Check for updates

OPEN ACCESS

EDITED BY Feng Jiang, Shanghai Jiao Tong University, China

REVIEWED BY Ylva Nilsagård, University Research Health Care Center, Sweden Mehmet Özkeskin, Ege University, Türkiye Lin Luo, Guizhou Normal University, China Cagla Ozkul, Gazi University, Türkiye

*CORRESPONDENCE Laikang Yu I yulaikang@126.com Xiao Hou I houxiao0327@bsu.edu.cn

 $^{\dagger}\mbox{These}$ authors have contributed equally to this work

RECEIVED 18 February 2024 ACCEPTED 26 March 2024 PUBLISHED 10 April 2024

CITATION

Du L, Xi H, Zhang S, Zhou Y, Tao X, Lv Y, Hou X and Yu L (2024) Effects of exercise in people with multiple sclerosis: a systematic review and meta-analysis. *Front. Public Health* 12:1387658. doi: 10.3389/fpubh.2024.1387658

COPYRIGHT

© 2024 Du, Xi, Zhang, Zhou, Tao, Lv, Hou and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Effects of exercise in people with multiple sclerosis: a systematic review and meta-analysis

Liwen Du^{1,2†}, Haoyu Xi^{1,2†}, Shiyan Zhang², Yilun Zhou², Xifeng Tao³, Yuanyuan Lv⁴, Xiao Hou^{1,5*} and Laikang Yu^{1,2*}

¹Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China, ²Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing, China, ³School of Physical Education, Xihua University, Chengdu, China, ⁴China Institute of Sport and Health Science, Beijing Sport University, Beijing, China, ⁵School of Sport Sciences, Beijing Sport University, Beijing, China

Background: A growing body of studies have examined the effect of exercise in people with multiple sclerosis (MS), while findings of available studies were conflicting. This meta-analysis aimed to explore the effects of exercise on balance, walking ability, walking endurance, fatigue, and quality of life in people with MS.

Methods: We searched PubMed, Web of Science, Scopus, and Cochrane databases, through March 1, 2024. Inclusion criteria were: (1) RCTs; (2) included an intervention and control group; (3) had people with MS as study subjects; (4) had balance, walking ability, walking endurance, fatigue, or quality of life as the outcome measures. Exclusion criteria were: (1) non-English publications; (2) animal model publications; (3) review articles; and (4) conference articles. A meta-analysis was conducted to calculate weighted mean difference (WMD) and 95% confidence interval (CI). Cochrane risk assessment tool and Physiotherapy Evidence Database (PEDro) scale were used to evaluate the methodological quality of the included studies.

Results: Forty studies with a total of 56 exercise groups (n = 1,300) and 40 control groups (n = 827) were eligible for meta-analysis. Exercise significantly improved BBS (WMD, 3.77; 95% CI, 3.01 to 4.53, P < 0.00001), TUG (WMD, -1.33; 95% CI, -1.57 to -1.08, P < 0.00001), MSWS-12 (WMD, -2.57; 95% CI, -3.99 to -1.15, P = 0.0004), 6MWT (WMD, 25.56; 95% CI, 16.34 to 34.79, P < 0.00001), fatigue (WMD, -4.34; 95% CI, -5.83 to -2.84, P < 0.00001), and MSQOL-54 in people with MS (WMD, 11.80; 95% CI, 5.70 to 17.90, P = 0.0002) in people with MS. Subgroup analyses showed that aerobic exercise, resistance exercise, and multicomponent training were all effective in improving fatigue in people with MS, with resistance exercise being the most effective intervention type. In addition, a younger age was associated with a larger improvement in fatigue. Furthermore, aerobic exercise and multicomponent training were all effective intervention type. In improving quality of life in people with MS, with aerobic exercise being the most effective in the most effective intervention type.

Conclusion: Exercise had beneficial effects in improving balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. Resistance exercise and aerobic exercise are the most effective interventions for improving fatigue and quality of life in people with MS, respectively. The effect of exercise on improving fatigue was associated with the age of the participants, with the younger age of the participants, the greater the improvement in fatigue.

Systematic review registration: https://www.crd.york.ac.uk/prospero/ display_record.php?RecordID=371056, identifier: CRD42022371056.

KEYWORDS

exercise, multiple sclerosis, balance, walking ability, walking endurance, fatigue, quality of life

Introduction

Multiple sclerosis (MS) is a disabling neurological disease common in young and middle-aged adults with a mean age of onset of 29 years (1, 2). The manifestations of people with MS include physical symptoms such as muscle weakness, muscle spasms, decreased mobility and balance, and increased sensitivity to pain, with psychiatric episodes and fatigue leading to severe disability and deterioration of physical condition, mobility, cognition, and quality of life (3–7). In fact, 50–80% of people with MS, even in its mild stages, will result in impaired walking performance, further reducing their quality of life as the disease progresses (8).

People with MS usually use pharmacologic strategies that down-regulate immune activation to halt disease progression, prevent relapse, or partially reverse disability (9). However, pharmacologic treatments are often accompanied by adverse effects such as infection, headache, and diarrhea (10). In recent years, exercise has been found to be beneficial in improving aerobic capacity, muscle strength, flexibility, balance, fatigue, and cognitive function in people with MS (11).

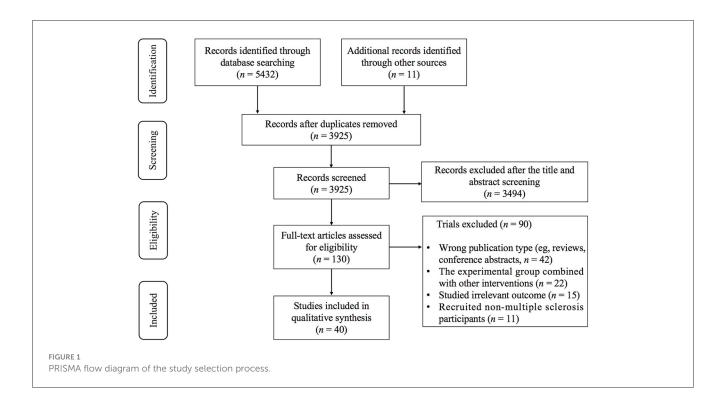
A growing body of studies have examined the effect of exercise in people with MS, while findings of available studies were conflicting. Kubsik et al. (12) showed that exercise not only contributes to the physical abilities of people with MS, but also to their mood and attitude toward exercise. In addition, Grazioli et al. (13) reported that multicomponent training was effective in improving quality of life, walking ability, and balance, as well as reducing depression, fatigue, and disease severity in people with MS. Furthermore, Feys et al. (14) showed that running improved aerobic capacity, functional mobility, spatial memory, fatigue, and quality of life in people with MS. However, a meta-analysis showed no significant differences in step count and moderate to vigorous physical activity among individuals with MS, both within and between groups receiving physical activity interventions (14). To the best of our knowledge, Arntzen et al. (15) included only eight randomized controlled trials (RCTs) and the number of included studies was quite small, and the authors included one study in which participants in the control group also received exercise intervention. Another study evaluated the effects of Pilates on balance in people with MS, which included only seven RCTs (16). However, the authors included studies in which control group participants also received exercise interventions such as home exercises (two studies), relaxation exercises (one study), aerobic exercises (one study), and traditional exercises (one study), which may have had some impact on their findings. Therefore, we conducted a comprehensive systematic review and meta-analysis of

RCTs to explore the effects of exercise on balance, walking ability, walking endurance, fatigue, and quality of life in people with MS.

Methods

This systematic review and meta-analysis was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA, 2020) guidelines (17) and the implementing PRISMA in exercise, rehabilitation, sport medicine, and sports science (PERSiST) guidance (18). The protocol was registered with PROSPERO (CRD42022371056).

Search strategy


We searched the PubMed, Web of Science, Scopus, and Cochrane databases for RCTs relating to the effect of exercise on balance, gait, fatigue, and quality of life in patients with MS from the inception dates to March 1, 2024 (Supplementary Table 1). We also manually searched references listed in the identified systematic reviews and meta-analyses, in addition to the reference lists of identified studies included in the screening. Two authors (L.D. and H.X.) independently completed the article screening using a standardized form.

Inclusion and exclusion criteria

Inclusion criteria were: (1) RCTs; (2) included an intervention and control group; (3) had people with MS as study subjects; (4) had balance, walking ability, walking endurance, fatigue, or quality of life as the outcome measures. Exclusion criteria were: (1) non-English publications; (2) animal model publications; (3) review articles; and (4) conference articles.

Data extraction

Two authors (L.D. and H.X.) independently performed the data extraction, mainly including: (1) study characteristics (surname of the first author, year of publication, and sample size); (2) intervention characteristics (intensity, duration, and frequency); (3) participant characteristics (gender, disease stage, and disease duration); (4) treatment effects [mean and standard deviation (SD) values reflecting changes in balance, walking ability,

walking endurance, fatigue, and quality of life from baseline to post intervention].

Methodological quality assessment

The methodological quality for the included studies was independently assessed by two authors (L.D. and H.X.) based on the Cochrane risk of bias tool (RoB2) (19) and Physiotherapy Evidence Database (PEDro) scale (20, 21). If there was disagreement between the two authors, a third author (LY) would join the discussion until the three reach a consensus. RoB2 was assessed mainly from seven items: random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other biases. PEDro scale is an 11-item scale used to evaluate the quality of the RCTs of the physical therapy studies, where studies scoring <4, 4–5, 6–8, and >9 points are considered poor quality, average, good, and excellent, respectively (21).

Statistical analysis

We extracted the mean and SD values reflecting changes in timed up and go test (TUG), Berg balance scale (BBS), multiple sclerosis walking scale-12 (MSWS-12), 6-minute walk test (6MWT), fatigue severity scale (FSS), modified fatigue impact scale (MFIS), and multiple sclerosis quality of life-54 (MSQOL-54) from baseline to post-intervention from each study for pooling effects. Weighted mean difference (WMD) and 95% confidence interval (CI) were used to estimate the effects of exercise on balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. For studies reporting standard error (SE) or 95% confidence interval (CI), SD was calculated using the previously described formula. Otherwise, PlotDigitizer online software (www.plotdigitizer.com) was used (22). The I^2 static was used to assess heterogeneity, where $I^2 < 25\%$ indicates no significant heterogeneity, $25\% < I^2 < 50\%$ indicates low heterogeneity, $50\% < I^2 < 75\%$ indicates moderate heterogeneity, and $I^2 > 75\%$ indicates high heterogeneity (23). If there was a high heterogeneity ($I^2 > 60\%$), meta-regression analysis, subgroup analysis, and sensitivity analysis were used to interpret the results (19).

For subgroup analyses, we examined the effects of intervention type (aerobic exercise, resistance exercise, and multicomponent exercise), participants' age (young, <45 years old; and middle-aged and older adult, \geq 45 years old), and type of fatigue detection (FSS and MFIS) on fatigue and intervention type (aerobic exercise and multicomponent exercise) on quality of life in people with MS. Meta-regressions were conducted based on the participants' age, disease duration, duration of intervention, session duration, and weekly time. The analysis result, funnel plot, and forest plot were generated using RevMan 5.2 software. Statistical significance was considered for outcomes with a *P* < 0.05.

Results

Study selection

As shown in Figure 1, 5,432 records were initially identified from the databases and 11 records from other sources. Three

thousand nine hundred and twenty-five studies remained after excluding duplicates and 130 potentially eligible studies remained after the title and abstract screening. Ninety studies were excluded by reading the full text: (1) wrong publication type (e.g., reviews, conference abstracts, n = 42); (2) the experimental group combined with other interventions (n = 22); (3) studied irrelevant outcome (n = 15); (4) recruited non-multiple sclerosis participants (n = 11). Finally, 40 studies (24–63) were considered eligible for systematic review and meta-analysis.

Characteristics of the included studies

The main characteristics of participants and interventions were shown in Table 1. Among the included studies, there were 1,300 people with MS in the 56 exercise groups and 827 people with MS in the 40 control groups. Six studies involved women, 1 study involved men, and 30 studies involved both men and women. The mean age of the participants ranged from 16.3 to 61.6 years. Thirtyseven studies (24-28, 30-32, 34-49, 51-63) involved participants with mean age <60 years, and three studies (29, 33, 50) involved participants with mean age ≥ 60 year. Most interventions specified aerobic exercise (n = 16) (24–26, 30, 33, 34, 36, 38, 39, 45, 46, 51, 53, 56, 58, 63), balance training (n = 10) (29, 37, 43, 47, 50, 52, 54, 55, 59, 61), resistance exercise (n = 6) (27, 28, 32, 41, 44, 49), or other types of exercise [such as multicomponent training (n (31, 35, 42, 48, 62) water sports (n = 2) (40, 57); interval training (n = 1) (60)]. Of the 40 studies, 26 studies provided data for balance, which was tested by BBS (20 studies) (24, 29, 34, 36-40, 42-44, 46, 49, 50, 52-54, 58, 59, 61) and TUG (17 studies) (25-27, 33, 34, 37, 38, 42-44, 50, 51, 54-56, 59, 61, 62). In addition, 17 studies provided data for gait, which was tested by MSWS-12 (walking ability, eight studies) (29, 30, 34, 47, 50, 55, 60, 61) and 6MWT (walking endurance, 14 studies) (25, 28, 30, 39, 40, 42, 45, 48, 51, 53, 54, 56, 60, 61). Furthermore, 17 studies provided data for fatigue, which was tested by FSS (nine studies) (24, 26, 28, 42, 44, 51-54) and MFIS (eight studies) (30, 32, 33, 39, 41, 43, 50, 57). Moreover, six studies provided data for quality of life (24, 31, 45, 48, 57, 63), which was tested by MSQOL-54.

Meta-analysis results

Effects of exercise on balance in people with MS

The balance of people with MS was detected by BBS and TUG, with 20 studies providing BBS data and 20 studies providing TUG data. Our results showed that exercise had a significant effect on improving BBS (WMD, 3.77; 95% CI, 3.01 to 4.53, P < 0.00001, $I^2 = 50\%$, Figure 2) and TUG (WMD, -1.33; 95% CI, -1.57 to -1.08, P < 0.00001, $I^2 = 34\%$, Figure 3) in people with MS.

Effects of exercise on walking ability and walking endurance in people with MS

MSWS-12 was used to test walking ability and 6MWT was used to test walking endurance of people with MS. It was found that exercise had a significant effect on improving MSWS-12 (WMD, -2.57; 95% CI, -3.99 to -1.15, P = 0.0004, $I^2 = 19\%$, Figure 4) and 6MWT (WMD, 25.56; 95% CI, 16.34 to 34.79, P < 0.00001, $I^2 = 47\%$, Figure 5) in people with MS.

Effects of exercise on fatigue in people with MS

The fatigue of people with MS was detected by FSS and MFIS. As shown in Figure 6, exercise had a significant effect on improving fatigue in people with MS (WMD, -4.34; 95% CI, -5.83 to -2.84, P < 0.00001, $I^2 = 79\%$).

Effects of exercise on quality of life in people with MS

The fatigue of people with MS was detected by MSQOL-54. As shown in Figure 7, exercise had a significant effect on improving MSQOL-54 in people with MS (WMD, 11.80; 95% CI, 5.70 to 17.90, P = 0.0002, $I^2 = 66\%$).

Our meta-analysis results showed high heterogeneity in fatigue $(I^2 = 78\%)$ and quality of life $(I^2 = 66\%)$, to explain the heterogeneity between included studies and find modifiable factors of exercise, meta-regression analysis, subgroup analysis, and sensitivity analysis were further performed.

Meta-regression analysis

Meta-regression analyses were performed on intervention characteristics (duration of intervention, weekly time, and session duration) and participant characteristics (age and disease duration). There was no significant association between age (P = 0.782), duration of intervention (P = 0.124), weekly time (P = 0.730), session duration (P = 0.124), or disease duration (P = 0.559) and fatigue (Supplementary Figure 1). In addition, no significant associations were observed between duration of intervention (P = 0.878), age (P = 0.172), or disease duration (P = 0.289) and quality of life (Supplementary Figure 2).

