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Introduction: SARS-CoV-2 variants are defined by specific genome-wide 
mutations compared to the Wuhan genome. However, non-clade-defining 
mutations may also impact protein structure and function, potentially leading 
to reduced vaccine effectiveness. Our objective is to identify mutations 
across the entire viral genome rather than focus on individual mutations that 
may be  associated with vaccine failure and to examine the physicochemical 
properties of the resulting amino acid changes.

Materials and methods: Whole-genome consensus sequences of SARS-CoV-2 
from COVID-19 patients were retrieved from the GISAID database. Analysis 
focused on Dataset_1 (7,154 genomes from Italy) and Dataset_2 (8,819 sequences 
from Spain). Bioinformatic tools identified amino acid changes resulting from 
codon mutations with frequencies of 10% or higher, and sequences were 
organized into sets based on identical amino acid combinations.

Results: Non-defining mutations in SARS-CoV-2 genomes belonging to clades 
21  L (Omicron), 22B/22E (Omicron), 22F/23A (Omicron) and 21J (Delta) were 
associated with vaccine failure. Four sets of sequences from Dataset_1 were 
significantly linked to low vaccine coverage: one from clade 21L with mutations 
L3201F (ORF1a), A27- (S) and G30- (N); two sets shared by clades 22B and 22E 
with changes A27- (S), I68- (S), R346T (S) and G30- (N); and one set shared 
by clades 22F and 23A containing changes A27- (S), F486P (S) and G30- (N). 
Booster doses showed a slight improvement in protection against Omicron 
clades. Regarding 21J (Delta) two sets of sequences from Dataset_2 exhibited 
the combination of non-clade mutations P2046L (ORF1a), P2287S (ORF1a), 
L829I (ORF1b), T95I (S), Y145H (S), R158- (S) and Q9L (N), that was associated 
with vaccine failure.

Discussion: Vaccine coverage associations appear to be  influenced by the 
mutations harbored by marketed vaccines. An analysis of the physicochemical 
properties of amino acid revealed that primarily hydrophobic and polar amino 
acid substitutions occurred. Our results suggest that non-defining mutations 
across the proteome of SARS-CoV-2 variants could affect the extent of protection 
of the COVID-19 vaccine. In addition, alteration of the physicochemical 
characteristics of viral amino acids could potentially disrupt protein structure or 
function or both.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
first reported in Wuhan (China) in late 2019, soon spread around the 
globe. To date, more than 700 million people have been infected and 
6.97 million have died worldwide. Despite the availability of vaccines, 
SARS-CoV-2 remains a cause for concern. Like other RNA viruses, 
SARS-CoV-2 is endowed with a high mutation rate and high viral load 
and accumulates mutations with each replication cycle. As a result, 
viral variants that differ in one or more nucleotides are continuously 
being generated in infected hosts (1–3). The nomenclature of SARS-
CoV-2 variants plays a critical role in facilitating their clear 
identification, tracking, and global collaboration in understanding the 
evolutionary dynamics of the virus. For Nextstrain clade naming, a 
new major clade earns its designation once it attains a 20% frequency 
on a global scale, regardless of the time frame. When computing these 
frequencies, it is crucial to ensure a relatively uniform sampling of 
sequences across different times and geographical locations due to the 
considerable disparity in sequencing efforts among countries. Clade 
names are formulated using a standardized protocol, typically derived 
from the year of emergence and the subsequent available letter in the 
alphabet. Additionally, a newly identified clade must exhibit a 
minimum of two mutations differentiating it from its parent major 
clade. This systematic approach ensures consistency and accuracy in 
clade designation, facilitating the clear identification and tracking of 
viral lineages in genomic surveillance studies. SARS-CoV-2 has 
undergone several genetic mutations leading to the emergence of 
various clades since its first identification in 2019. A recent study using 
Belgian data revealed an enhanced immune escape capability 
exhibited by the Omicron variant compared to the Alpha and Delta 
variants, resulting in a substantial reduction in the protective efficacy 
conferred by both acquired immunity and vaccination. Furthermore, 
a decline in vaccine effectiveness over time was observed, underscoring 
the significance of booster doses to sustain long-term immunity (4).

