AUTHOR=Sack Fabian , Irwin Amanda , van der Zalm Raymond , Ho Lorraine , Celermajer Danielle J. , Celermajer David S. TITLE=Healthcare-related carbon footprinting—lower impact of a coronary stenting compared to a coronary surgery pathway JOURNAL=Frontiers in Public Health VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2024.1386826 DOI=10.3389/fpubh.2024.1386826 ISSN=2296-2565 ABSTRACT=

Healthcare is a major generator of greenhouse gases, so consideration of this contribution to climate change needs to be quantified in ways that can inform models of care. Given the availability of activity-based financial data, environmentally-extended input–output (EEIO) analysis can be employed to calculate systemic carbon footprints for healthcare activities, allowing comparison of different patient care pathways. We thus quantified and compared the carbon footprint of two common care pathways for patients with stable coronary artery disease, with similar clinical outcomes: coronary stenting and coronary artery bypass surgery (CABG). Healthcare cost data for these two pathways were disaggregated and the carbon footprint associated with this expenditure was calculated by connecting the flow of money within the economy to the greenhouse gases emitted to support the full range of associated activities. The systemic carbon footprint associated with an average stable patient CABG pathway, at a large tertiary referral hospital in Sydney, Australia in 2021–22, was 11.5 tonnes CO2-e, 4.9 times greater than the 2.4 tonnes CO2-e footprint of an average comparable stenting pathway. These data suggest that a stenting pathway for stable coronary disease should be preferred on environmental grounds and introduces EEIO analysis as a practical tool to assist in health-care related carbon footprinting.