Subgroup analysis

Fatigue

We conducted three different subgroup analyses by participants' age, type of fatigue detection, and type of intervention. Subgroup analysis indicated that a younger age was associated with larger improvement in fatigue (young, age < 45, WMD, -6.67; 95% CI, -9.57 to -3.60, P < 0.0001, $I^2 = 91\%$; middle-aged and older adult, age \geq 45, WMD, -1.76; 95% CI, -3.29 to -0.24, P = 0.02, $I^2 = 22\%$, Supplementary Figure 3).

Stratifying the analysis by type of fatigue detection, the improvement in fatigue scores remained significant in FSS (WMD, -2.75; 95% CI, -4.27 to -1.24, P = 0.0004, $I^2 = 81\%$) and MFIS (WMD, -5.84; 95% CI, -9.28 to -2.40, P = 0.0009, $I^2 = 65\%$, Supplementary Figure 4).

In addition, aerobic exercise (WMD, -7.07; 95% CI, -11.25 to -2.88, P = 0.0009, $I^2 = 81\%$), resistance exercise (WMD, -8.03; 95% CI, -11.84 to -4.22, P < 0.0001, $I^2 = 0\%$), and

05

TABLE 1 Characteristics of the studies included in this meta-analysis.

References	Sample size	Sex	Age (y)	EDSS	Disease duration (y)	Intervention	Details of interventions	Outcome measures
Ahmadi et al. (24)	IG = 11	11 W	IG: 32.3 (8.7)	IG: 2.0 (1.1)	IG: 4.7 (5.6)	Yoga	8 weeks, 60–70 min, each position for 10–30 s, group rest for 30–60 s, 3 times/week	FFS and MSQOL-54
	CG = 10	10 W	CG: 36.7 (9.3)	CG: 2.3 (1.3)	CG: 5.0 (3.1)	Usual care		
Androwis et al. (25)	IG = 6	3 M and 3 W	IG: 46.5 (5.2)	NR	NR	Walking	4 weeks, 30 min, 2 times/week	TUG and 6MWT
	CG = 4	1 M and 3 W	CG: 55.0 (9.6)	NR	NR	Rehabilitation nursing		
Cakt et al. (26)	IG = 14	5 M and 9 W	IG: 36.4 (10.5)	NR	IG: 9.2 (5.0)	Bicycle	8 weeks, 30–35 min, 30–40 W low resistance, twice/week	TUG and FFS
	IG = 10	2 M and 8 W	IG: 43.0 (10.2)	NR	IG: 6.2 (2.2)	Balance training	8 weeks, 30–35 min, 2 times/week	
	CG = 9	3 M and 6 W	CG: 35.5 (10.9)	NR	CG: 6.6 (2.4)	Usual care		
Andreu-Caravaca et al. (27)	IG = 18	10 M and 8 W	IG: 44.9 (10.6)	IG: 3.2 (1.7)	NR	Strength training	10 weeks, 40% 1 RM, 3 times per week	TUG
	CG = 12	5 M and 7 W	CG: 48.4 (10.2)	CG: 3.3 (1.3)	NR	Usual care		
Andreu-Caravaca et al. (28)	IG = 18	10 M and 8 W	IG: 44.9 (10.6)	IG: 3.2 (1.7)	NR	Strength training	10 weeks, 40% 1 RM, 3 times per week	6MWT and FSS
	CG = 12	5 M and 7 W	CG: 48.4 (10.2)	CG: 3.3 (1.3)	NR	Usual care		
Carling et al. (29)	IG = 25	6 M and 19 W	IG: 61.6 (11.3)	IG: 6.2 (0.5)	NR	Balance training	7 weeks, 60 min, 2 times/week	BBS, TUG, and MSWS-12
	CG = 26	10 M and 16 W	CG: 54.7 (8.2)	CG: 6.1 (0.5)	NR	Usual care		
Langeskov-Christensen et al. (30)	IG = 43	17 M and 26 W	IG: 44.0 (9.5)	IG: 2.7(1.4)	IG: 10.9 (7.9)	Aerobic training	24 weeks, 30–60 min, 65–95% maximum heart rate, twice/week	MFIS, FSS, 6MWT, and MSWS-12
	CG = 43	17 M and 26 W	CG: 45.6 (9.3)	CG: 2.8(1.6)	CG: 8.6 (6.0)	Usual care		
Correale et al. (31)	IG = 14	14 W	IG: 45.4 (7.2)	NR	NR	Combination training	12 weeks, 45–60 min, 50–70% reserve heart rate, 2 times/week	MFIS and MSQOL-54
	CG = 9	9 W	CG: 48.3 (6.1)	NR	NR	Usual care		
Dodd et al. (32)	IG = 36	10 M and 26 W	IG: 47.7 (10.8)	NR	NR	Strength training	10 weeks, 45 min, 2 sets per action, 10–12 times, 2 times per week	MFIS
	CG = 35	9 M and 26 W	CG: 50.4 (9.6)	NR	NR	Usual care		
Fleming et al. (33)	IG = 29	29 W	IG: 45.3 (8.6)	NR	NR	Pilates	8 weeks, repeat actions 4–10 times, 2 times/week	MFIS

(Continued)

TABLE 1 (Continued)

References	Sample size	Sex	Age (y)	EDSS	Disease duration (y)	Intervention	Details of interventions	Outcome measures
	CG = 34	34 W	CG: 48.2 (9.8)	NR	NR	Usual care		
Forsberg et al. (34)	al. (34) IG = 35 28 M and 7 W IG: 52.0 (10) NR IG: 15.0 (9.0)		IG: 15.0 (9.0)	6		BBS, TUG, and MSWS-12		
	CG = 38	31 M and 7 W	CG: 56.3 (11)	NR	CG: 16.0 (11.0)	Usual care		
Garrett et al. (35)	IG = 63	13 M and 50 W	IG: 51.7 (10)	NR	IG: 9.8 (7.0)	Physical therapy	10 weeks, 12 actions per action, with/2–5% increase in load during easy times, 60 min per week	MFIS and 6MWT
	IG = 67	22 M and 45 W	IG: 50.3 (10)	NR	IG: 10.5 (6.9)	Combination training	10 weeks, 60 min per week	
	IG = 63	19 M and 44 W	IG: 49.6 (10)	NR	IG: 11.6 (8.0)	Yoga	10 weeks, action duration 30–90 s, 60 min per week	
	CG = 49	6 M and 43 W	CG: 48.8 (11)	NR	CG: 10.6 (8.2)	Usual care		
Gervasoni et al. (36)	IG = 15	NR	IG: 49.6 (9.4)	NR	IG: 14.5 (9.7)	Treadmill	2 weeks, 45 min, 11–12 RPE intensity, completed 10–12 times in 2 weeks	BBS and FSS
	CG = 15	NR	CG: 45.7 (8.9)	NR	CG: 15.5 (10.3)	Usual care		
Eftekharsadat et al. (37)	IG = 15	5 M and 10 W	IG: 33.4 (8.1)	NR	IG: 5.8 (3.9)	Stability training	12 weeks, 20 min, 2 times/week	BBS and TUG
	CG = 15	3 M and 12 W	CG: 37.0 (8.3)	NR	CG: 8.3 (4.3)	Usual care		
Gheitasi et al. (38)	IG = 15	15 M	IG: 30.6 (5.3)	IG: 4.6 (1.6)	IG: 5.5 (1.1)	Pilates	12 weeks, 60 min, 3 times/week	TUG
	CG = 15	15 M	CG: 32.1 (6.3)	CG: 4.5 (1.1)	CG: 4.0 (1.0)	Usual care		
Hogan et al. (39)	IG = 35	15 M and 20 W	IG: 52.0 (11.0)	NR	IG: 13.0 (8.0)	Personal balance training	10 weeks, 60 min per week	MFIS, BBS, and 6MWT
	IG = 48	18 M and 30 W	IG: 57.0 (10.0)	NR	IG: 18.0 (9.0)	Group balance training	10 weeks, 60 min per week	
	IG = 13	5 M and 8 W	IG: 58.0 (8.0)	NR	IG: 15.0 (8.0)	Yoga	10 weeks, 60 min per week	
	CG = 15	2 M and 13 W	CG: 49.0 (6.0)	NR	CG: 10.0 (3.0)	Usual care		
Kargarfard et al. (40)	IG = 17	NR	IG: 36.5 (9.0)	IG: 3.4 (1.1)	IG: 6.4 (2.3)	Water sports	8 weeks, 30–40 min	6MWT, BBS, MFIS, and MSQOL-54
	CG = 15	NR	CG: 36.2 (7.4)	CG: 3.7 (1.0)	CG: 6.1 (2.0)	Usual care		
Learmont et al. (42)	IG = 20	5 M and 15 W	IG: 51.4 (8.06)	IG: 6.1 (0.4)	IG: 13.4 (6.4)	Aerobic, resistance, and balance training	12 weeks, 45–60 min	6MWT, BBS, TUG, and FSS
	CG = 12	4 M and 8 W	CG: 51.8 (8.0)	CG: 5.8 (0.5)	CG: 12.6 (8.1)	Usual care		
Najafi et al. (43)	IG = 28	28 W	IG: 38.4 (4.6)	IG: 2.5 (1.2)	NR	Stability training	8 weeks, 60–80 min, 3 times/week	TUG and BBS
	CG = 28 28 W CG: 36.4 (3.5)		CG: 2.4 (0.8)	NR	Usual care			
Negahban et al. (44)	IG = 12	NR	IG: 36.7 (6.7)	IG: 3.5 (1.1)	IG: 8.5 (6.8)	Strength training	5 weeks, 30 min, 3 times/week	FSS, BBS, and TUG

(Continued)

References	Sample size	Sex	Age (y)	EDSS	Disease duration (y)	Intervention	Details of interventions	Outcome measures
	CG = 12	NR	CG: 36.8 (8.7)	CG: 3.8 (1.4)	CG: 7.2 (2.9)	Usual care		
Ozkul et al. (45)	IG = 17	4 M and 13 W	IG: 35.9 (9.7)	IG: 1.5 (0.7)	IG: 7.2 (6.1)	Pilates	8 weeks, 50–60 min, 60–80 maximum heart rate, 3 times per week	6MWT and MSQOL-5
	CG = 17	4 M and 13 W	CG: 36.8 (9.0)	CG: 1.7 (0.9)	CG: 5.7 (4.9)	Usual care		-
Pan et al. (46)	IG = 30	8 M and 22 W	IG: 42.2 (5.1)	IG: 3.0 (0.7)	IG: 6.2 (2.3)	Baduanjin	24 weeks, 60 min per day	BBS
	IG = 30	9 M and 21 W	IG: 40.9 (4.8)	IG: 2.8 (0.9)	IG: 5.2 (2.0)	Yoga	24 weeks, 60 min per day	_
	CG = 20	6 M and 14 W	CG: 42.3 (4.5)	CG: 2.9 (0.8)	CG: 5.4 (2.8)	Usual care		_
Robinson et al. (47)	IG = 20	6 M and 14 W	IG: 52.6 (6.1)	NR	NR	Balance game	4 weeks, 40–60 min, 2 times/week	FSS and MSWS-12
	IG = 19	7 M and 12 W	IG: 53.9 (6.5)	NR	NR	Balance training	4 weeks, 40–60 min, 2 times/week	_
	CG = 17	5 M and 12 W	CG: 51.9 (4.7)	NR	NR	Usual care		-
Romberg et al. (48)	IG = 47	17 M and 30 W	IG: 43.8 (6.3)	NR	IG: 6.0 (6.5)	Combination training	26 weeks, 3–4 times/week	MSQOL-54
	CG = 48	17 M and 31 W	CG: 43.9 (7.1)	NR	CG: 5.5 (6.4)	Usual care		_
Sokhangu et al. (49)	IG = 10	10 W	IG: 38.7 (7.2)	IG: 1.8 (0.7)	IG: 4.2 (2.1)	Strength training	8 weeks, 60 min, 8–15 times per action, 3 times per week	BBS
	CG = 10	10 W	CG: 40.1 (5.6)	CG: 1.9 (0.7)	CG: 4.4 (2.0)	Usual care		
Sosnoff et al. (50)	IG = 13	3 M and 10 W	IG: 60.1 (6.3)	IG: 5.5 (2.5)	IG: 13.9 (6.7)	Balance training	12 weeks, 1–3 groups, 8–12 times, 45–60 min	TUG, 6MWT, BBS, and MSWS-12
	CG = 14	3 M and 11 W	CG: 60.1 (6.0)	5.5 (3.5)	17.7 (11.3)	Usual care		
Straudi et al. (51)	IG = 8	4 M and 4 W	IG: 49.6 (12.0)	IG: 5.8 (0.8)	IG: 17.1 (12.0)	Gait practice	6 weeks, 30 min, 2 times/week	6MWT and TUG
	CG = 8	1 M and 7 W	CG: 60.0 (8.8)	CG: 5.7 (0.7)	CG: 18.6 (10.8)	Usual care		_
Tarakci et al. (52)	IG = 51	17 M and 34 W	IG: 41.5 (9.4)	IG: 4.9 (1.4)	IG: 9.0 (4.7)	Balance training	12 weeks, 60 min, 3 times/week	BBS and FSS
	CG = 48	18 M and 30 W	CG: 39.7 (11.2)	CG: 4.2 (1.4)	CG: 8.4 (5.4)	Usual care		
Tollár et al. (53)	IG = 14	2 M and 12 W	IG: 48.2 (5.5)	NR	IG: 12.1 (2.7)	Agility training	5 weeks, 60 min, 5 times/week	BBS and 6MWT
	IG = 14	2 M and 12 W	IG: 46.9 (6.5)	NR	IG: 13.6 (4.1)	Balance training	5 weeks, 60 min, 5 times/week	
	IG = 14	2 M and 12 W	IG: 48.1 (5.7)	NR	IG: 13.2 (4.4)	Bicycle	5 weeks, 60 min, 5 times/week	_
	CG = 12	1 M and 11 W	CG: 44.4 (6.8)	NR	CG: 14.0 (4.11)	Usual care		_
Grubić Kezele et al. (41)	IG = 13	5 M and 8 W	IG: 50.0 (9.3)	IG: 3.8 (1.8)	NR	Strength training	8 weeks, 60 min, 2 times/week	MFIS
	CG = 11	5 M and 6 W	CG: 53.8 (13.8)	CG: 4.0 (2.0)	NR	Usual care		
Yazgan et al. (54)	IG = 15	2 M and 13 W	IG: 47.5 (10.5)	IG: 4.2 (1.4)	IG: 12.1 (6.6)	Balance game	8 weeks, 60 min, 2 times/week	BBS, TUG, and FSS

Frontiers in Public Health

(Continued)

scale; MSQOL-54, Quality of Life-54 Questionnaire. Data were presented as mean (standard deviation).