In the Netherlands population, the effectiveness of primary and 
booster vaccination against SARS-CoV-2 infection was estimated 
overall and in four risk groups defined by age and medical conditions 
during the Delta and Omicron BA.1/BA.2 periods. The findings 
underscored the advantages of booster vaccinations in reducing 
infection rates, particularly within at-risk groups (5).

Investigations of the complete of SARS-CoV-2 proteome have 
often been limited to analyzing only a few sequences or individual 
sequences, rather than taking advantage of a large sequencing dataset. 
However, a direct RNA sequencing approach was employed to assess 
the SARS-CoV-2 transcriptome in Vero E6 cells, and mass 
spectrometry was used to explore the proteome and phosphoproteome 
of these virus-infected cells (6). Furthermore, a proteomic analysis of 
proteins extracted from nasopharyngeal swabs of 12 patients 
diagnosed with COVID-19 identified 13 different SARS-CoV-2 
proteins. Additionally, host proteome analysis revealed that several 
key host proteins were uniquely expressed in patients with COVID-19 
(7). In a separate study, distinct epitopes of seven different proteins 
were identified using the complete SARS-CoV-2 virus genome 

obtained from the NCBI database. However, the 12 protein sequences 
of the genome were formatted as FASTA files using RefSeq accessions 
(8). Furthermore, a proteome-wide study of SARS-CoV-2 assessed its 
potential to induce autoimmune diseases by segmenting the proteome 
into peptides and identifying shared peptides with experimentally 
confirmed human T-cell and B-cell epitopes (9).

The SARS-CoV-2 genome consists of a single-stranded, 
unsegmented, positive-polarity RNA molecule [(+) ssRNA] 29,903 
nucleotides in length encoding 13 ORFs (10). Two-thirds of the viral 
genome corresponds to ORF1a and ORF1b, which express the two 
polyproteins pp1a and pp1ab, the latter though a − 1 ribosomal 
frameshift, and that are processed by two viral proteases into 16 
non-structural proteins (nsp). ORF1a encodes nsp1 to nsp11 and 
ORF1b comprises nsp12 to nsp16. Non-structural proteins make up 
the replication and transcription machinery and are responsible for 
the maintenance of the viral genome (11). Some nsp proteins are 
targets for antiviral drugs such as nsp12, the RNA-dependent RNA 
polymerase (RdRp), and nsp5, the 3C-like protease (Mpro, 3CLpro) 
(12). In addition, nsp3, the papain-like protease (PLpro) is also a 
therapeutical target for antivirals (13).

The structural proteins are, namely, the surface glycoprotein or 
spike (S), the envelope protein (E), the membrane glycoprotein (M), 
and the nucleocapsid phosphoprotein (N). The S protein has been 
shown to play a major role in virus attachment and entry into cells, 
being a key antigen for development of vaccines and neutralizing 
antibodies, and as a pharmacological target (14–16). The E protein 
plays a key role in the pathogenesis of the virus affecting the binding 
of SARS-CoV-2 to the tight junction proteins (17). The M protein is 
responsible for maintaining the shape of the virion by spanning the 
membrane bilayer and facilitates budding of the viral particles from 
the host cells (18). Interestingly, the M protein was found to elicit IgM 
response during the acute phase of SARS-CoV-2 infection (19). The 
nucleocapsid function is to maintain the genome structure inside the 
envelope (20). The N protein has been identified as an important 
target for T-cell response, making it a suitable candidate for next-
generation COVID-19 vaccines against emerging variants (21–23).

There are nine accessory proteins, ORF3a, 3d, 6, 7a, 7b, 8, 9b, 14, 
and 10, which are produced from the encoding accessory genes 
ORF3a, ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF14 and 
ORF10, respectively (24). Although the exact functions of SARS-
CoV-2 accessory proteins remain to be determined, studies of other 
coronaviruses suggest that they are not essential for viral replication 
but can modulate replication and pathogenesis through interaction 
with host pathways including antiviral activation (25, 26) and viral 
translation (27).

