

i.e they were longitudinally measured, indicating the presence of

a time-varying covariates. When such covariates exist, an analyst

should consider taking them into account in survival modeling in

order to improve estimation (15). The presence of time-dependent

covariates in a model offers exciting opportunities for exploring

associations and potentially causal mechanism (46). However, the

use of these variables is technically difficult in the choice of

covariate form, might have great potential for bias and violates the

assumption that the hazard ratio for any two individual remains

constant over time. We therefore, improve the model fit by using

derived cytokine variables from the longitudinal measurements. As
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FIGURE 4

Comparative overall survival curves for model 1 (upper left panel), model 2 (upper right panel), model 3 (lower left panel) and model 4 (lower right

panel).

a starting point in modeling, we started with Model 1 (Equation 8),

a traditional time-invariant (baseline covariates) Cox PHmodel. In

this model the initial variables were 24 which were further reduced

to seven variables that contributed to the best model fit and it

estimated age at enrollment as the only significant predictors of

HIV risk.

The first improved model (model 2-Equation 9) we used

baseline covariates plus the individual level average of the cytokine

measurements to better describe the average effect of the time-

varying cytokine covariate. Through stepwise regression the

covariates were reduced from 72 to 30 in the final best fit model.

When comparing model 1 with model 2 we are able to identify

four other different baseline covariate (Age of oldest sex partner,

salary, years with stable partner and sex partner having other sex

partner) and twelve individual average cytokines (IL-3, IL-5, IL-10,

IL-16, IL-17A, IL-12P70, CTACK, SCF, B-NGF, SCGF-B, TNF-A,

IFN-A2) that are significantly associated with HIV risk. Therefore,

the predictive performance of model 2 was better thanmodel 1 with

lower AIC (919.3) in comparison to model 1 AIC (1,064.5). This

clearly showed that not accounting for cytokine effect in model 1

confounded the effect of other significant baseline characteristics.

Model 3 (Equation 10) is the second improved Cox PH model

which consisted of baseline covariates plus individual cytokine

difference between the first and the last observed measurement.

The final best model fit in model 3 had 19 covariates from an initial

total of 72. Notably the model had a better predictive performance

compared to model 1 as it had three additional baseline covariates

(sex partner having other partners, husband’s income, age of

the oldest sex partner) and seven individual difference cytokines

(IL-2, IL-5, IL-16, CTACK, PDGF-BB, BNG-F and TRAIL) that

were significant predictors of HIV infection. Furthermore, when

compared to model 2, there were three similar baseline covariates

(age of the oldest sex partner, treatment group and sex partner

having other partner) that were significant predictors in both

models. However, there were fewer cytokine covariates than in

model 2, with IL-5, IL-16, CTACK, and BNG-F all being significant

cytokine covariates in both models. When compairing the AIC

of the models, model 3 had a lower AIC than model 1 but

slightly higher than AIC of model 2. Model 3 predicted the

individual level changes of the cytokines and its association with

HIV risk therefore accounting for time. The major drawback of

the model was some individuals had single measurements hence

no change effect observed. Additionally, the model ignores the

intermediate changes between the first and the last observed

cytokine measurement which implies loss of information within

individual cytokine measurements.

The last improved Cox PH model fit was model 4 (Equation

11) that used baseline covariates plus time-dependent cytokine

covariates. The final best model fit consisted of 14 variables out

of 72. When compared to model 1, there were five additional

baseline covariates (age of oldest sex partner, age at debut, other

income source, sex in the last 30 days and years lived in Durban)

and four time-dependent cytokines (SCF, IL-5, SCGF-B and GM-

CSF). Moreover, Age of oldest sex partner and IL-5 were significant

predictors estimated by all the improved models while SCF and

SCGF-B were both predictors by model 2 and 4. Likewise CTACK,

IL-5, IL-16 and B-NGF were significant predictors estimated in

both model 3 and 4. Table 7 indicate which cytokines overlap

between models 2–4, or which are no longer significant in the

subsequent models.