References	Sample size	Sex	Age (y)	EDSS	Disease duration (y)	Intervention	Details of interventions	Outcome measures
	IG = 12	12 W	IG: 43.1 (8.7)	IG: 3.8 (1.5)	IG: 14.9 (6.6)	Balance training	8 weeks, 60 min, 2 times/week	
	CG = 15	2 M and 13 W	CG: 40.7 (8.8)	CG: 4.1 (1.3)	CG: 11.1 (5.1)	Usual care		
Young et al. (56)	IG = 27	5 M and 22 W	IG: 49.7 (9.4)	NR	IG: 13.6 (8.3)	Strength training	12 weeks, 60 min, 3 times/week	TUG and 6MWT
	IG = 26	6 M and 20 W	IG: 48.4 (10.0)	NR	IG: 11.0 (5.6)	Yoga	12 weeks, 60 min, 3 times/week	-
	CG = 28	4 M and 24 W	CG: 47.3 (10.3)	NR	CG: 13.4 (8.5)	Usual care		
Kargarfard et al. (57)	IG = 10	NR	IG: 33.7 (8.6)	IG: 2.9 (0.9)	IG: 4.9 (2.3)	Aquatic exercise	8 weeks, 60 minutes, 3 times/week	MFIS
	CG = 11	NR	CG: 31.6 (7.7)	CG: 3.0 (0.7)	CG: 4.6 (1.9)	Usual care		-
Nilsagård et al. (55)	IG = 41	10 M and 31 W	IG: 50.0 (11.5)	NR	IG: 12.5 (8.0)	Balance training	6 weeks, 30 min, 2 times/week	TUG and MSWS-12
	CG = 39	10 M and 29 W	CG: 49.4 (11.1)	NR	CG: 12.2 (9.2)	Usual care		-
Ahadi et al. (63)	IG = 10	10 W	IG: 50.0 (11.5)	NR	NR	Running	8 weeks, 30 min, 3 times/week	MSQOL-54
	IG = 11	11 W	IG: 50.0 (11.5)	NR	NR	Yoga	8 weeks, 30 min, 3 times/week	-
	CG = 10	10 W	CG: 49.4 (11.1)	NR	NR	Usual care		
Abadi Marand et al. (61)	IG = 32	17 M and 15 W	IG: 40.4 (6.0)	IG: 4.1 (1.1)	IG: 14.4 (5.2)	Balance training	5 weeks, 60–70 min, 3 times/week	BBS, TUG, and MSWS-12
	CG = 32	18 M and 14 W	CG: 40.7 (6.2)	CG: 3.8 (1.0)	CG: 12.8 (5.9)	Usual care		-
Monjezi et al. (59)	IG = 17	3 M and 14 W	IG: 38.1 (9.5)	IG: 4.8 (1.0)	IG: 9.7 (6.3)	Balance Training	4 weeks, 20 min, 3 times/week	BBS and TUG
	CG = 17	3 M and 14 W	CG: 35.1 (8.0)	CG: 4.6 (0.7)	CG: 8.9 (5.2)	Usual care		-
Vural et al. (62)	IG = 10	2 M and 8 W	IG: 16.3 (1.6)	IG: 1.2 (0.8)	IG: 2.3 (1.2)	Combination training	8 weeks, 60 min, 2 times/week	FSS, TUG, and 6MWT
	IG = 10	2 M and 8 W	IG: 16.3 (1.6)	IG: 1.2 (0.8)	IG: 2.3 (1.2)	Combination training	32 weeks, 60 min, 2 times/week	
	CG = 10	1 M and 9 W	CG: 17.4 (1.8)	CG: 1.7 (0.8)	CG: 2.3 (1.7)	Usual care		
Lysogorska et al. (58)	IG = 15	5 M and 10 W	IG: 39.0 (10.4)	NR	IG: 12.6 (8.4)	Yoga	12 weeks, 60–75 min, 2 times/week	BBS and 6MWT
	IG = 9	9 W	IG: 46.1 (10.3)	NR	IG: 18.1 (12.3)	Combination training	12 weeks, 60-75 min, 2 times/week	
	CG = 12	1 M and 11 W	CG: 46.2 (10.4)	NR	CG: 18.5 (7.9)	Usual care		-
Riemenschneider et al. (60)	IG = 42	13 M and 29 W	IG: 37.3 (10.1)	IG: 1.4 (0.9)	IG: 0.9 (0.6)	Interval training	24 weeks, 30–60 min, 2 times/week	6MWT and MSWS-12
	IG = 42	13 M and 29 W	IG: 37.3 (10.1)	IG: 1.4 (0.9)	IG: 0.9 (0.6)	Interval training	48 weeks, 30–60 min, 2 times/week	
	CG = 42	8 M and 34 W	CG: 37.4 (9.7)	CG: 1.8 (1.1)	CG: 0.9 (0.6)	Usual care		

IG, intervention group; CG, control group; M, male; W, woman; NR, no report; TUG, timed up and go test; BBS, Berg balance scale; 6MWT, 6-minute walk test; MSIS-12, The 12-Item MS Walking Scale; FSS, Fatigue Severity Scale; MFIS, modified fatigue impact

Du et al.