The existing literature predominantly concentrates on isolated 
mutations within the S protein rather than examining mutations as a 
network involving multiple proteins. Individually, mutations in SARS-
CoV-2 might not pose significant risks, however their collective effect 
in tandem with other mutations could amplify the virus’s 
transmissibility and virulence. Consequently, relying solely on 
information about distinct segments of the virus might provide an 
incomplete understanding. Therefore, a comprehensive study of 
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mutations across the entire SARS-CoV-2 genome and proteome 
becomes essential. Such a holistic approach is critical in understanding 
the virus’s mechanisms for evading vaccines and is instrumental in the 
development of effective vaccines and therapies.

Mutations (including deletions) that alter protein sequence, may 
affect physicochemical properties and folding conformation of 
proteins resulting in changes in biological functions. Amino acid 
positions in proteins could be assigned a single conservation number 
based on the alignment of homologous proteins for quantification of 
amino acid substitutions (28, 29).

Given that structural variations due to mutations could affect 
vaccine effectiveness and drug function, and thus the severity of 
COVID-19, this work involved an extensive genome-wide mutation 
combination analysis of SARS-CoV-2  in vaccinated patients from 
Italian and Spanish populations as two independent datasets. 
Analyzing more than 7,500 proteomes from each population increases 
the statistical power and reliability of the results. Our objective was to 
identify mutations across the entire viral genome, rather than focusing 
on individual mutations, that may be associated with vaccine failure, 
in addition to analyze the physicochemical properties of the resulting 
amino acid changes. This study involved aligning SARS-CoV-2 
genomic sequences from both vaccinated and unvaccinated 
COVID-19 patients using the Wuhan genome as reference. 
We examined the frequency of specific mutation sets and analyzed 
their physicochemical properties to understand how these mutations 
may affect the structure and function of viral proteins. This approach 
provides a comprehensive view of the genetic diversity of SARS-
CoV-2 variants circulating in different geographic regions and 
contributes to a deeper understanding of the underlying mechanisms 
of the vaccine effectiveness, which is crucial for informing public 
health strategies and vaccine development efforts.

2 Materials and methods

2.1 SARS-CoV-2 genome sequences

Sequences of COVID-19 patients were retrieved from the Global 
Initiative on Sharing All Influenza Data (GISAID) (30): (a) Dataset_1 
contained 7,154 aligned consensus sequences of SARS-CoV-2 
genomes isolated from patients of Friuli-Venezia Giulia (Italy) from 
January 01, 2021 to June 24, 2023. Of these, 2,419 were fully vaccinated 
and 1,667 received a booster dose vaccination against the Omicron 
variant; (b) Dataset_2 contained 8,819 aligned genomes mainly from 
Catalonia (Spain) since January 01, 2021 to July 25, 2022. Of those, 
2,969 were completely vaccinated and 699 received the third 
COVID-19 vaccine dose against Omicron. Table 1 shows a description 
of the datasets. Datasets are available in the Supplementary material.

The NetAlign CLI software was used for sequence alignment 
(version 2.4.0) (31). Genome and coding sequences (CDS) of SARS-
CoV-2 Wuhan-Hu-1 reference sequence NC_045512.2 were retrieved 
from GenBank. SARS-CoV-2 variants and mutations were sourced 
from the CoVariant website,1 which employs the Nextstrain 
nomenclature for identification of variants.

1 https://covariants.org/

2.2 Mutations of interest

Changes in genome, including indeterminations during 
sequencing base calling, were referred to as non-synonymous or 
missense mutations when the codons contained mutations 

TABLE 1 Brief description of Dataset_1 and Dataset_2.