Overall, model 2 produced the greatest number of significant

cytokine predictor variables, giving a wider perspective to

a researcher which cytokine biomarkers are associated with

HIV Hazard. However, there is loss of time information in

this model for the derived cytokine variables. Model 4 on

the other hand had the lowest AIC compared to the other

models making it the best model. This emphasizes that time-

dependent covariates is a powerful tool for exploring predictive

relationships. Nevertheless, their use and interpretation is much

more complicated in practice than the fixed (baseline) covariates.
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FIGURE 5

Overall trend of the covariate e�ects (only significant baseline and cytokine covariates) for model 4 over time. Abreviations of the baseline

characteristics: agedebu, age at debut; p17v15_SEX_30DAYS, number of times had sex in 30 days; p17v26_AGE_OLDEST_SEX_PART, age of oldest

sex partner; p19v14_ABNORMAL_DISCHARGEYes, abnormal discharge variable for yes category; p3v13_OTHER_INCOME_SOURCEYes, other

income sources for category yes; p3v9_SALARYYes, salary variable for category yes; p5v9_LENGTH_IN_DBNVUL, number of years lived in Durban

Vulindlela area; SiteVulindlela, site variable for category Vulindlela.

Furthermore the potential for erroneous inference and modeling is

increased (46).

Our findings reveal that incorporating cytokine biomarkers

into the PH regression model not only enhances the model’s

predictive performance but also provides more insightful

information about significant predictors linked to HIV incidence.

These results are consistent with a recent study by Ignacio et al.

(21), which found that changes in cytokine levels over time are

highly predictive of HIV acquisition and that cytokines influence

the effects of sociobehavioral risk factors on HIV acquisition.

Although Ignacio et al. (21) used a different model (LASSO

machine learning algorithms), a different dataset (Sabes study),

and selected fewer biomarkers (10 cytokines), their study also

highlighted the importance of immune activation markers in

predicting HIV beyond traditional demographic and behavioral

factors, aligning with our objective. Our analysis identified and

reported several baseline predictors such as the age of the oldest

sex partner, participant’s age at enrollment, earning a salary or

not, years with a stable partner, income source, whether the sex

partner has other partners, and frequency of sex in the last 30 days

as significantly associated with HIV incidence. These findings align

with those of other research studies (47–55).

In the previous analysis by Masson et al. (18) to investigate

whether genital inflammation influenced HIV acquisition in

women, they used 12 cytokines out of 48 available cytokine

measurements. This selection was disadvantageous as it excluded

other potentially relevant cytokine covariates. They utilized

conditional logistic regression which has limitations because the

risk sets and time-dependent covariates are predefined, unlike in

Cox regression, where these factors are calculated at the time of

each case failure (56). Moreover, Cox models that was employed

in our study, offers more statistical power than logistic regression

models because they account for the time until the event occurs

(57). Naranbhai et al. using the same dataset, employed logistic

regression and PCA to investigate the role of immune activation

in HIV acquisition. The PCA’s assumption of linearity limits its

effectiveness in interpreting the components, as they are linear

combinations of the original variables (58). Ngcobo et al. (20), in
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TABLE 7 Significant predictors of HIV survival among women aged 18–40

years for model 2–4.

Variable Model 2 Model 3 Model 4

IL-16 X X

MIF X X

B-NGF X X

CTACK X X

IL-5 X X

MIG X X

SCGF-B X X

SCF X X

MIP-1B X

MCP-1 X

IL-12P70 X

TNF-A X

IL-17A X

MCP-3 X

IL-10 X

G-CSF X

IL-3 X

IL-2RA X

IFN-A2 X

IL-1RA X

IL-2 X

TRAIL X

PDGF-BB X

IL-15 X

GM-CSF X

The table indicate which cytokines overlap between the different models, or which are no

longer significant in the subsequent models.

Blank: cytokine absent in the model.

X: cytokine was significant in the model.

their study of examining whether pre-infection plasma cytokine

concentrations predicted the rate of HIV disease progression

in the same study cohort, used linear regression to assess the

impact of each cytokine on viral load (VL) and the CD4:CD8

ratio in both bivariate and multivariable models. The major

drawback of linear regression is its lack of consideration for time

continuity (56). Notably, none of the previous studies exploring

predictors of HIV progression (20, 22, 23) using CAPRISA 004 trial

considered cytokine biomarkers as time-varying covariates. This

study underscores the importance of incorporating longitudinal

risk factor information in predicting HIV incidence.

Our study results successfully confirmed the cytokines

Interleukin (IL-2, IL-3, IL-5, IL-10, IL-16, IL-12P70, and IL-17

alpha), Stem cell factor (SCF), Beta Nerve growth factor (B-

NGF), Tumor necrosis factor alpha (TNF-A), interferon (IFN)

alpha-2, serum stem cell growth factor (SCG)- beta, platelet-

derived growth factor (PDGF)-BB, Granulocyte macrophage

colony stimulating factor (GM-CSF), tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL) and cutaneous T-cell-attracting

chemokine (CTACK) are associated directly to HIV infection and

identified new cytokine biomarkers to enrich the field’s literature

further. Figure 6 shows the direction of change for the cytokines

mentioned. Therefore, better understanding of the role of cytokines

before, during, and after HIV infection could enable for the

development of new therapeutic approaches based on the use of

either recombinant cytokines or particular antagonists, with the

goal of limiting both HIV spread and clinical manifestations of this

infection (59).