Frontiers in Public Health

hmadi et al. (2010) 7.62 7.0448563 11 -2.8 8.9927137 10 1.1% 10.42 [3.46, 17.38] Carling et al. (2017) 4.57 10.97756918 25 0.29 9.84133597 26 1.5% 3.65 [2.08, 9.38] Techkarss et al. (2015) 2.6 4.11 35 1.6 9 38 3.8% 1.00 [2.17, 4.17] Servasoni et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.86 [4.23, 5.95] Shelasi et al. (2014) 5.3 1.07 0.716102497 15 1.0.4% 4.50 [3.86, 5.14] + dogan et al. (2014) 5.3 1.51 32746 17 2.1 4.07287199 15 1.2% 8.40 [0.46, 17.26] + dogan et al. (2014) 5.3 1.51 32746 17 2.1 4.17287199 15 1.5% 3.07 [1.50, 5.90] + + - earmonth et al. (2012) 5.3 1.24 656429737 12 1.9% 2.01 [-5.80, 5.61] + + + + + + + + + + + <th></th> <th></th> <th>Experimental</th> <th></th> <th></th> <th>Control</th> <th></th> <th></th> <th>Mean Difference</th> <th>Mean Difference</th>			Experimental			Control			Mean Difference	Mean Difference
Carling et al. (2017) 4.57 10.97756918 25 0.92 9.84133597 26 1.5% 3.65 [-2.08, 9.38] Effektharsa et al. (2016) 0.2 3.25004615 15 0.27 9.00001667 15 2.0% -0.07 [4.91, 4.77] Gervason i et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.86 [4.23, 5.65] Chegan et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.86 [4.23, 5.65] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.2% 8.80 [2.26, 15.34] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.1% 8.80 [0.24, 15.34] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.1% 8.80 [1.26, 15.34] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.1% 8.80 [1.26, 15.34] Hogan et al. (2012) 6 10.90275195 20 3.2 9.94535067 12 1.0% 2.80 [-4.58, 10.18] Learmonth et al. (2012) 6 10.90275195 20 3.2 9.94535067 12 1.0% 2.80 [-4.58, 10.18] Learmonth et al. (2012) 7 5 3.1 1.24811095 20 3.2 9.94535067 12 0.9% 2.10 [-5.38, 9.56] Lysogorska et al. (2023) 6.3 9.99649939 9 2.4 6.56429737 12 0.9% 2.10 [-5.38, 0.56] Lysogorska et al. (2023) 6 19 2.9787917 32 1.68 2.74043792 28 2.2% 3.51 [2.11, 4.91] Hogan et al. (2013) 3.9 7.54769501 28 -2.32 6.552002301 28 3.1% 6.25 [2.56, 9.94] Majaff et al. (2013) 8 6.20458701 12 2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negabban et al. (2013) 8 6.20458701 12 2.217 6.59705237 12 1.9% 7.50 [2.49, 12.51] Pan et al. (2023) 6 .13 3.591631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Pan et al. (2021) 3 4.3 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Pan et al. (2021) 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.49, 3.17] Pan et al. (2021) 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.49, 9.11] Sokhangu et al. (2013) 4.3 5.2 14 -0.2 2.62 12 6.6% 4.01 [2.21, 5.99] Tarakic et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.6% 4.61 (2.0, 1.9, 9.11] Sokhangu et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.6% 4.01 [2.21, 5.99] Toliár et al. (2020) 6.5 8.7.20660401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Heterogenetity Tau'= 1.34; Chf'= 56.06, df = 28 (P = 0.001); P=50% Hete	Study or Subgroup	Mean		Total	Mean		Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Eftekhärsa et al. (2015) 0.2 3.25004615 15 0.27 9.00001667 15 2.0% -0.07 [-4.91, 4.77] Forsberg et al. (2016) 2.6 4.1 35 1.6 9 38 38% 1.00 [-2.17, 4.17] Gervasoni et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.86 [-4.23, 5.95] Gheitasi et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.2% 8.00 [2.0, 61, 5.34] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.2% 8.00 [2.0, 61, 5.34] Hogan et al. (2014) 6 1.6132746 17 -2.1 4.10731056 15 5.8% 3.70 (1.50, 5.90] Learmonth et al. (2012) 6 1.090275195 20 3.2 9.94535067 12 0.9% 2.10 [-5.38, 9.58] Lysogorska et al. (2023) a 2. 5.7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [-5.30, 5.50] Lysogorska et al. (2023) 5.19 2.9787917 32 1.68 2.74043792 32 8.2% 3.51 [2.11, 4.91] Monjezi et al. (2023) 5.19 2.9787917 32 1.68 2.74043792 32 8.2% 3.51 [2.11, 4.91] Monjezi et al. (2013) 5.3 5.91631642 12 -2.17 6.59705237 12 1.7% 0.10 [-5.30, 5.50] Lysogorska et al. (2013) 5.3 5.91631642 12 -2.17 6.59705237 12 1.7% 0.10 [-5.30, 5.50] Pan et al. (2013) 5.63 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Magain et al. (2013) 5.63 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Pan et al. (2021) 2.46 1.76229963 30 0.3 1.68520028 20 9.4% 3.37 [2.56, 9.94] Pan et al. (2021) 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Soshoff et al. (2021) 4.3 9.62265687 51 -2.13 1.27026572 48 2.3% 6.46 [2.00, 10.92] Toliár et al. (2020) 5.9 2.26 14 -0.2 2.62 12 5.4% 6.30 [3.38, 8.67] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [0.77, 10.43] Yazgan et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 8.67] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 8.67] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Toliár et al. (2020) 5.8 7.20650401 15 0.94 7.42942797 12 2.0%	Ahmadi et al. (2010)	7.62	7.0448563	11	-2.8	8.9927137	10	1.1%	10.42 [3.46, 17.38]	
Forsberg et al. (2016) 2.6 4.1 35 1.6 9 38 3.8% 1.00 [-2.17, 4.17] Gervasoni et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.86 [-4.23, 5.95] Hogan et al. (2014) 5.3 12.08759695 13 -3.1 11.75287199 15 0.7% 8.40 [-0.46, 17.26] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.7% 8.80 [2.26, 15.34] Hogan et al. (2012)a 6 10.90275195 20 3.2 9.94535067 12 0.9% 2.10 [5.53, 9.56] Lysogorska et al. (2023) 2.5 7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [-5.30, 5.50] Lysogorska et al. (2023) 2.5 7.74402996 15 2.4 6.56429737 12 1.9% 3.51 [2.11, 4.91] Marand et al. (2013) 3.99649939 9 2.4 6.56429737 12 1.9% 7.50 [2.49, 15, 5.4] Negahban et al. (2013) 3.3 5.91631642 12 -2.17 6.59705237 12 <td>Carling et al. (2017)</td> <td>4.57</td> <td>10.97756918</td> <td>25</td> <td>0.92</td> <td>9.84133597</td> <td>26</td> <td>1.5%</td> <td>3.65 [-2.08, 9.38]</td> <td></td>	Carling et al. (2017)	4.57	10.97756918	25	0.92	9.84133597	26	1.5%	3.65 [-2.08, 9.38]	
Gervasoni et al. (2014) 4.01 8.93829402 15 3.15 4.61549564 15 1.9% 0.88 [4.23, 5.95] Gheitasi et al. (2021) 3.8 1 15 -0.7 0.78102497 15 10.4% 4.50[3.86, 5.14] Hogan et al. (2014) 5.7 9.65349678 48 -3.1 11.75287199 15 1.2% 8.80[2.26, 15.34] Hogan et al. (2014) 3.8 10.81295519 35 -3.1 11.75287199 15 1.2% 8.80[2.26, 15.34] Hogan et al. (2012) 1.6 1.5132746 17 -2.1 4.1073106 15 5.8% 3.70[150, 5.90] Learmonth et al. (2012) 5.3 11.24811095 20 3.2 9.94535067 12 1.0% 2.80[4.58, 10.18] Lysogorska et al. (2023) 5.1 9.24 6.56429737 12 0.9% -3.16[2.11, 4.91] Maniet et al. (2013) 5.3 5.91631642 12 -2.17 6.5900237 12 1.9% 7.50[2.49, 12.51] Negahban et al. (2013) 3.6 7.4298613 3.0 3.1.68520028 20 9.4% 3.37[2.35, 4	Eftekharsa et al. (2015)	0.2	3.25004615	15	0.27	9.00001667	15	2.0%	-0.07 [-4.91, 4.77]	
Gheitasi et al. (2021) 3.8 1 15 -0.7 0.78102497 15 10.4% 4.50[3.86, 5.14] Hogan et al. (2014)a 5.3 12.08759695 13 -3.1 11.75287199 15 0.7% 8.40 [-0.46, 17.26] Hogan et al. (2014)c 3.8 10.81295519 35 -3.1 11.75287199 15 1.8 8.80 [-0.46, 17.26] Kargarfard et al. (2018)a 1.6 1.5132746 17 -2.1 4.10731056 15 5.8% 3.70 [1.50, 5.90] Learmonth et al. (2012)a 6 10.90275195 20 3.2 9.94535067 12 0.9% 2.101-5.30, 5.50] Lysogorska et al. (2023)a 2.5 7.74402996 15 2.4 6.56429737 12 0.9% -2.10 [-9.61, 5.41] Marand et al. (2013) 5.13 2.9787917 32 1.68 2.74043792 32 8.2% 3.51 [1.1, 4.91]	Forsberg et al. (2016)	2.6	4.1	35	1.6	9	38	3.8%	1.00 [-2.17, 4.17]	
Hogan et al. (2014)a 5.3 12.08759695 13 -3.1 11.75287199 15 0.7% 8.40 [-0.46, 17.26] Hogan et al. (2014)b 5.7 9.65349678 48 -3.1 11.75287199 15 1.2% 8.80 [2.26, 15.34] Hogan et al. (2018)a 1.6 1.5132746 17 -2.1 4.10731056 15 5.8% 3.70 [1.50, 5.90] Learmonth et al. (2012)a 6 10.90275195 20 3.2 9.94535067 12 1.0% 2.80 [-4.58, 10.18] Learmonth et al. (2012)a 5.3 11.24811095 20 3.2 9.94535067 12 1.0% 2.80 [-4.58, 10.18] Lysogorska et al. (2023)a 2.5 7.74402996 15 2.4 6.56429737 12 0.9% -2.10 [-9.61, 5.41] Marand et al. (2013)a 5.33 5.9165016 17 0.83 3.07861982 17 4.2% 1.17 [-1.75, 4.09] Negahban et al. (2013)a 5.33 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negahban et al. (2013)a 5.33 5.91631642 1	Gervasoni et al. (2014)	4.01	8.93829402	15	3.15	4.61549564	15	1.9%	0.86 [-4.23, 5.95]	
Hogan et al. (2014)b5.79.6534967848-3.111.75287199151.2% $8.80[2.26, 15.34]$ Hogan et al. (2014)c3.810.8129551935-3.111.75287199151.1% $6.90[-0.04, 13.84]$ Kargarfard et al. (2012)a1.61.513274617-2.14.10731066155.8%3.70[1.50, 5.90]Learmonth et al. (2012)a511.24811095203.29.94535067120.9%2.10[-5.30, 5.50]Lysogorska et al. (2023)a2.57.74402996152.46.56429737120.9%-2.10[-9.81, 5.41]Monjazi et al. (2023)5.192.9787917321.682.74043792328.2%3.51[2.11, 4.91]Morand et al. (2013)3.9964993992.46.56429737121.9%7.50[2.49, 12.51]Negahban et al. (2013)5.335.9163164212-2.176.59705237121.9%7.50[2.49, 12.51]Negahban et al. (2022)a3.671.96145354300.31.68520028209.5%2.16[1.19, 3.13]Soknangu et al. (2021)a4.75.42977910-0.53.20356052102.8%6.30[3.93, 8.67]Tolkir et al. (2020)a6.13.5214-0.22.62125.4%6.30[3.93, 8.67]Tolkir et al. (2020)a6.13.5214-0.22.62125.4%6.30[3.93, 8.67]Tolkir et al. (2020)a6.13.5214-0.22.6212	Gheitasi et al. (2021)	3.8	1	15	-0.7	0.78102497	15	10.4%	4.50 [3.86, 5.14]	-
Hogan et al. (2014)c Kargarfard et al. (2018)a Learmonth et al. (2012)a 6 10.90275195 20 3.2 9.94535067 12 1.0% 2.80 [4.58, 10.18] Learmonth et al. (2012)b 5 3 11.24811095 20 3.2 9.94535067 12 1.0% 2.80 [4.58, 10.18] Lysogorska et al. (2023)a Lysogorska et al. (2023)a Lysogorska et al. (2023)b Lysogorska et al. (2023) 2.5 7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [-5.30, 5.50] Lysogorska et al. (2023) 2.5 7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [-5.30, 5.50] Lysogorska et al. (2023) 2.5 3.1015066 17 0.83 3.07861982 17 4.2% 1.17 [-1.75, 4.09] Najaf et al. (2013) 3 5.3 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negahban et al. (2013) 8 6.20458701 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Pan et al. (2021) 3 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tarakci et al. (2021) 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sokhangu et al. (2021) 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Tollár et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 6.30 [3.93, 8.67] Tollár et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 6.30 [4.20, 10.92] Tarakci et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 6.30 [4.20, 10.92] Tarakci et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 6.30 [3.93, 8.67] Tollár et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 4.00 [2.21, 5.99] Tarakci et al. (2020) 6.1 3.52 14 -0.2 2.62 12 6.4% 6.30 [3.93, 8.67] Tollár et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.4% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.4% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 4.86 [-0.71, 10.43] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 5.70 [0.68, 4.72] Yazgan et al. (2020) 7.5 2.62 14 -0.2 2.62 12 6.3% 4.86 [-0.71, 10.43]	Hogan et al. (2014)a	5.3	12.08759695	13	-3.1	11.75287199	15	0.7%	8.40 [-0.46, 17.26]	
Kargarfard et al. (2018)a1.61.513274617-2.14.10731056155.8% 3.70 [1.50, 5.90]Learmonth et al. (2012)a610.90275195203.29.94535067121.0%2.80 [-4.58, 10.18]Learmonth et al. (2012)b5.311.24811095203.29.94535067120.9%2.10 [-5.38, 9.58]Lysogorska et al. (2023)a2.57.74402996152.46.56429737120.9%-2.10 [-9.61, 5.41]Marand et al. (2023)5.192.9787917321.682.74043792328.2%3.51 [12.11, 4.91]Monjezi et al. (2023)25.31015066170.833.07861982174.2%1.17 [-1.75, 4.09]Najafi et al. (2013)a5.335.9163164212-2.176.59705237121.9%7.50 [2.49, 12.51]Negahban et al. (2013)a5.3671.96145354300.31.68520028209.4%3.37 [2.35, 4.39]Pan et al. (2022)a3.671.96145354300.31.68520028209.4%3.27 [2.3, 5.13]Sokhangu et al. (2013)1.63.7322915210-2.315.17992095120.7%3.90 [-4.99, 12.79]Tarakci et al. (2020)a6.13.5214-0.22.62126.3%2.70 [0.68, 4.72]Tollár et al. (2020)a5.87.20650401150.947.42942797121.6%4.86 [-0.71, 10.43]Yazgan et al. (2020)a5.87.20650401 <td< td=""><td>Hogan et al. (2014)b</td><td>5.7</td><td>9.65349678</td><td>48</td><td>-3.1</td><td>11.75287199</td><td>15</td><td>1.2%</td><td>8.80 [2.26, 15.34]</td><td></td></td<>	Hogan et al. (2014)b	5.7	9.65349678	48	-3.1	11.75287199	15	1.2%	8.80 [2.26, 15.34]	
Learmonth et al. (2012)a 6 10.90275195 20 3.2 9.94535067 12 1.0% 2.80 [-4.58, 10.18] Learmonth et al. (2012)b 5.3 11.24811095 20 3.2 9.94535067 12 0.9% 2.10 [-5.38, 9.58] Lysogorska et al. (2023)a 2.5 7.74402996 15 2.4 6.56429737 12 0.9% -2.10 [-5.38, 9.58] Lysogorska et al. (2023)b 0.3 9.99649939 9 2.4 6.56429737 12 0.9% -2.10 [-9.61, 5.41] Marand et al. (2023) 5.19 2.9787917 32 1.68 2.74043792 32 8.2% 3.51 [2.11, 4.91] Monjezi et al. (2023) 2 5.31015066 17 0.83 3.07861982 17 4.2% 1.17 [-1.75, 4.09] Najafi et al. (2013) 3.93 7.54769501 28 -2.32 6.52002307 12 1.9% 7.50 [2.49, 12.51] Negahban et al. (2013)a 5.33 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negahban et al. (2013)b 8 6.20458701 12 -2.17 6.59705237 12 1.8% 10.17 [5.05, 15.29] Pan et al. (2022)a 3.67 1.96145354 30 0.3 1.68520028 20 9.5% 2.16 [1.19, 3.13] Sokhangu et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [-4.99, 12.79] Tarakci et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [-4.99, 12.79] Tarakci et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)b 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.67] Total (95% CI) 597 498 100.0% 3.77 [3.01, 4.53]	Hogan et al. (2014)c	3.8	10.81295519	35	-3.1	11.75287199	15	1.1%	6.90 [-0.04, 13.84]	
Learmonth et al. $(2012)b$ 5.3 11.24811095 20 3.2 9.94535067 12 0.9% 2.10 [5.38, 9.58] Lysogorska et al. $(2023)a$ 2.5 7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [5.30, 9.550] Lysogorska et al. $(2023)b$ 0.3 9.99649399 9 2.4 6.56429737 12 0.9% 2.10 [9.61, 5.41] Marand et al. (2023) 5.19 2.9787917 32 1.68 2.74043792 32 8.2% 3.51 [2.11, 4.91] Monjezi et al. (2023) 2 5.31015066 17 0.83 3.07861982 17 4.2% 1.17 [1.75, 4.09] Najafi et al. (2019) 3.93 7.54769501 28 -2.32 6.52002301 28 3.1% 6.25 [2.56, 9.94] Negahban et al. $(2013)a$ 5.33 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negahban et al. $(2021)a$ 8 6.20458701 12 -2.17 6.59705237 12 1.8% 10.17 [5.05, 15.29] Pan et al. $(2022)b$ 2.46 1.76229963 30 0.3 1.68520028 20 9.5% 2.16 [1.19, 3.13] Sokhangu et al. $(2021)a$ 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [4.99, 12.79] Tarakci et al. $(2020)a$ 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. $(2020)a$ 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. $(2020)a$ 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [0.71, 10.43] Yazgan et al. $(2020)a$ 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [0.71, 10.43] Yazgan et al. $(2020)b$ 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% C) 597 498 100.0% 3.77 [3.01, 4.53]	Kargarfard et al. (2018)a	1.6	1.5132746	17	-2.1	4.10731056	15	5.8%	3.70 [1.50, 5.90]	
Lysogorska et al. (2023)a 2.5 7.74402996 15 2.4 6.56429737 12 1.7% 0.10 [5.30, 5.50] Lysogorska et al. (2023)b 0.3 9.99649939 9 2.4 6.56429737 12 0.9% -2.10 [-9.61, 5.41] Marand et al. (2023) 2 5.31015066 17 0.83 3.07861982 17 4.2% 1.17 [-1.75, 4.09] Najaf et al. (2013) 3.93 7.54769501 28 -2.32 6.5200230 128 3.1% 6.25 [2.56, 9.94] Negahban et al. (2013)a 5.33 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 [2.49, 12.51] Negahban et al. (2013)a 8 6.20458701 12 -2.17 6.59705237 12 1.8% 10.17 [5.05, 15.29] Pan et al. (2022)a 3.67 1.96145354 30 0.3 1.68520028 20 9.4% 3.37 [2.35, 4.39] Pan et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Soshoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [-4.99, 12.79] Tarakci et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% C) 597 498 100.0% 3.77 [3.01, 4.53]	Learmonth et al. (2012)a	6	10.90275195	20	3.2	9.94535067	12	1.0%	2.80 [-4.58, 10.18]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Learmonth et al. (2012)b	5.3	11.24811095	20	3.2	9.94535067	12	0.9%	2.10 [-5.38, 9.58]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lysogorska et al. (2023)a	2.5	7.74402996	15	2.4	6.56429737	12	1.7%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lysogorska et al. (2023)b	0.3	9.99649939	9	2.4	6.56429737	12	0.9%	-2.10 [-9.61, 5.41]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Marand et al. (2023)	5.19	2.9787917	32	1.68	2.74043792	32	8.2%	3.51 [2.11, 4.91]	
Negahban et al. (2013)a 5.33 5.91631642 12 -2.17 6.59705237 12 1.9% 7.50 $[2.49, 12.51]$ Negahban et al. (2013)b8 6.20458701 12 -2.17 6.59705237 12 1.8% 10.17 $[5.05, 15.29]$ Pan et al. (2022)a 3.67 1.96145354 30 0.3 1.68520028 20 9.4% 3.37 $[2.35, 4.39]$ Pan et al. (2022)b 2.46 1.76229963 30 0.3 1.68520028 20 9.5% 2.16 $[1.9, 3.13]$ Sokhangu et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 $[1.29, 9.11]$ Sosnoff et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 $[2.00, 10.92]$ Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 6.6% 4.10 $[2.21, 5.99]$ Tollár et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 $[-0.71, 10.43]$ Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 $[-3.13, 6.57]$ Total (95% Cl)597498100.0% 3.77 $[3.01, 4.53]$ -10 -5 0 5 10 Heterogeneity: Tau" = 1.34 ; Chi ^P = 56.06 , df = 28 (P = 0.001); P = 50% Total (95% Cl) 50 50 <	Monjezi et al. (2023)	2	5.31015066	17	0.83	3.07861982	17	4.2%	1.17 [-1.75, 4.09]	- -
Negahban et al. (2013)b 8 6.20458701 12 -2.17 6.59705237 12 1.8% 10.17 [5.05, 15.29] Pan et al. (2022)a 3.67 1.96145354 30 0.3 1.68520028 20 9.4% 3.37 [2.35, 4.39] Pan et al. (2022)b 2.46 1.76229963 30 0.3 1.68520028 20 9.4% 3.37 [2.35, 4.39] Sokhangu et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sosnoff et al. (2013) 4.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [4.99 , 12.79] Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [$2.00, 10.92$] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 6.6% 4.10 [$2.1, 5.99$] 10.192 Tollár et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 2.0% 1.72 [$3.13, 6.57$]	Najafi et al. (2019)	3.93	7.54769501	28	-2.32	6.52002301	28	3.1%	6.25 [2.56, 9.94]	
Pan et al. (2022)a 3.67 1.96145354 30 0.3 1.68520028 20 9.4% 3.37 [2.35, 4.39] Pan et al. (2022)b 2.46 1.76229963 30 0.3 1.68520028 20 9.5% 2.16 [1.19, 3.13] Sokhangu et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% 3.90 [+4.99, 12.79] Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)b 3.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); P = 50% Totat (95% CL) 50 5 10	Negahban et al. (2013)a	5.33	5.91631642	12	-2.17	6.59705237	12	1.9%	7.50 [2.49, 12.51]	
Pan et al. (2022)b 2.46 1.76229963 30 0.3 1.68520028 20 9.5% 2.16 [1.19, 3.13] Sokhangu et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% $3.90 [+4.99, 12.79]$ Tarakci et al. (2013) 4.3 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); P = 50% Totat for expression the formula effort $z = 0.70 (0.5)$	Negahban et al. (2013)b	8	6.20458701	12	-2.17	6.59705237	12	1.8%	10.17 [5.05, 15.29]	
Pan et al. (2022)b 2.46 1.76229963 30 0.3 1.68520028 20 9.5% 2.16 [1.19, 3.13] Sokhangu et al. (2021)a 4.7 5.429779 10 -0.5 3.20356052 10 2.8% 5.20 [1.29, 9.11] Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% $3.90 [+4.99, 12.79]$ Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneily: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); P = 50% Totat for expression and the second secon	Pan et al. (2022)a	3.67	1.96145354	30	0.3	1.68520028	20	9.4%	3.37 [2.35, 4.39]	-
Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% $3.90 [+4.99, 12.79]$ Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); I ² = 50% Total (95 \times Cl) 50 5 10	Pan et al. (2022)b	2.46	1.76229963	30	0.3	1.68520028	20	9.5%	2.16 [1.19, 3.13]	-
Sosnoff et al. (2013) 1.6 3.73229152 10 -2.3 15.17992095 12 0.7% $3.90 [+4.99, 12.79]$ Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); P = 50% Totat (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53]	Sokhangu et al. (2021)a	4.7	5.429779	10	-0.5	3.20356052	10	2.8%	5.20 [1.29, 9.11]	
Tarakci et al. (2013) 4.33 9.62856687 51 -2.13 12.7026572 48 2.3% 6.46 [2.00, 10.92] Tollár et al. (2020)a 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] -10 -5 0 5 10 Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); P = 50% -10 -5 0 5 10		1.6	3.73229152	10	-2.3	15.17992095	12	0.7%		
Tollár et al. $(2020)a$ 6.1 3.52 14 -0.2 2.62 12 5.4% 6.30 [3.93, 8.67] Tollár et al. $(2020)b$ 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. $(2020)c$ 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. $(2020)a$ 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. $(2020)b$ 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); I ² = 50% Total (95 ~ 0 0.001); I ² = 50%	· ·		9.62856687	51						———
Totlár et al. (2020)b 3.9 2.25 14 -0.2 2.62 12 6.6% 4.10 [2.21, 5.99] Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); l ² = 50% Total (95% CL) -10 -5 0 5 10			3.52	14	-0.2	2.62	12			
Tollár et al. (2020)c 2.5 2.62 14 -0.2 2.62 12 6.3% 2.70 [0.68, 4.72] Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); l ² = 50% -10 -5 0 5 10				14						
Yazgan et al. (2020)a 5.8 7.20650401 15 0.94 7.42942797 12 1.6% 4.86 [-0.71, 10.43] Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau² = 1.34; Chi² = 56.06, df = 28 (P = 0.001); l² = 50% Total for energial effect Z = 0.72 (P < 0.0001) -10 -5 0 5 10 -10 -5 0 5 10										_
Yazgan et al. (2020)b 2.66 4.792901 15 0.94 7.42942797 12 2.0% 1.72 [-3.13, 6.57] Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); i ² = 50% -10 -5 0 5 10										<u> </u>
Total (95% Cl) 597 498 100.0% 3.77 [3.01, 4.53] Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); l ² = 50% -10 -5 0 5 10										
Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); l ² = 50% -10 -5 0 5 10										
Heterogeneity: Tau ² = 1.34; Chi ² = 56.06, df = 28 (P = 0.001); l ² = 50% -10 -5 0 5 10	Total (95% CI)			597			498	100.0%	3.77 [3.01, 4.53]	♦
Test for everall effect: 7 = 0.72 (P < 0.00001) -10 -5 U 5 10		Chi² = 5	6.06, df = 28 (P	= 0.001	1); I ² = 5	0%				
Favours [control] Favours [experime										
			,							Favours [control] Favours [experime

Meta-analysis results of the effects of exercise on Berg balance scale (BBS) in people with MS. Exercise had a significant effect on improving BBS in people with MS (P < 0.00001).

multicomponent training (WMD, -2.54; 95% CI, -4.44 to -0.65, P = 0.009, $I^2 = 80\%$) were effective in improving fatigue in people with MS, with resistance exercise being the most effective intervention type (Supplementary Figure 5).

Quality of life

We conducted a subgroup analysis by type of intervention. Aerobic exercise (WMD, 11.68; 95% CI, 5.31 to 18.05, P = 0.0003, $I^2 = 0\%$) and multicomponent training (WMD, 7.28; 95% CI, 2.77 to 11.79, P = 0.002, $I^2 = 24\%$) were effective in improving quality of life in people with MS, with aerobic exercise being the most effective intervention type (Supplementary Figure 6).