Dataset_1 
(n  =  7,154)

Dataset_2 
(n  =  8,819)

Female, n (%) 3,280 (45.8) 4,988 (56.6)

Male, n (%) 2,962 (41.4) 3,801 (43.1)

Unknown Gender, n (%) 912 (12.7) 30 (0.3)

< 65 years, n (%) 4,535 (63.4) 5,892 (66.8)

≥ 65 years, n (%) 1,684 (23.5) 2,927 (33.2)

Unknown Age, n (%) 935 (13.1) 0 (0.0)

Timeline 2021-01-01/2023-06-24 2021-01-01/2022-07-25

Fully Vaccinated, n (%) 2,419 (33.8) 2,969 (33.7)

  Not Omicron/Omicron 322 (13.3)/2097 (86.7) 2,163 (72.9)/806 (27.2)

  BioNTech-Pfizer 1,450 (59.9) 2,197 (74.0)

  J&J-Janssen 60 (2.5) 94 (3.2)

  Moderna-Lonza 827 (34.2) 154 (5.2)

  Oxford-AstraZeneca 81 (3.3) 513 (17.2)

  Unknown/Others 0 (0.0)/1 (0.1) 9 (0.3)/2 (0.1)

Booster, n (%) 1,667 699

  Omicron 1,667 699

  BioNTech-Pfizer 945 (56.7) 569 (81.4)

  J&J-Janssen 12 (0.7) 3 (0.4)

  Moderna-Lonza 710 (42.6) 40 (5.7)

  Oxford-AstraZeneca 0 (0.0) 83 (11.9)

  Unknown/Others 0 (0.0)/0 (0.0) 4 (0.6)/0 (0.0)

Doses Received, n (%)

  None 4,624 (64.6) 5,751 (65.2)

  One dose 149 (2.1) 168 (1.9)

  Two doses 694 (9.7) 2,160 (24.5)

  Three doses 1,687 (23.6) 740 (8.4)

Main Variants, n (%)

  20I (Alpha) 656 (9.2) 261 (3.0)

  20B 35 (0.5) 1 (0.0)

  20E (EU1) 185 (2.6) 56 (0.6)

  20A 81 (1.1) 11 (0.1)

  21J (Delta) 2,166 (30.3) 4,527 (51.3)

  21I (Delta) 97 (1.4) 117 (1.3)

  21K (Omicron) 893 (12.5) 1770 (20.1)

  21L (Omicron) 873 (12.2) 1,437 (16.3)

  22B (Omicron) 999 (14.0) 538 (6.1)

  22E (Omicron) 344 (4.8) 0 (0.0)

  22F (Omicron) 176 (2.5) 0 (0.0)

  23A (Omicron) 292 (4.1) 0 (0.0)
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(substitutions or deletions) with a frequency of 10% or higher in the 
genomic sequence alignments. These were referred as mutation of 
interest (MOI). Sequences sharing the same combination of MOIs 
(haplotypes) were grouped together into set of sequences. 
Non-defining mutations were also referred to as additional MOIs.

2.3 Bioinformatic tools and statistical 
analysis

To identify amino acid changes within SARS-CoV-2 genomes, 
codon translation in coding sequences (CDS) was accomplished using 
scripts written in the R programming language (version 4.1.0) (32) 
and Python (version 3.8.11) (33). The Biopython library (version 1.76) 
(34) was employed for managing the amino acid alphabet. Qualitative 
variable analysis was performed using the Chi-square test from the 
scipy.stats Python module (scipy version 1.9.3) (35). We employed the 
trackViewer package (version 1.34.0) (36) for creating visual 
representations of mutations in SARS-CoV-2 proteins. Furthermore, 
EMBOSS Seqret (version 6.6.0.0) (37) was employed to record 
significant mutation combinations in mega non-interleaved output 
format. Data manipulation and analysis were carried out using 
libraries like Matplotlib (version 3.5.1) (38) and Pandas (version 1.2.3) 
(39). In-house scripts used in this study were developed by the 
authors. Scripts used in our analysis are openly available at: https://
github.com/papersarscov2proteome/.

Undetermined amino acids and special characters from the 
Biopython dictionary (B, Z, J, U, and O) were represented as ‘X.’ Sets 
containing ‘X’ were excluded from further analysis, while those with 
a frequency of 1% or greater were retained for statistical examination. 
Statistical significance was determined with p values <0.05 (following 
False Discovery Rate (FDR) correction) (40). Vaccine coverage was 
identified when expected frequencies exceeded observed frequencies.