Different cytokines play significant roles in HIV prevention and

management with PrEP. Interleukins (ILs) such as IL-2 enhance

T-cell proliferation and activation, aiding the immune response

against HIV, and its levels can help assess immune activation

efficacy in PrEP users. IL-3 and IL-5 regulate hematopoiesis and

immune responses, with elevated levels indicating an ongoing

immune response relevant for those exposed to HIV (60). IL-10,

an anti-inflammatory cytokine, prevents excessive inflammation,

with high levels suggesting reduced inflammation in PrEP patients.

IL-12P70 and IL-17 alpha aid in differentiating and activating T-

helper cells, promoting cell-mediated immunity, and protecting

mucosal barriers, respectively (60). Monitoring these cytokines

helps understand immune modulation in PrEP users. IL-16 attracts

T-cells and other immune cells to infection or inflammation sites, a

marker for immune activation in PrEP.

SCF and SCG-beta are essential for hematopoietic stem cell

proliferation and differentiation, indicating bone marrow activity

and the ability to replenish immune cells in PrEP users (61).

B-NGF supports neuron survival and maintenance and has

immunomodulatory effects. In PrEP users, B-NGF might influence

neuroimmune interactions, affecting the nervous system’s response

to HIV exposure. TNF-A and TRAIL are significant in immune

regulation and inflammation (10). TNF-A, a pro-inflammatory

cytokine, indicates inflammation and immune activation, which

is crucial for those at risk of HIV. TRAIL induces apoptosis in

cancer and infected cells, helping eliminate HIV-infected cells

in PrEP users. IFN Alpha-2 has antiviral properties, inhibiting

HIV replication and modulating the immune response, providing

additional protection in PrEP users. PDGF-BB aids in wound

healing and tissue repair, helping maintain mucosal integrity and

prevent HIV entry through mucosal surfaces in PrEP users. GM-

CSF stimulates granulocyte andmacrophage production, providing

insights into immune readiness (62). CTACK directs T-cells to the

skin, indicating immune surveillance at mucosal and skin surfaces

to prevent initial HIV infection.

In clinical practice, these cytokines are useful biomarkers

to monitor individuals’ immune status and response using

PrEP. Regularly measuring cytokines like IL-2, IL-10, TNF-

A, IFN Alpha-2, IL-12P70, IL-17 alpha, and TRAIL can

help assess immune activation, regulation, and the body’s

response to HIV exposure (60). This monitoring allows

clinicians to evaluate the balance between immune activation

and regulation, ensuring optimal immune response without

excessive inflammation (11). Personalized PrEP strategies
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FIGURE 6

Direction of change for the cytokines of interest confirmed by our study results.

can be developed based on individual cytokine profiles,

optimizing dosages and combinations of PrEP medications

to enhance protection. Additionally, certain cytokines can

indicate adverse immune reactions or inflammation, enabling

timely interventions to manage side effects. Integrating cytokine

monitoring into PrEP care enhances HIV prevention strategies,

tailored interventions to individual needs, and improves

clinical outcomes.

5 Conclusion

In this article we investigated the effect of individual cytokine

biomarker, a time varying covariate, where we provided ways

of handling the covariate in the stepwise Cox PH modeling by

using a derived variable from the longitudinal measurements

(mean and difference) and as a time dependent covariate (model

2–4). The presence of a cytokine effect in a model improved

the predictive performance of the model hence the improved

models were more informative about predictors that are associated

with HIV hazard. Moreover, the tenofovir treatment exposure

significantly lowered the hazard of HIV compared to the

Placebo treatment group. Furthermore, Kaplan–Meier estimator

indicated that the patients who received tenofovir antiretroviral

microbicide treatment had a significantly lower risk of HIV

infection compared to the placebo group hence an effective

treatment in reducing the risk of HIV in women between the age

of 18–40 years.

Further investigation of the cytokine biomarker could

involve utilizing the standard deviation of longitudinal

measurements or lagged observations. Additionally,

with internal time-varying covariates, one might explore

employing joint modeling of longitudinal and survival data.

The aim is to apply a model to a continually changing

covariate that is measured longitudinally, potentially with

error. This longitudinal model is linked to survival times

by modeling the joint distribution of longitudinal and

survival data.
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