Sensitivity analysis

Sensitivity analyses showed that there is no change in the direction or level of compatibility of the overall effect of exercise on fatigue (Supplementary Figure 7) and quality of life (Supplementary Figure 8) in people with MS when any of the included studies are omitted.

Risk of bias

The quality of included studies was assessed by the Cochrane Collaboration tool in terms of selection bias, performance bias, attrition bias, reporting bias, detection bias, and other bias (Supplementary Figure 9). The results of PEDro scale showed that of the 40 included studies, 39 were of good quality and one was of fair quality (Supplementary Table 2).

Publication bias

Possible publication bias was assessed by examining the funnel plot (Supplementary Figure 10). Visual inspection of the funnel plot suggested the absence of funnel plot asymmetry. The results of the egger's test indicated that the small sample size studies were not enough to affect the final results (TUG, P = 0.575; BBS, P = 0.705; 6MWT, P = 0.586; MSWS-12, P = 0.137; quality of life, P = 0.791; Supplementary Table 3), with the exception of fatigue (P = 0.002). Therefore, we performed the Dsuval and Tweedie's trim and fill procedure, and the results indicated that no evidence of publication bias was found for fatigue.

Androwis et al. (2021) -5 9.58279709 6 0.4 4.30929228 4 0.1% -5.40 [-14.15, 3.35] Cakit et al. (2010)a -1.4 1.21655251 14 -0.2 9.30644938 9 0.2% -1.20 [-7.31, 4.91] Cakit et al. (2010)b 0.3 9.06035319 10 -0.2 9.30644938 9 0.1% 0.50 [-7.78, 8.78] Caravaca et al. (2015) -0.67 2.34207173 15 0.2 8.83427416 15 0.3% -0.87 [-5.50, 3.76] Effekharsa et al. (2016) 0.5 8.5 35 -1 3.8 80 6% 1.50 [-1.58, 4.56] Gheitasi et al. (2012) -2.48 15.8754527 20 -0.15 13.735425 12 0.1% -2.33 [-1.76, 8.10] Learmonth et al. (2012) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Marand et al. (2013) -1.4 2.62726822 17 -0.49 3.17819801 17 0.9% -7.7 [-3.29, 1.75] - Najafi et al. (2013) -1.4 2.67796153 12 0.9% </th <th></th> <th>1</th> <th>Experimental</th> <th></th> <th></th> <th>Control</th> <th></th> <th></th> <th>Mean Difference</th> <th>Mean Difference</th>		1	Experimental			Control			Mean Difference	Mean Difference
Cakit et al. (2010)a -1.4 1.21655251 14 -0.2 9.30644938 9 0.2% -1.20 [-7.31, 4.91] Cakit et al. (2010)b 0.3 9.06035319 10 -0.2 9.30644938 9 0.1% 0.50 [-7.78, 8.78] Caravaca et al. (2021) -0.8 3.6610273 18 0.3 10.55319857 12 0.2% -1.10 [-7.30, 5.10] Efekharsa et al. (2015) -0.67 2.34207173 15 0.2 8.83427416 15 0.3% -0.87 [-5.50, 3.76] Forsberg et al. (2012) -1.9 0.45825757 15 -0.3 0.4 15 63.7% -1.60 [-1.91, -1.29] Learmonth et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -0.46 [+10.79, 9.87] Marand et al. (2023) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% [-3.77, 7.79] Marand et al. (2013) -1 4.267796153 12 0.95 7.53771185 12 0.0% -0.77 [-5.67, 4.93] Nilsagård et al. (2013) -3 1.6 0.77620874 10 0.59 1.	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Cakit et al. (2010)b 0.3 9.06035319 10 -0.2 9.30644938 9 0.1% 0.50 [-7.78, 8.78] Caravaca et al. (2022)-1 -0.8 3.6510273 18 0.3 10.55319857 12 0.2% -1.10 [-7.30, 5.10] Eftekharsa et al. (2015) -0.67 2.34207173 15 0.2 8.83427416 15 0.3% -0.87 [-5.50, 3.76] Forsberg et al. (2016) 0.5 8.5 35 -1 3.8 38 0.6% 1.50 [-1.56, 4.56] Gheitasi et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -0.23 [+1.276, 8.10] Learmonth et al. (2012)a -2.48 15.87545275 20 -0.44 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Marand et al. (2013) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Nigagård et al. (2013)a -1.46 4.267796153 12 0.9% -0.77 [-5.67, 4.93] -0.78 [-5.67, 4.93] Nilsagård et al. (2013) -6 16.38078142 8 0.7 10.65082156<	Androwis et al. (2021)	-5	9.58279709	6	0.4	4.30929228	4	0.1%	-5.40 [-14.15, 3.35]	
Caravaca et al. (2022)-1 -0.8 3.6510273 18 0.3 10.55319857 12 0.2% -1.10 [7.30, 5.10] Effekharsa et al. (2015) -0.67 2.34207173 15 0.2 8.83427416 15 0.3% -0.87 [5.50, 3.76] Forsberg et al. (2016) 0.5 8.5 35 -1 3.8 38 0.6% 1.50 [1.91, -1.29] Learmonth et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -2.33 [-1.27,6, 8.10] Learmonth et al. (2012)a -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Monjezi et al. (2013) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Negahban et al. (2013) -1.4 4.267796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Nilsagård et al. (2013) -4.42 16.57650301 12 0.95 7.53771185 12 0.1% -5.37 [-15.6, 0.2] - Vural et al. (2013) -6 16.38078142 <td< td=""><td>Cakit et al. (2010)a</td><td>-1.4</td><td>1.21655251</td><td>14</td><td>-0.2</td><td>9.30644938</td><td>9</td><td>0.2%</td><td>-1.20 [-7.31, 4.91]</td><td></td></td<>	Cakit et al. (2010)a	-1.4	1.21655251	14	-0.2	9.30644938	9	0.2%	-1.20 [-7.31, 4.91]	
Effekharsa et al. (2015) -0.67 2.34207173 15 0.2 8.83427416 15 0.3% -0.87 [-5.50, 3.76] Forsberg et al. (2016) 0.5 8.5 35 -1 3.8 38 0.6% 1.50 [-1.56, 4.56] Gheitasi et al. (2012) -1.9 0.45825757 15 -0.3 0.4 15 63.7% -1.60 [-1.91, -1.29] Learmonth et al. (2012)b -3.9 16.01429049 20 -3.44 13.40428663 12 0.1% -0.46 [-10.79, 9.87] Marand et al. (2023) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Monjezi et al. (2013) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.077 [-3.29, 1.75] Negahban et al. (2013) -1.412.67796153 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2013) 0.3 2.1 10 4.7 3.50860906 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) 0.3 2.1 10 -0.59 1.01828287	Cakit et al. (2010)b	0.3	9.06035319	10	-0.2	9.30644938	9	0.1%	0.50 [-7.78, 8.78]	
Forsberg et al. (2016) 0.5 8.5 35 -1 3.8 38 0.6% 1.50 [-1.56, 4.56] Gheitasi et al. (2021) -1.9 0.45825757 15 -0.3 0.4 15 63.7% -1.60 [-1.91, -1.29] Learmonth et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -2.33 [-12.76, 8.10] Learmonth et al. (2012)b -3.9 16.01429049 20 -3.44 13.40428663 12 0.1% -0.46 [-10.79, 9.87] Marand et al. (2023) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Najafi et al. (2013) -1.81 2.14178831 28 0.23 1.64927257 28 6.0% -2.04 [-3.04, -1.04] Negahban et al. (2013) -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Negahban et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2023) -1.36 0.77620874 10 -0.59	Caravaca et al. (2022)-1	-0.8	3.6510273	18	0.3	10.55319857	12	0.2%	-1.10 [-7.30, 5.10]	
Gheitasi et al. (2021) -1.9 0.45825757 15 -0.3 0.4 15 63.7% -1.60 [-1.91, -1.29] Learmonth et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -2.33 [-12.76, 8.10] Learmonth et al. (2012)b -3.9 16.01429049 20 -3.44 13.40428663 12 0.1% -0.46 [-10.79, 9.87] Marand et al. (2023) -2.43 519107889 32 -0.94 4.0499123 32 1.2% -1.49 [-3.77, 0.79] Monjezi et al. (2023) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Najafi et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.0% -0.23 [-1.05, 0.59] - Yural et al. (2023)a -1.36 0.77620874	Eftekharsa et al. (2015)	-0.67	2.34207173		0.2	8.83427416	15	0.3%	-0.87 [-5.50, 3.76]	
Learmonth et al. (2012)a -2.48 15.87545275 20 -0.15 13.735425 12 0.1% -2.33 [-12.76, 8.10] Learmonth et al. (2012)b -3.9 16.01429049 20 -3.44 13.40428663 12 0.1% -0.46 [-10.79, 9.87] Marand et al. (2023) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Najafi et al. (2013) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.76] Negahban et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Negahban et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2023)a -1.36 0.77620874 10 -0.59 1.00828287 10 9.6% -0.77 [-5.6, 0.2] - Yural et al. (2020)a -1.54 5.00046998<	Forsberg et al. (2016)	0.5	8.5	35	-1	3.8	38	0.6%	1.50 [-1.56, 4.56]	
Learmonth et al. (2012)b -3.9 16.01429049 20 -3.44 13.40428663 12 0.1% -0.46 -10.79 9.87 Marand et al. (2023) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49 [-3.77, 0.79] Monjezi et al. (2023) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Najafi et al. (2013) -1 42.67796153 12 0.95 7.53771185 12 0.0% -2.04 [-3.04, -1.04] + Negahban et al. (2013) -4.42 16.57550301 12 0.95 7.53771185 12 0.0% -6.70 [-2.024, 6.84] +	Gheitasi et al. (2021)	-1.9	0.45825757	15	-0.3	0.4	15	63.7%	-1.60 [-1.91, -1.29]	•
Marand et al. (2023) -2.43 5.19107889 32 -0.94 4.04990123 32 1.2% -1.49[-3.77, 0.79] Monjezi et al. (2023) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Najafi et al. (2019) -1.81 2.14179831 28 0.23 1.64927257 28 6.0% -2.04 [-3.04, -1.04] Negahban et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Negahban et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.0% -5.37 [-15.67, 4.93] Nilsagård et al. (2013) -4 41 0.1 2.1 39 6.2% -0.10 [-1.09, 0.89] Sosnoff et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -0.77 [-1.56, 0.02] - Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.0% -0.23 [-1.05, 0.59] - Yazgan et al. (2020)b -1.54 5.0046998 15	Learmonth et al. (2012)a	-2.48	15.87545275	20	-0.15	13.735425	12	0.1%	-2.33 [-12.76, 8.10]	
Monjezi et al. (2023) -1.26 4.25225822 17 -0.49 3.17919801 17 0.9% -0.77 [-3.29, 1.75] Najafi et al. (2019) -1.81 2.14179831 28 0.23 1.64927257 28 6.0% -2.04 [-3.04, -1.04] Negahban et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Nilsagård et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Sosnoff et al. (2013) 0 3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -6.70 [-20.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562	Learmonth et al. (2012)b	-3.9	16.01429049	20	-3.44	13.40428663	12	0.1%	-0.46 [-10.79, 9.87]	
Najafi et al. (2019) -1.81 2.14179831 28 0.23 1.64927257 28 6.0% -2.04 [-3.04, -1.04] Negahban et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Negahban et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2012) 0 2.4 41 0.1 2.1 39 6.2% -0.10 [-1.09, 0.89] Sosnoff et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.07 [-5.6, 0.02] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.0% -0.23 [-1.05, 0.59] -0.23 Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13]	Marand et al. (2023)	-2.43	5.19107889	32	-0.94	4.04990123	32	1.2%	-1.49 [-3.77, 0.79]	-+
Negahban et al. (2013)a -1 42.67796153 12 0.95 7.53771185 12 0.0% -1.95 [-26.47, 22.57] Negahban et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2012) 0 2.4 41 0.1 2.1 39 6.2% -0.10 [-1.09, 0.89] Sosnoff et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -6.70 [-20.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)a -0.1 13.33154155 27 -2.8 <	Monjezi et al. (2023)	-1.26	4.25225822	17	-0.49	3.17919801	17	0.9%	-0.77 [-3.29, 1.75]	-+
Negahban et al. (2013)b -4.42 16.57550301 12 0.95 7.53771185 12 0.1% -5.37 [-15.67, 4.93] Nilsagård et al. (2012) 0 2.4 41 0.1 2.1 39 6.2% -0.10 [-1.09, 0.89] Sosnoff et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) -6 16.38078142 8 0.7 10.6082156 8 0.0% -6.70 [-20.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2020)b -1.22 0.85440038 10 -0.99 1.00955436 10 9.0% -0.70 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-6.07, 11.47] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0%	Najafi et al. (2019)	-1.81	2.14179831	28	0.23	1.64927257	28	6.0%	-2.04 [-3.04, -1.04]	-
Nilsagård et al. (2012) 0 2.4 41 0.1 2.1 39 6.2% -0.10 [-1.09, 0.89] Sosnoff et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -6.70 [-2.0.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2020)a -1.54 5.00046998 10 0.90% -0.23 [-1.05, 0.59] - Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% CI) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 10 <td>Negahban et al. (2013)a</td> <td>-1</td> <td>42.67796153</td> <td>12</td> <td>0.95</td> <td>7.53771185</td> <td>12</td> <td>0.0%</td> <td>-1.95 [-26.47, 22.57]</td> <td></td>	Negahban et al. (2013)a	-1	42.67796153	12	0.95	7.53771185	12	0.0%	-1.95 [-26.47, 22.57]	
Sosnoff et al. (2013) 0.3 2.1 10 4.7 3.50856096 12 1.1% -4.40 [-6.77, -2.03] Straudi et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -6.70 [-20.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2023)b -1.22 0.85440038 10 -0.99 1.00955436 10 9.0% -0.23 [-1.05, 0.59] Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 -20 -10 -20 -10 0 10	Negahban et al. (2013)b	-4.42	16.57550301	12	0.95	7.53771185	12	0.1%	-5.37 [-15.67, 4.93]	
Straudi et al. (2013) -6 16.38078142 8 0.7 10.65082156 8 0.0% -6.70 [-20.24, 6.84] Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2023)b -1.22 0.85440038 10 -0.99 1.00955436 10 9.0% -0.23 [-1.05, 0.59] Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -1	Nilsagård et al. (2012)	0	2.4	41	0.1	2.1	39	6.2%	-0.10 [-1.09, 0.89]	+
Vural et al. (2023)a -1.36 0.77620874 10 -0.59 1.01828287 10 9.6% -0.77 [-1.56, 0.02] Vural et al. (2023)b -1.22 0.85440038 10 -0.99 1.00955436 10 9.0% -0.23 [-1.05, 0.59] Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 -20 -10 0 10	Sosnoff et al. (2013)	0.3	2.1	10	4.7	3.50856096	12	1.1%	-4.40 [-6.77, -2.03]	
Vural et al. (2023)b -1.22 0.85440038 10 -0.99 1.00955436 10 9.0% -0.23 [-1.05, 0.59] Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 -20 -10 0 10	Straudi et al. (2013)	-6	16.38078142	8	0.7	10.65082156	8	0.0%	-6.70 [-20.24, 6.84]	
Yazgan et al. (2020)a -1.54 5.00046998 15 0.06 5.87500638 15 0.4% -1.60 [-5.50, 2.30] Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08]	Vural et al. (2023)a	-1.36	0.77620874	10	-0.59	1.01828287	10	9.6%	-0.77 [-1.56, 0.02]	•
Yazgan et al. (2020)b -0.64 10.87543562 12 0.06 5.87500638 15 0.1% -0.70 [-7.53, 6.13] Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% CI) 413 392 100.0% -1.33 [-1.57, -1.08] -20 -10 0 10 Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); ² = 34% -20 -10 0 10	Vural et al. (2023)b	-1.22	0.85440038	10	-0.99	1.00955436	10	9.0%	-0.23 [-1.05, 0.59]	†
Young et al. (2019)a -0.1 13.33154155 27 -2.8 19.40541162 28 0.1% 2.70 [-6.07, 11.47] Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% Cl) 413 392 100.0% -1.33 [-1.57, -1.08] 1 Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); ² = 34% -20 -10 0 10	Yazgan et al. (2020)a	-1.54	5.00046998	15	0.06		15	0.4%	-1.60 [-5.50, 2.30]	-+
Young et al. (2019)b -0.5 11.86465339 26 -2.8 19.40541162 28 0.1% 2.30 [-6.21, 10.81] Total (95% CI) 413 392 100.0% -1.33 [-1.57, -1.08] 1 Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); I ² = 34% -20 -10 0 10	Yazgan et al. (2020)b	-0.64	10.87543562	12	0.06	5.87500638	15	0.1%	-0.70 [-7.53, 6.13]	
Total (95% CI) 413 392 100.0% -1.33 [-1.57, -1.08] Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); l ² = 34% -20 -10 0 10	Young et al. (2019)a	-0.1	13.33154155	27	-2.8	19.40541162	28	0.1%	2.70 [-6.07, 11.47]	
Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); l ² = 34%	Young et al. (2019)b	-0.5	11.86465339	26	-2.8	19.40541162	28	0.1%	2.30 [-6.21, 10.81]	
Heterogeneity: Chi ² = 33.48, df = 22 (P = 0.06); l ² = 34%	Total (95% CI)			413			392	100.0%	-1.33 [-1.57, -1.08]	1
-70 -10 0 10	Heterogeneity: Chi ² = 33.4	8, df = 22	(P = 0.06); I ² =	34%					-	
Teet for overall effect: 7 – 10.67 (P < 0.00001)	Test for overall effect: Z = 1	0.57 (P <	< 0.00001)						For	-20 -10 0 10 20 vours (experimental) Favours (control)
	FIGURE 3									

Meta-analysis results of the effect of exercise on timed up and go test (TUG) in people with MS. Exercise had a significant effect on improving TUG in people with MS (P < 0.00001).