Genetic distances estimation within each sequence set was carried 
out using MEGA (41). The mean distance was calculated using the 
Bootstrap method for variance estimation, with 1,000 bootstrap 
replications, employing the p-distance model for amino acid 
substitution type. Ambiguous positions were eliminated for each 
sequence pair using the pairwise deletion option.

2.4 Patients

We categorized individuals as having complete active immunity 
or fully vaccinated (FV) as those who had received a minimum of 2 
doses (or 1 dose in the case of the Janssen vaccine) at least 14 days 
prior to infection, regardless of the specific infectious variant. For FV 
patients who were infected by the Omicron variant, those who had 
received a third COVID-19 vaccine dose (or a second dose of Janssen 
vaccine) were designated as booster patients. Vaccines referred to as 
others include Sinovac and Sinopharm. Individuals who did not 
meet any of the above criteria were classified as not fully vaccinated.

2.5 Residue conservation

Conservation analysis stands as one of the most widely used 
methods for predicting functionally significant residues in protein 

sequences. Residue conservation, as defined by Livingstone et al. (29), 
employs two distinct methods to quantify a singular conservation 
score for each position. For both, the physicochemical properties 
assessed for the 20 amino acids take into account whether the 
molecules are hydrophobic, polar, small, proline, tiny, aliphatic, 
aromatic, positive, negative and charged. In this study, we used the 
method 1 which considers any property exhibiting positive or negative 
conservation. A deletion is considered to possess all of these properties 
for the conservation index calculation. In this work high conservation 
index refers around a range of 10–8, intermediate to 7 and 6, and 
values equal to or less than 5 with low conservation.

3 Results

3.1 Datasets description

For Dataset_1, we analyzed a total of 7,154 SARS-CoV-2 genome 
aligned consensus sequences. Out of these, 2,419 were from fully 
vaccinated (FV) COVID-19 patients, and 2097 had been infected with 
the Omicron variant (Table 1). In the FV group (comprising 2,419 out 
of 7,154 individuals), 59.9% had received the Pfizer vaccine, followed 
by 34.2% who had received the Moderna vaccine. A negligible 
proportion, less than 5%, had received the J&J-Janssen and Oxford-
AstraZeneca vaccines. The predominant variant across several clades 
was Omicron, representing 50% of the total population (Table 1). 
Figure 1 illustrates the flowchart followed.

We identified 119 MOIs which combinations resulted in eight sets 
of sequences with a frequency greater than 1% ranging from Set1_ds1 
to Set8_ds1 (Figure 2; Supplementary Figure S2A). For the sequence sets 
associated with vaccine failure, the timeline revealed a peak of cases 
belonging to clade 21L (Omicron) in May 2022, as shown by Set5_ds1. 
However, clades 22B and 22E of the Omicron variant exhibited two 
peaks, observed in Set6_ds1 and Set7_ds1 in September and December, 
respectively. By April 2023, the majority of infections were attributed to 
clades 22F and 23A of the Omicron variant. Detailed information on the 
clades associated with each set of sequences is provided in Tables 2, 3.

For Dataset_2, we analyzed aligned consensus sequences from 
8,819 COVID-19 patients. Of these, 2,969 were from fully vaccinated 
patients with 2,163 of them infected with non-Omicron variants 
(Table  1). Pfizer was the most frequently administered vaccine 
(74.0%), followed by AstraZeneca (17.3%). Infection with the 21J 
(Delta) variant occurred in 51.3% of cases (Table 1).

Nine sets of sequences were derived from the 119 MOIs, as it is 
depicted in Figure 3 and Supplementary Figure S2B. The incidence of 
SARS-CoV-2 infection for the sets significantly associated with 
vaccine failure displayed two peaks, in July 2021 and November 2021, 
during the 21J (Delta) wave (Tables 4, 5).

Additional timeline information for these sequence sets is 
available in the Supplementary material, provided as images named 
SetNumber_Dataset_TotalNumber.png.

When comparing both datasets, we identified seven MOIs that 
were exclusively present in Dataset_1. These included T3255I 
(ORF1a), E3965E (ORF1a), I4205I (ORF1a), R346T (S), T478K (S), 
F486V (S), F486P (S), and F8F (ORF3a). Five of these mutations were 
defining mutations of the Omicron clades (T3255I (ORF1a), R346T 
(S), T478K (S), F486V (S), F486P (S)), three did not belong to any 
Nextstrain Clade (E3965E (ORF1a), I4205I (ORF1a), and F8F 
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(ORF3a)), and two were associated with the 21J (Delta) clade (T3255I 
(ORF1a) and T478K (S)). On the other hand, Dataset_2 exclusively 
contained seven MOIs, with none of them overlapping with Dataset_1. 
Among these, three were defining mutations of the 21K (Omicron) 
clade (T95I (S), V143- (S), and G496S (S)), while four lacked 
Nextstrain Clade assignments (L829I (ORF1b), Y1759Y (ORF1b), 
Y145H (S), and Q9L (N)).

3.2 Associations with vaccine failure

3.2.1 Dataset_1
When applying a Chi-square test, individuals who were fully 

vaccinated and infected with non-Omicron variants showed a 
statistically significant association with vaccine coverage. This trend 
was observed from Set1_ds1 to Set4_ds1. Thus, variants that peaked 
in December, January, March, and April and 2021 were strongly linked 
to vaccine protection (Table 2). However, Omicron cases in sets of 
sequences, Set5_ds1 (21L, FDR = 1.58 × 10−41), Set6_ds1 and Set7_ds1 
(22B and 22E, FDR = 1.32 × 10−122 and 1.12 × 10−50, respectively), as 
well as Set8_ds1 (22F and 23A, FDR = 1.24 × 10−88), displayed a strong 
association with COVID-19 infection (Table  3; Supplementary  
Table S1). The booster dose demonstrated a slight improvement in 
protection against viral infection, with the exception of Set7_ds1. 
When comparing Set7_ds1 to Set6_ds2 from the same clade, 
we observed that both shared the same non-defining MOIs A27- (S), 
I68- (S), R346T (S) and G30- (N), with the only difference being the 
presence of a ‘T’ at locus 346 in the spike protein (Table 6).

3.2.2 Dataset_2
In the 21J (Delta) clade, five distinct sequence sets (Set2_ds2, 

Set3_ds2, Set4_ds2, Set5_ds2, and Set6_ds2) were identified, all 
sharing the same residue substitutions in three non-defining 
mutations: P2046L (ORF1a), P2287S (ORF1a), and R158- (S) 
(Table 7). However, the distinguishing factor among these sets was the 
presence of four additional non-defining mutations, specifically L829I 
(ORF1b), T95I (S), Y145H (S), and Q9L (N) (Table 7). Two of these 
sets, Set2_ds2 (FDR = 5.08 × 10−13) and Set5_ds2 (FDR = 0.034), 
showed significant associations with low vaccine coverage, although 
they differed in the defining mutation G142D (S) (Supplementary  
Figure S2B). Both high-risk sets shared non-defining haplotypes, 
having a threonine at position 829  in the ORF1a and a leucine at 
position 9 in the N protein (Supplementary Figure S2B; Table 7). On 
the other hand, Set1_ds2 (clade 20I, Alpha variant) and two sets of 
sequences infected by the Omicron variant, namely Set7_ds2 (21K) 
and Set9_ds2 (22B), exhibited a strong association with reduced 
susceptibility to SARS-CoV-2 infection.

Additionally, it was observed that the booster dose was found to 
provide increased protection against the Omicron 21K and 22B clades 
(Table 5; Supplementary Table S1).