	E	Experimental			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Carling et al. (2017)	-6.65	15.87021325	25	0.56	14.21902709	26	3.0%	-7.21 [-15.49, 1.07]	
Christensen et al. (2022)	-8.6	27.09003507	43	-2	28.24305224	43	1.5%	-6.60 [-18.30, 5.10]	
Forsberg et al. (2016)	-3.4	5	35	0.1	5.2	38	36.9%	-3.50 [-5.84, -1.16]	
Marand et al. (2023)	-11.38	8.82126408	32	-6.69	9.07178593	32	10.5%	-4.69 [-9.07, -0.31]	
Nilsagård et al. (2012)	-5.9	11.5	41	-3.95	18.1	39	4.5%	-1.95 [-8.63, 4.73]	
Riemensch et al. (2023)a	-2.1	6.08933494	42	-0.4	9.24067097	42	18.1%	-1.70 [-5.05, 1.65]	
Riemensch et al. (2023)b	-1.9	6.36474666	42	-2.8	7.6216796	42	22.4%	0.90 [-2.10, 3.90]	-
Robinson et al. (2015)a	-5.5	16.59066002	20	3.8	21.60023148	17	1.3%	-9.30 [-21.88, 3.28]	
Robinson et al. (2015)b	-6.1	16.2	19	3.8	21.60023148	17	1.3%	-9.90 [-22.49, 2.69]	
Sosnoff et al. (2013)	-8.1	21.11421322	10	-1.6	26.14727519	12	0.5%	-6.50 [-26.25, 13.25]	
Total (95% CI)			309			308	100.0%	-2.57 [-3.99, -1.15]	•
Heterogeneity: Chi ² = 11.14	, df = 9 (P	P = 0.27; $P = 19$	%						
Test for overall effect: Z = 3.	54 (P = 0	.0004)						-	-20 -10 0 10 20 vours [experimental] Favours [control]

FIGURE 4

Meta-analysis results of the effects of exercise on walking ability in people with MS. Exercise had a significant effect on improving walking ability in people with MS (P = 0.0004).

Discussion

In this systematic review and meta-analysis, exercise significantly improved balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. Subgroup analyses showed that a younger age was associated with larger improvement in fatigue. In addition, resistance exercise and aerobic exercise were the most effective interventions for improving fatigue and quality of life, respectively.

Loss of balance and walking ability are two of the primary impairments of MS that leads to increased fatigue perception and disease severity, and loss of autonomy (13). Imbalance, gait dysfunction and falls are common in people with MS, with the overwhelming majority having abnormal postural control and gait even early in the course of the disease. It has been reported that 50–80% people with MS have balance and gait dysfunction and over 50% fall at least once each year (64). Exercise has been shown to improve physical function and psychological rehabilitation in people with MS, and to help reduce the risk of falls (65, 66). Our study showed that exercise significantly improved balance function (TUG and BBS) in people with MS, which was consistent with a previous study (13), showing that the combination of resistance and aerobic exercise training is effective in improving balance in people with MS and supports functional and psychological

		Experimental			Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
Androwis et al. (2021)	31.7	118.6560997	6	-1.8	27.21378327	4	0.9%	33.50 [-65.12, 132.12]	
Caravaca et al. (2022)-2	113.6	228.7240477	18	37.7	284.0919393	12	0.2%	75.90 [-116.46, 268.26]	
Christensen et al. (2022)	48	100.134909	43	16	131.0457935	43	3.5%	32.00 [-17.29, 81.29]	+
Hogan et al. (2014)a	-25	47.2784306	13	6.5	40.26164428	15	7.9%	-31.50 [-64.30, 1.30]	
Hogan et al. (2014)b	20.2	43.98533847	48	6.5	40.26164428	15	14.9%	13.70 [-10.17, 37.57]	+
Hogan et al. (2014)c	16.2	49.19390206	35	6.5	40.26164428	15	12.5%	9.70 [-16.39, 35.79]	
Kargarfard et al. (2018)a	52	57.50652137	17	-29	29.51270913	15	8.8%	81.00 [49.85, 112.15]	
Learmonth et al. (2012)a	37.5	111.3705078	20	38.8	124.7330349	12	1.2%	-1.30 [-87.11, 84.51]	
Learmonth et al. (2012)b	71.1	116.8559797	20	38.8	124.7330349	12	1.1%	32.30 [-54.90, 119.50]	
Lysogorska et al. (2023)a	17.6	132.6115757	15	7.3	160.6537892	12	0.7%	10.30 [-102.69, 123.29]	
Lysogorska et al. (2023)b	21.1	187.1426461	9	7.3	160.6537892	12	0.4%	13.80 [-138.55, 166.15]	
Ozkul et al. (2020)a	47.98	50.83616134	17	-11.07	52.76774394	17	7.0%	59.05 [24.22, 93.88]	
Riemensch et al. (2023)a	37.3	84.07288505	42	29.2	101.7181891	42	5.3%	8.10 [-31.81, 48.01]	
Riemensch et al. (2023)b	66.2	94.23964134	42	41.8	92.4342469	42	5.3%	24.40 [-15.52, 64.32]	+
Straudi et al. (2013)	33.3	104.8822197	8	-0.8	90.84872041	8	0.9%	34.10 [-62.05, 130.25]	
Tollár et al. (2020)a	57.4	52.09	14	6.3	49.27	12	5.6%	51.10 [12.09, 90.11]	
Tollár et al. (2020)b	19.2	35.4	14	6.3	49.27	12	7.6%	12.90 [-20.58, 46.38]	- -
Tollár et al. (2020)c	32.1	44.58	14	6.3	49.27	12	6.4%	25.80 [-10.57, 62.17]	+
Vural et al. (2023)a	94.4	58.86731861	10	-26.4	83.23320431	10	2.1%	120.80 [57.61, 183.99]	
Vural et al. (2023)b	15.2	62.56153211	10	8.81	76.39290608	10	2.3%	6.39 [-54.81, 67.59]	
Yazgan et al. (2020)a	42.72	126.1732892	15	7.6	110.9721168	15	1.2%	35.12 [-49.91, 120.15]	
Yazgan et al. (2020)b	23.25	109.5712978	12	7.6	110.9721168	15	1.2%	15.65 [-68.00, 99.30]	
Young et al. (2019)a	42.2	123.8564088	27	8.5	143.0742465	28	1.7%	33.70 [-36.95, 104.35]	
Young et al. (2019)b	14.4	155.9112568	26	8.5	143.0742465	28	1.3%	5.90 [-74.10, 85.90]	
Total (95% CI)			495			418	100.0%	25.56 [16.34, 34.79]	•
Heterogeneity: Chi ² = 43.02	df = 23	$(P = 0.007); I^2 =$	47%						
Test for overall effect: Z = 5.	43 (P < 0	0.00001)							-200 -100 Ó 100 200 Favours (control) Favours (experimer

FIGURE 5

Meta-analysis results of the effects of exercise on walking endurance in people with MS. Exercise had a significant effect on improving walking endurance in people with MS (P < 0.00001).

	E	xperimental			Control			Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
hmadi et al. (2010)	-1.63	1.3479985	11	0.06	1.1784736	10	8.0%	-1.69 [-2.77, -0.61]	-
akit et al. (2010)a	-9.6	13.53698637	14	-5.2	21.536945	9	0.8%	-4.40 [-20.16, 11.36]	
aravaca et al. (2022)-2	-8.3	17.07132098	18	-0.8	10.47902667	12	1.8%	-7.50 [-17.37, 2.37]	
hristensen et al. (2022)	-7	14.26744546	43	-1.5	17.23136675	43	3.1%	-5.50 [-12.19, 1.19]	<u>-</u>
orreale et al. (2021)a	0	16.6	14	0	5.8	9	1.9%	0.00 [-9.49, 9.49]	
odd et al. (2011)	-10.2	12.86429166	36	-3	16.37772878	35	3.0%	-7.20 [-14.06, -0.34]	
eming et al. (2021)a	-5	11.00136355	29	-2.2	14.3	34	3.4%	-2.80 [-9.06, 3.46]	
eming et al. (2021)b	-7.1	12.81366458	29	-2	15.63873396	34	2.9%	-5.10 [-12.13, 1.93]	
eming et al. (2021)c	-10.3	12.15401168	29	-4.6	15.7	34	3.0%	-5.70 [-12.59, 1.19]	
eming et al. (2021)d	-12.6	12.08263216	29	-3.1	15.10595909	34	3.1%	-9.50 [-16.22, -2.78]	
arrett et al. (2012)a	-7.5	15.71909667	63	-1.1	19.26317731	49	3.2%	-6.40 [-13.05, 0.25]	
arrett et al. (2012)b	-6	17.7552809	67	-1.1	19.26317731	49	3.0%	-4.90 [-11.77, 1.97]	+
arrett et al. (2012)c	-5.8	17.11344501	63	-1.1	19.26317731	49	3.0%	-4.70 [-11.55, 2.15]	+
ogan et al. (2014)a	2.1	25.9356897	13	-6.4	16.35878969	15	0.8%	8.50 [-7.85, 24.85]	
ogan et al. (2014)b	-5.1	15.9084883	48	-6.4	16.35878969	15	1.9%	1.30 [-8.12, 10.72]	
ogan et al. (2014)c	-7.1	14.28180661	35	-6.4	16.35878969	15	1.9%	-0.70 [-10.24, 8.84]	
argarfard et al. (2012)a	-10.3	12.72124208	17	16.5	8.80170438	15	2.7%	-26.80 [-34.31, -19.29]	
ezele et al. (2021)	-7.7	14.2010563	13		21.31126463	11	0.9%	-8.60 [-23.37, 6.17]	
earmonth et al. (2012)a	-0.5	1.86815417	20	0		12	7.8%	-0.50 [-1.82, 0.82]	+
earmonth et al. (2012)b	-0.5	1.75214155	20	0.5	1.04403065	12	8.0%	-1.00 [-1.97, -0.03]	-
eqahban et al. (2013)a	-10.75	9.75060511	12		14.71549184	12	1.8%	-13.75 [-23.74, -3.76]	
egahban et al. (2013)b		10.50100471	12		14.71549184	12	1.7%	-12.42 [-22.65, -2.19]	
traudi et al. (2013)	-1.2	1.47986486	8	-0.6		8	7.6%	-0.60 [-2.23, 1.03]	+
arakci et al. (2013)	-8.26	7.21512994	51	3.29	9.1114653	48	6.0%	-11.55 [-14.80, -8.30]	
ural et al. (2023)a	-1.76	1.26502964	10		1.81248448	10	7.8%	-1.65 [-3.02, -0.28]	-
ural et al. (2023)b	-0.69	1.26692541		-1.02	1.6444756	10	7.8%	0.33 [-0.96, 1.62]	+
azgan et al. (2020)a		16.35322904	15		17.59122793	15	1.3%	-12.87 [-25.02, -0.72]	
azgan et al. (2020)b	-8.33	8.77179571	12		17.59122793	15	1.7%	-7.80 [-17.99, 2.39]	
azgan or an (2020).	0.00	0.11110011		0.00	11.00122100		1.1 2	1.00[11.00]2.00]	
otal (95% Cl)			741			626	100.0%	-4.34 [-5.83, -2.84]	♦
eterogeneity: Tau ² = 7.03;	$Chi^2 = 12$	27.86. df = 27 (F)001): I ^z	= 79%				
est for overall effect: Z = 5.								_	-20 -10 0 10 2
								Fav	ours [experimental] Favours [co

	E	xperimental			Control		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Ahadi et al. (2013)a	10.605	13.34360028	10	2.23	13.90318555	10	11.5%	8.38 [-3.57, 20.32]	+
Ahadi et al. (2013)b	12.465	13.87378987	11	2.23	13.90318555	10	11.5%	10.23 [-1.66, 22.13]	
Ahmadi et al. (2010)	12.465	13.87378987	11	2.22	13.90104653	10	11.5%	10.24 [-1.65, 22.14]	
Correale et al. (2021)a	10.55	16.96996257	14	2.00869565	22.98705986	14	9.2%	8.54 [-6.43, 23.51]	
Kargarfard et al. (2012)a	11.45	7.07289117	10	0.25	8.16255971	11	16.6%	11.20 [4.68, 17.72]	
Kargarfard et al. (2012)b	23.65	7.57579247	10	0.9	7.67115811	11	16.6%	22.75 [16.22, 29.28]	
Ozkul et al. (2020)a	27.315	29.75484705	17	3.06	19.8315329	17	7.9%	24.26 [7.26, 41.25]	
Romberg et al. (2005)	2.5	19.57784806	45	1.45	18.12849436	46	15.4%	1.05 [-6.71, 8.81]	
Total (95% CI)			128			129	100.0%	11.80 [5.70, 17.90]	•
Heterogeneity: Tau ² = 47.4	l5; Chi² = ∶	20.83, df = 7 (P	= 0.004	4); I² = 66%					-20 -10 0 10 20
Test for overall effect: Z = 3	3.79 (P = 0	.0002)							Favours (control) Favours (experimental
FIGURE 7									
Results of the effects of $= 0.0002$).	fexercise	e on quality of	f life in	n people with	n MS. Exercise	e had a	signific	ant effect on improv	ing quality of life in people with MS (P

therapeutic effects through exercise. In addition, a meta-analysis showed that yoga was the best intervention to improve static and dynamic balance, and aquatic training was the best intervention to improve walking ability in people with MS (67). The mechanisms by which exercise improves balance may be that exercise improves neurological control of muscles, increases unconscious deliberate muscle responses to dynamic joint stabilization signals, and enhances core area muscle strength to strengthen body stability.

Our results showed that exercise significantly improved walking ability (MSWS-12) and walking endurance (6MWT) in people with MS, which was in agreement with previous studies, showing that aerobic exercise, aquatic exercise, virtual reality training, and assisted gait training significantly improved walking ability (67-69), as well as that Pilates, aerobic exercise, resistance exercise, highintensity training, and intermittent walking training significantly improved walking endurance in people with MS (28, 68, 70-72). Furthermore, fast-velocity concentric resistance training may have a greater effect on walking endurance with greater neural adaptations in a shorter period of time (28). A meta-analysis showed that walking training programs significantly improved functional ability (mobility, walking endurance, and gait speed), possibly due to improved walking economy (68). The mechanisms by which exercise improves walking ability and walking endurance in people with MS may be improvements in maximal oxygen uptake, muscular strength, and fitness. The increase in muscle strength is due to improved firing and synchronization of motor units and improved synergistic coordination of agonists and antagonists (73). Moreover, another mechanism may be increased bilateral symmetry, which reduces the amount of time the lower limbs are supported on the ground (74).

Early fatigue in people with MS presents with common symptoms such as decreased endurance and muscle strength (75). Statistically, fatigue affects approximately two-thirds of people with MS (76). Current evidence suggests that pharmacological interventions are largely ineffective and that exercise significantly reduces fatigue in people with MS (77, 78). Our results showed that exercise significantly improved fatigue in people with MS, which was consistent with the results of Taul-Madsen et al. (79), showing that aerobic exercise is effective in reducing perceived fatigue in people with MS. The mechanism by which exercise improves fatigue may be an improvement in cardiorespiratory fitness, which increases available energy reserve and reduces fatigue. In addition, exercise may induce upregulation of neuroendocrine growth factor secretion, which increases neuronal plasticity and thus may improve compensatory cortical activation (80, 81). Furthermore, exercise-induced upregulation of anti-inflammatory cytokines may have beneficial effects on fatigue (82–84).

Resistance exercise has been reported to be an effective intervention to ameliorate physical and generalized fatigue and result in significant changes in muscle strength and postural stability (85). Subgroup analysis showed that aerobic exercise, resistance exercise, and multicomponent training were effective in improving fatigue in people with MS, with resistance exercise being the most effective intervention type, which may be due to the fact that resistance exercise is well-tolerated in people with MS, restores the ability to respond quickly to stimuli, and improves autonomy when walking (13). Previous studies have shown that motor and cognitive function deteriorate with age in adult people with MS and that older people with MS exhibit worse cognitive performance (86-89). Therefore, we conducted a subgroup analysis based on the participants' age and the results showed that a younger age was associated with larger improvement in fatigue. Horton et al. (90) showed that with age, people with MS develop a sedentary lifestyle, which increases the risk of secondary disease. Although exercise is an effective therapy, dyskinesia is common in older adult patients. Increased fatigue is a severe barrier when exercise energy expenditure is relatively high, and older patients can lose confidence in their ability to exercise and may feel at risk of injury, especially when exercise equipment is involved (91-94).

In addition, exercise significantly improved the quality of life in people with MS, which was consistent with a previous study, showing that exercise seems to be the most effective way to improve the quality of life in people with MS by increasing strength and balance, thereby reducing the risk of falls (94). Previous studies have shown that multicomponent training is well-tolerated and can effective in improving the quality of life in people with MS (13), and that group exercise is an effective intervention for people with MS to cope with fatigue, with the Baduanjin playing a more prominent role in improving the quality of life through respiration and psychology (46). Improvements in quality of life may be related to exercise-induced increases in fitness, mobility, balance, muscle strength, and sleep quality (53, 95). Subgroup analysis showed that aerobic exercise and multicomponent training were effective in improving quality of life, with aerobic exercise being the most effective intervention type, which was in agreement with previous studies, showing that aerobic exercise increases aerobic capacity and improves physical and mental health, thereby enhancing functional independence and fatigue resistance in people with MS (96). In addition, aerobic exercise may stimulate the activity of the sympathetic nervous system and activate the activity of the parasympathetic nervous system, which leads to the release of acetylcholine, resulting in a sedative effect (97).

Strengths and limitations of this systematic review

In this systematic review and meta-analysis, we included studies on the effect of exercise on balance, walking ability, walking endurance, fatigue, and quality of life in people with MS, and excluded studies where participants in the control group received exercise interventions, which can better reflect the effect of exercise interventions. Our findings provide an alternative treatment strategy for people with MS, clinically recommending engagement in resistance exercise and aerobic exercise, respectively, to alleviate fatigue and enhance quality of life.

However, this study has some limitations that should be noted. First, the heterogeneity between each of the original studies is unavoidable (the proportion of male and female participants from different regions, the age of subjects, etc.), which may affect the scientific validity of the meta-analysis. Second, many of the included studies had small sample sizes, which may have had some impact on the results. Finally, it was not possible to exclude a placebo effect, as blinding could not be performed during the exercise intervention. Future reviews could reduce the heterogeneity between included studies by restricting the inclusion criteria more strictly.

Conclusion

This meta-analysis revealed that exercise had beneficial effects in improving balance, walking ability, walking endurance, fatigue, and quality of life in people with MS. The effect of exercise on improving fatigue was associated with the age of the participants, with the younger the age, the greater the improvement in fatigue. To improve fatigue and quality of life, this meta-analysis provides clinicians with evidence to recommended that people with MS participate in resistance exercise and aerobic exercise, respectively.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.

Author contributions

LD: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing original draft, Writing - review & editing. HX: Data curation, Formal analysis, Investigation, Methodology, Software, Writing - review & editing. SZ: Data curation, Formal analysis, Investigation, Methodology, Software, Writing - review & editing. YZ: Data curation, Formal analysis, Investigation, Visualization, Writing - review & editing. XT: Data curation, Formal analysis, Investigation, Writing - review & editing. YL: Data curation, Formal analysis, Investigation, Writing review & editing. XH: Data curation, Funding acquisition, Investigation, Project administration, Resources, Software, Writing - review & editing. LY: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing - review & editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by the National Key R&D Program of China (2022YFC3600201) and the Chinese Universities Scientific Fund (2021QN001 and 2022QN015).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2024. 1387658/full#supplementary-material

References

1. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. *Lancet.* (2017) 389:1336–46. doi: 10.1016/S0140-6736(16)30959-X

2. Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. *Brain.* (2017) 140:527-46. doi: 10.1093/brain/aww258

3. Ontaneda D, Thompson AJ, Fox RJ, Cohen JA. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. *Lancet.* (2017) 389:1357-66. doi: 10.1016/S0140-6736(16)31320-4

4. Freiha J, Riachi N, Chalah MA, Zoghaib R, Ayache SS, Ahdab R. Paroxysmal symptoms in multiple sclerosis-a review of the literature. *J Clin Med.* (2020) 9:103100. doi: 10.3390/jcm9103100

5. Pilutti LA, Platta ME, Motl RW, Latimer-Cheung AE. The safety of exercise training in multiple sclerosis: a systematic review. *J Neurol Sci.* (2014) 343:3–7. doi: 10.1016/j.jns.2014.05.016

6. Mitchell AJ, Benito-León J, González JM, Rivera-Navarro J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. *Lancet Neurol.* (2005) 4:556–66. doi: 10.1016/S1474-4422(05)70166-6

7. Tallner A, Waschbisch A, Hentschke C, Pfeifer K, Mäurer M. Mental health in multiple sclerosis patients without limitation of physical function: the role of physical activity. *Int J Mol Sci.* (2015) 16:14901–11. doi: 10.3390/ijms160714901

8. Comber L, Galvin R, Coote S. Gait deficits in people with multiple sclerosis: a systematic review and meta-analysis. *Gait Posture*. (2017) 51:25-35. doi: 10.1016/j.gaitpost.2016.09.026

9. Torkildsen Ø, Myhr KM, Bø L. Disease-modifying treatments for multiple sclerosis—a review of approved medications. *Eur J Neurol.* (2016) 23:18–27. doi: 10.1111/ene.12883

10. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. J Am Med Assoc. (2021) 325:765–79. doi: 10.1001/jama.2020.26858

11. Halabchi F, Alizadeh Z, Sahraian MA, Abolhasani M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. *BMC Neurol.* (2017) 17:185. doi: 10.1186/s12883-017-0960-9

12. Kubsik AM, Klimkiewicz P, Klimkiewicz R, Janczewska K, Woldańska-Okońska M. Rehabilitation in multiple sclerosis patients. *Adv Clin Exp Med.* (2017) 26:861–70. doi: 10.17219/acem/62329

13. Grazioli E, Tranchita E, Borriello G, Cerulli C, Minganti C, Parisi A. The effects of concurrent resistance and aerobic exercise training on functional status in patients with multiple sclerosis. *Curr Sports Med Rep.* (2019) 18:452–7. doi: 10.1249/JSR.00000000000661

14. Feys P, Moumdjian L, Van Halewyck F, Wens I, Eijnde BO, Van Wijmeersch B, et al. Effects of an individual 12-week community-located "start-to-run" program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. *Mult Scler.* (2019) 25:92–103. doi: 10.1177/1352458517740211

15. Arntzen EC, Bidhendi-Yarandi R, Sivertsen M, Knutsen K, Dahl SSH, Hartvedt MG, et al. The effect of exercise and physical activity-interventions on step count and intensity level in individuals with multiple sclerosis: a systematic review and meta-analysis of randomized controlled trials. *Front Sports Act Living.* (2023) 5:1162278. doi: 10.3389/fspor.2023.1162278

16. Arik MI, Kiloatar H, Saracoglu I. Do Pilates exercises improve balance in patients with multiple sclerosis? A systematic review and meta-analysis. *Mult Scler Relat Disord.* (2022) 57:103410. doi: 10.1016/j.msard.2021.103410

17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Rev Esp Cardiol.* (2021) 74:790–9. doi: 10.1136/bmj.n71

18. Ardern CL, Büttner F, Andrade R, Weir A, Ashe MC, Holden S, et al. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br J Sports Med. (2022) 56:175– 95. doi: 10.1136/bjsports-2021-103987

19. Tao X, Chen Y, Zhen K, Ren S, Lv Y, Yu L. Effect of continuous aerobic exercise on endothelial function: a systematic review and meta-analysis of randomized controlled trials. *Front Physiol.* (2023) 14:1043108. doi: 10.3389/fphys.2023.1043108

20. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. *Aust J Physiother*. (2009) 55:129–33. doi: 10.1016/S0004-9514(09)70043-1

21. Zhang S, Zhen K, Su Q, Chen Y, Lv Y, Yu L. The effect of aerobic exercise on cognitive function in people with Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. *Int J Environ Res Public Health*. (2022) 19:2315700. doi: 10.3390/ijerph192315700

22. You Q, Yu L, Li G, He H, Lv Y. Effects of different intensities and durations of aerobic exercise on vascular endothelial function in middle-aged and elderly people: a meta-analysis. *Front Physiol.* (2021) 12:803102. doi: 10.3389/fphys.2021.803102

23. Zhen K, Zhang S, Tao X, Li G, Lv Y, Yu L, et al. systematic review and metaanalysis on effects of aerobic exercise in people with Parkinson's disease. *NPJ Parkinsons Dis.* (2022) 8:146. doi: 10.1038/s41531-022-00418-4

24. Ahmadi A, Nikbakh M, Arastoo A, Habibi AH. The effects of a yoga intervention on balance, speed and endurance of walking, fatigue and quality of life in people with multiple sclerosis. *J Hum Kinet*. (2010) 23:71–8. doi: 10.2478/v10078-010-0009-2

25. Androwis GJ, Sandroff BM, Niewrzol P, Fakhoury F, Wylie GR, Yue G, et al. pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. *Mult Scler Relat Disord.* (2021) 51:102936. doi: 10.1016/j.msard.2021.102936

26. Cakt BD, Nacir B, Genç H, Saraçoglu M, Karagöz A, Erdem HR, et al. Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. *Am J Phys Med Rehabil.* (2010) 89:446–57. doi: 10.1097/PHM.0b013e3181d3e71f

27. Andreu-Caravaca L, Ramos-Campo DJ, Chung LH, Manonelles P, Boas JPV, Rubio-Arias J. Fast-velocity resistance training improves force development and mobility in multiple sclerosis. *Int J Sports Med.* (2022) 43:593–9. doi: 10.1055/a-1710-1492

28. Andreu-Caravaca L, Ramos-Campo DJ, Chung LH, Manonelles P, Abellán-Aynés O, Rubio-Arias J. Effects of fast-velocity concentric resistance training in people with multiple sclerosis: a randomized controlled trial. *Acta Neurol Scand.* (2022) 146:652–61. doi: 10.1111/ane.13704

29. Carling A, Forsberg A, Gunnarsson M, Nilsagård Y. CoDuSe group exercise programme improves balance and reduces falls in people with multiple sclerosis: a multi-centre, randomized, controlled pilot study. *Mult Scler.* (2017) 23:1394–404. doi: 10.1177/1352458516677591

30. Langeskov-Christensen M, Hvid LG, Jensen HB, Nielsen HH, Petersen T, Stenager E, et al. Efficacy of high-intensity aerobic exercise on common multiple sclerosis symptoms. *Acta Neurol Scand.* (2022) 145:229–38. doi: 10.1111/ane.13540

31. Correale L, Buzzachera CF, Liberali G, Codrons E, Mallucci G, Vandoni M, et al. Effects of combined endurance and resistance training in women with multiple sclerosis: a randomized controlled study. *Front Neurol.* (2021) 12:698460. doi: 10.3389/fneur.2021.698460

32. Dodd KJ, Taylor NF, Shields N, Prasad D, McDonald E, Gillon A. Progressive resistance training did not improve walking but can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomized controlled trial. *Mult Scler*. (2011) 17:1362–74. doi: 10.1177/1352458511409084

33. Fleming KM, Coote SB, Herring MP. Home-based Pilates for symptoms of anxiety, depression and fatigue among persons with multiple sclerosis: an 8-week randomized controlled trial. *Mult Scler.* (2021) 27:2267–79. doi: 10.1177/13524585211009216

34. Forsberg A, von Koch L, Nilsagård Y. Effects on balance and walking with the CoDuSe balance exercise program in people with multiple sclerosis: a multicenter randomized controlled trial. *Mult Scler Int.* (2016) 2016:7076265. doi: 10.1155/2016/7076265

35. Garrett M, Hogan N, Larkin A, Saunders J, Jakeman P, Coote S. Exercise in the community for people with minimal gait impairment due to MS: an assessor-blind randomized controlled trial. *Mult Scler.* (2013) 19:782–9. doi: 10.1177/1352458512461966

36. Gervasoni E, Cattaneo D, Jonsdottir J. Effect of treadmill training on fatigue in multiple sclerosis: a pilot study. *Int J Rehabil Res.* (2014) 37:54–60. doi: 10.1097/MRR.00000000000 0034

37. Eftekharsadat B, Babaei-Ghazani A, Mohammadzadeh M, Talebi M, Eslamian F, Azari E. Effect of virtual reality-based balance training in multiple sclerosis. *Neurol Res.* (2015) 37:539–44. doi: 10.1179/1743132815Y.0000000013

38. Gheitasi M, Bayattork M, Andersen LL, Imani S, Daneshfar A. Effect of twelve weeks pilates training on functional balance of male patients with multiple sclerosis: randomized controlled trial. *J Bodyw Mov Ther.* (2021) 25:41–5. doi: 10.1016/j.jbmt.2020.11.003

39. Hogan N, Kehoe M, Larkin A, Coote S. The effect of community exercise interventions for people with MS who use bilateral support for gait. *Mult Scler Int.* (2014) 2014:109142. doi: 10.1155/2014/109142

40. Kargarfard M, Shariat A, Ingle L, Cleland JA, Kargarfard M. Randomized controlled trial to examine the impact of aquatic exercise training on functional capacity, balance, and perceptions of fatigue in female patients with multiple sclerosis. *Arch Phys Med Rehabil.* (2018) 99:234–41. doi: 10.1016/j.apmr.2017.06.015

41. Grubić Kezele T, Trope Z, Ahel V, RuŽić N, Omrčen H, Đudarić L, et al. Upper-lower limb and breathing exercise program for improving sleep quality and

psychological status in multiple sclerosis: a pilot randomized controlled trial. *Brain Impair*. (2023) 24:86–102. doi: 10.1017/BrImp.2021.17

42. Learmonth YC, Paul L, Miller L, Mattison P, McFadyen AK. The effects of a 12week leisure centre-based, group exercise intervention for people moderately affected with multiple sclerosis: a randomized controlled pilot study. *Clin Rehabil.* (2012) 26:579–93. doi: 10.1177/0269215511423946

43. Najafi B, Rajabi R, Seidi F, Maemodan FG. Effect of combined training protocol on postural control and motor functions of individuals with multiple sclerosis. *J Adv Med Biomed Res.* (2019) 122:43. doi: 10.30699/jambs.27.122.43

44. Negahban H, Rezaie S, Goharpey S. Massage therapy and exercise therapy in patients with multiple sclerosis: a randomized controlled pilot study. *Clin Rehabil.* (2013) 27:1126–36. doi: 10.1177/0269215513491586

45. Ozkul C, Guclu-Gunduz A, Eldemir K, Apaydin Y, Yazici G, Irkec C. Combined exercise training improves cognitive functions in multiple sclerosis patients with cognitive impairment: a single-blinded randomized controlled trial. *Mult Scler Relat Disord.* (2020) 45:102419. doi: 10.1016/j.msard.2020.102419

46. Pan Y, Huang Y, Zhang H, Tang Y, Wang C. The effects of Baduanjin and yoga exercise programs on physical and mental health in patients with Multiple Sclerosis: a randomized controlled trial. *Complement Ther Med.* (2022) 70:102862. doi: 10.1016/j.ctim.2022.102862

47. Robinson J, Dixon J, Macsween A, van Schaik P, Martin D. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: a randomized controlled trial. *BMC Sports Sci Med Rehabil.* (2015) 7:8. doi: 10.1186/s13102-015-0001-1

48. Romberg A, Virtanen A, Ruutiainen J. Long-term exercise improves functional impairment but not quality of life in multiple sclerosis. *J Neurol.* (2005) 252:839–45. doi: 10.1007/s00415-005-0759-2

49. Sokhangu MK, Rahnama N, Etemadifar M, Rafeii M, Saberi A. Effect of neuromuscular exercises on strength, proprioceptive receptors, and balance in females with multiple sclerosis. *Int J Prev Med.* (2021) 12:5. doi: 10.4103/ijpvm.IJPVM_525_18

50. Sosnoff JJ, Finlayson M, McAuley E, Morrison S, Motl RW. Homebased exercise program and fall-risk reduction in older adults with multiple sclerosis: phase 1 randomized controlled trial. *Clin Rehabil.* (2014) 28:254– 63. doi: 10.1177/0269215513501092

51. Straudi S, Benedetti MG, Venturini E, Manca M, Foti C, Basaglia N. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. *NeuroRehabilitation*. (2013) 33:555–63. doi: 10.3233/NRE-130990

52. Tarakci E, Yeldan I, Huseyinsinoglu BE, Zenginler Y, Eraksoy M. Group exercise training for balance, functional status, spasticity, fatigue and quality of life in multiple sclerosis: a randomized controlled trial. *Clin Rehabil.* (2013) 27:813–22. doi: 10.1177/0269215513481047

53. Tollár J, Nagy F, Tóth BE, Török K, Szita K, Csutorás B, et al. Exercise effects on multiple sclerosis quality of life and clinical-motor symptoms. *Med Sci Sports Exerc.* (2020) 52:1007–14. doi: 10.1249/MSS.0000000002228

54. Yazgan YZ, Tarakci E, Tarakci D, Ozdincler AR, Kurtuncu M. Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: a randomized controlled trial. *Mult Scler Relat Disord*. (2020) 39:101902. doi: 10.1016/j.msard.2019.101902

55. Nilsagård YE, Forsberg AS, von Koch L. Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. *Mult Scler.* (2013) 19:209–16. doi: 10.1177/1352458512450088

56. Young HJ, Mehta TS, Herman C, Wang F, Rimmer JH. The effects of M2M and adapted yoga on physical and psychosocial outcomes in people with multiple sclerosis. *Arch Phys Med Rehabil.* (2019) 100:391–400. doi: 10.1016/j.apmr.2018.06.032

57. Kargarfard M, Etemadifar M, Baker P, Mehrabi M, Hayatbakhsh R. Effect of aquatic exercise training on fatigue and health-related quality of life in patients with multiple sclerosis. *Arch Phys Med Rehabil.* (2012) 93:1701–8. doi: 10.1016/j.apmr.2012.05.006

58. Lysogorskaia E, Ivanov T, Mendalieva A, Ulmasbaeva E, Youshko M, Brylev L. Yoga vs. physical therapy in multiple sclerosis: results of randomized controlled trial and the training protocol. *Ann Neurosci.* (2023) 30:242–50. doi: 10.1177/09727531231161994

59. Monjezi S, Molhemi F, Shaterzadeh-Yazdi MJ, Salehi R, Mehravar M, Kashipazha D, et al. Perturbation-based Balance Training to improve postural responses and falls in people with multiple sclerosis: a randomized controlled trial. *Disabil Rehabil.* (2023) 45:3649–55. doi: 10.1080/09638288.2022.2138570

60. Riemenschneider M, Hvid LG, Petersen T, Stenager E, Dalgas U. Exercise therapy in early multiple sclerosis improves physical function but not cognition: secondary analyses from a randomized controlled trial. *Neurorehabil Neural Repair.* (2023) 37:288–97. doi: 10.1177/15459683231159659

61. Abadi Marand L, Noorizadeh Dehkordi S, Roohi-Azizi M, Dadgoo M. Effect of dynamic neuromuscular stabilization on balance, trunk function, falling, and spasticity in people with multiple sclerosis: a randomized controlled trial. *Arch Phys Med Rehabil.* (2023) 104:90–101. doi: 10.1016/j.apmr.2022.09.015

62. Vural P, Zenginler Yazgan Y, Tarakci E, Guler S, Saltik S. The effects of online exercise training on physical functions and quality of life in patients with pediatric-onset multiple sclerosis. *Mult Scler Relat Disord.* (2023) 74:104710. doi: 10.1016/j.msard.2023.104710

63. Ahadi F, Tabatabaee SM, Rajabpour M, Ghadamgahi A, Kaljahi MP. Effect of 8-week aerobic exercise and yoga training on depression, anxiety, and quality of life among multiple sclerosis patients. *Iran Rehabil J.* (2013) 11:75–80.

64. Cameron MH, Nilsagard Y. Balance, gait, and falls in multiple sclerosis. *Handb Clin Neurol.* (2018) 159:237–50. doi: 10.1016/B978-0-444-63916-5.00015-X

65. Gunn H, Markevics S, Haas B, Marsden J, Freeman J. Systematic review: the effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. *Arch Phys Med Rehabil.* (2015) 96:1898–912. doi: 10.1016/j.apmr.2015.05.018

66. Molhemi F, Monjezi S, Mehravar M, Shaterzadeh-Yazdi MJ, Salehi R, Hesam S, et al. Effects of virtual reality vs. conventional balance training on balance and falls in people with multiple sclerosis: a randomized controlled trial. *Arch Phys Med Rehabil.* (2021) 102:290–9. doi: 10.1016/j.apmr.2020.09.395

67. Hao Z, Zhang X, Chen P. Effects of different exercise therapies on balance function and functional walking ability in multiple sclerosis disease patients—a network meta-analysis of randomized controlled trials. *Int J Environ Res Public Health.* (2022) 19:35. doi: 10.37766/inplasy2022.6.0035

68. Andreu-Caravaca L, Ramos-Campo DJ, Chung LH, Rubio-Arias J. Dosage and effectiveness of aerobic training on cardiorespiratory fitness, functional capacity, balance, and fatigue in people with multiple sclerosis: a systematic review and metaanalysis. *Arch Phys Med Rehabil.* (2021) 102:1826–39. doi: 10.1016/j.apmr.2021.01.078

69. Sconza C, Negrini F, Di Matteo B, Borboni A, Boccia G, Petrikonis I, et al. Robot-assisted gait training in patients with multiple sclerosis: a randomized controlled crossover trial. *Medicina*. (2021) 57:70713. doi: 10.3390/medicina57070713

70. Abasiyanik Z, Ertekin Ö, Kahraman T, Yigit P, Özakbaş S. The effects of Clinical Pilates training on walking, balance, fall risk, respiratory, and cognitive functions in persons with multiple sclerosis: a randomized controlled trial. *Explore.* (2020) 16:12–20. doi: 10.1016/j.explore.2019.07.010

71. Bae M, Kasser SL. High intensity exercise training on functional outcomes in persons with multiple sclerosis: a systematic review. *Mult Scler Relat Disord.* (2023) 75:104748. doi: 10.1016/j.msard.2023.104748

72. Karpatkin H, Rachwani J, Rhodes R, Rodriguez L, Rodriguez R, Rubeo A, et al. The effect of intermittent vs. continuous walking on distance to fatigue in persons with multiple sclerosis. *Disabil Rehabil.* (2022) 44:8429–35. doi: 10.1080/09638288.2021.2018055

73. Shepherd RB, Carr JH. Neurological rehabilitation. Disabil Rehabil. (2013) 28:811-2. doi: 10.1080/09638280500534705

74. Jensen HB, Mamoei S, Ravnborg M, Dalgas U, Stenager E. Distribution-based estimates of minimum clinically important difference in cognition, arm function and lower body function after slow release-fampridine treatment of patients with multiple sclerosis. *Mult Scler Relat Disord*. (2016) 7:58–60. doi: 10.1016/j.msard.2016.03.007

75. Petajan JH, White AT. Recommendations for physical activity in patients with multiple sclerosis. *Sports Med.* (1999) 27:179– 91. doi: 10.2165/00007256-199927030-00004

76. Harrison AM, Safari R, Mercer T, Picariello F, van der Linden ML, White C, et al. Which exercise and behavioural interventions show most promise for treating fatigue in multiple sclerosis? A network meta-analysis. *Mult Scler Oct.* (2021) 27:1657–78. doi: 10.1177/1352458521996002

77. Razazian N, Kazeminia M, Moayedi H, Daneshkhah A, Shohaimi S, Mohammadi M, et al. The impact of physical exercise on the fatigue symptoms in patients with multiple sclerosis: a systematic review and meta-analysis. *BMC Neurol.* (2020) 20:93. doi: 10.1186/s12883-020-01654-y

78. Asano M, Finlayson ML. Meta-analysis of three different types of fatigue management interventions for people with multiple sclerosis: exercise, education, and medication. *Mult Scler Int.* (2014) 2014;798285. doi: 10.1155/2014/798285

79. Taul-Madsen L, Connolly L, Dennett R, Freeman J, Dalgas U, Hvid LG. Is aerobic or resistance training the most effective exercise modality for improving lower extremity physical function and perceived fatigue in people with multiple sclerosis? A systematic review and meta-analysis. *Arch Phys Med Rehabil.* (2021) 102:2032–48. doi: 10.1016/j.apmr.2021.03.026

80. Gold SM, Schulz KH, Hartmann S, Mladek M, Lang UE, Hellweg R, et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. *J Neuroimmunol.* (2003) 138:99–105. doi: 10.1016/S0165-5728(03)00121-8

81. Prakash RS, Snook EM, Erickson KI, Colcombe SJ, Voss MW, Motl RW, et al. Cardiorespiratory fitness: a predictor of cortical plasticity in multiple sclerosis. *NeuroImage*. (2007) 34:1238–44. doi: 10.1016/j.neuroimage.2006.10.003

82. Schulz KH, Gold SM, Witte J, Bartsch K, Lang UE, Hellweg R, et al. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. *J Neurol Sci.* (2004) 225:11–8. doi: 10.1016/j.jns.2004.06.009

83. Heesen C, Gold SM, Hartmann S, Mladek M, Reer R, Braumann KM, et al. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. *Brain Behav Immun.* (2003) 17:473–81. doi: 10.1016/S0889-1591(03)00077-1

84. Castellano V, Patel DI, White LJ. Cytokine responses to acute and chronic exercise in multiple sclerosis. J Appl Physiol. (2008) 104:1697–702. doi: 10.1152/japplphysiol.00954.2007

85. Torres-Costoso A, Martínez-Vizcaíno V, Reina-Gutiérrez S, Álvarez-Bueno C, Guzmán-Pavón MJ, Pozuelo-Carrascosa DP, et al. Effect of exercise on fatigue in multiple sclerosis: a network meta-analysis comparing different types of exercise. *Arch Phys Med Rehabil.* (2022) 103:970–87.e18. doi: 10.1016/j.apmr.2021.08.008

86. Roy S, Frndak S, Drake AS, Irwin L, Zivadinov R, Weinstock-Guttman B, et al. Differential effects of aging on motor and cognitive functioning in multiple sclerosis. *Mult Scler.* (2017) 23:1385–93. doi: 10.1177/1352458516679036

87. Bollaert RE, Motl RW. Physical and cognitive functions, physical activity, and sedentary behavior in older adults with multiple sclerosis. *J Geriatr Phys Ther.* (2019) 42:304–12. doi: 10.1519/JPT.00000000000163

88. Baird JF, Cederberg KLJ, Sikes EM, Jeng B, Sasaki JE, Sandroff BM, et al. Changes in cognitive performance with age in adults with multiple sclerosis. *Cogn Behav Neurol.* (2019) 32:201–7. doi: 10.1097/WNN.0000000000000000

89. Branco M, Ruano L, Portaccio E, Goretti B, Niccolai C, Patti F, et al. Aging with multiple sclerosis: prevalence and profile of cognitive impairment. *Neurol Sci.* (2019) 40:1651–7. doi: 10.1007/s10072-019-03875-7

90. Horton S, Macdonald DJ, Erickson K. MS exercise, and the potential for older adults. *Eur Rev Aging Phys Act.* (2010) 62:9. doi: 10.1007/s11556-010-0062-9

91. Morris KS, McAuley E, Motl RW. Self-efficacy and environmental correlates of physical activity among older women and women with multiple sclerosis. *Health Educ Res.* (2008) 23:744–52. doi: 10.1093/her/cym067

92. Motl RW, Snook EM, Schapiro RT. Symptoms and physical activity behavior in individuals with multiple sclerosis. *Res Nurs Health.* (2008) 31:466-75. doi: 10.1002/nur.20274

93. Snook EM, Motl RW. Physical activity behaviors in individuals with multiple sclerosis: roles of overall and specific symptoms, and self-efficacy. *J Pain Symptom Manage*. (2008) 36:46–53. doi: 10.1016/j.jpainsymman.2007.0 9.007

94. Motl RW, Snook EM, Mcauley E, Scott JA, Hinkle ML. Demographic correlates of physical activity in individuals with multiple sclerosis. *Disabil Rehabil.* (2009) 29:1301–4. doi: 10.1080/0963828060105 5873

95. Al-Sharman A, Khalil H, El-Salem K, Aldughmi M, Aburub A. The effects of aerobic exercise on sleep quality measures and sleep-related biomarkers in individuals with Multiple Sclerosis: a pilot randomised controlled trial. *NeuroRehabilitation*. (2019) 45:107–15. doi: 10.3233/NRE-192748

96. Reina-Gutiérrez S, Cavero-Redondo I, Martínez-Vizcaíno V, Núñez de Arenas-Arroyo S, López-Muñoz P, Álvarez-Bueno C, et al. The type of exercise most beneficial for quality of life in people with multiple sclerosis: a network meta-analysis. *Ann Phys Rehabil Med.* (2022) 65:101578. doi: 10.1016/j.rehab.2021.101578

97. Alphonsus KB, Su Y, D'Arcy C. The effect of exercise, yoga and physiotherapy on the quality of life of people with multiple sclerosis: systematic review and meta-analysis. *Complement Ther Med.* (2019) 43:188–95. doi: 10.1016/j.ctim.2019.02.010