3.3 Conservation analysis

3.3.1 Dataset_1
The conservation scores, used to assess the overall 

functionality based on the physicochemical properties of the 

FIGURE 1

Flowchart of the methodology used in this study. 1. Sequences and metadata of vaccinated and unvaccinated COVID-19 patients from Italy and Spain 
were downloaded from GISAID. 2. The SARS-CoV-2 genome sequences of the COVID-19 patients were aligned to the Wuhan reference genome. 3. 
The mutations of interest (MOIs) are then defined. 4. Next, the proteomes are obtained and those sequences that have the same combination of MOIs 
are grouped together. 5 and 6. Statistical analysis is now performed using a Chi-square test to identify sets of sequences between fully vaccinated and 
unvaccinated patients that are associated with vaccine failure. 7. The role of non-clade-defining mutations in the risk of vaccine effectiveness is then 
investigated by comparing populations. 8. Finally, the physicochemical properties of the MOIs in the sequence sets associated with vaccine failure are 
analyzed.

https://doi.org/10.3389/fpubh.2024.1386596
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ulzurrun et al. 10.3389/fpubh.2024.1386596

Frontiers in Public Health 06 frontiersin.org

amino acid substitutions, revealed a strong conservation index in 
38.7% of the changes. However, 37.0% of these substitutions 
exhibited low conservation similarities (Table  8; 
Supplementary Figure S2A; Supplementary Table S2). These 
substitutions were predominantly composed of hydrophobic 
(66.2%) and polar (55.4%) amino acids (Table  8). For a more 
in-depth analysis of these changes, we  grouped the set of 
sequences associated with vaccine failure caused by the Omicron 
variant considering clades 21L, 22B/22E and 22F/23A, as this is 
the only variant that was associated with vaccine failure. The 
analysis identified 52 loci that differed between Set5_ds1, 

Set6_ds1, Set7_ds1, and Set8_ds1 resulting in 55 amino acids 
changes (Supplementary Table S2) possessing mainly hydrophobic 
(63.6%) and polar (61.8%) properties (Table  8). Of these 
substitutions, 40.4% showed an intermediate conservation index. 
Focusing on non-clade-defining MOIs, we identified 11 loci that 
differed between Set5_ds1, Set6_ds1, Set7_ds1, and Set8_ds1, 
including L3201F (ORF1a), G662S (ORF1b), V213G/E (S), 
G339D/H (S), R346T (S), G446S (S), L452R (S), F486V/P (S), 
Q493R (S), D3N (M) and D61L (ORF6). These differences 
resulted in 14 amino acid changes, primarily characterized by 
polar (64.3%) and small (57.7%) properties (Table 8).

FIGURE 2

Mutations of interest (MOIs) identified for Dataset_1.

TABLE 2 Descriptive statistics of non-Omicron set of sequences within Dataset_1, comparing fully vaccinated and non-fully vaccinated COVID-19 
patients.

Set1_ds1
n  =  817

Set2_ds1
n  =  165

Set3_ds1
n  =  327

Set4_ds1
n  =  89

Full active immunity, n 182 1 3 3

FDRa value 2.00E-13b 2.11E-19b 2.24E-37b 2.02E-10b

Clade 21J (Delta) 20A

20E (EU1)

20I (Alpha) 20I (Alpha)

20B

Peakc (n) December 2021 (231) January 2021 (114) March 2021 (120) April 2021 (48)

aFDR, False discovery rate.
bExpected frequency exceeded the observed frequency for fully vaccinated patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates 
to vaccine coverage or efficacy.
cReferred to the highest number of cases.
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3.3.2 Dataset_2
The conservation index, assessing properties that are positively or 

negatively conserved, displayed high values in 39.5% of the MOIs, 
while 37.0% showed low conservation values (Table  8; 
Supplementary Figure S2B; Supplementary Table S3). The 
predominant physicochemical properties affected by these changes 
were hydrophobic (69.1%) and polar (53.1%) (Table 8). Only the 21J 
variant was found to be  associated with vaccine escape so it was 
analyzed in detail. This analysis identified 26 loci that differed between 

set of sequences ranging from Set2_ds2 to Set6_ds2 resulting in 26 
amino acid changes characterized predominantly by their hydrophobic 
(69.2%) property (Table 8). Substitutions with a conservation index 
corresponding to high and intermediate conservation were dominant 
(34.6 and 38.5%, respectively). Non-defining mutations of 21J (Delta) 
included P2046L, P2287S, L829I, T95I, Y145H, R158-, and Q9L which 
were characterized by hydrophobic (83.3%) and aliphatic (66.7%) 
amino acid substitutions. These changes were mainly led to an 
intermediate conservation of physicochemical properties.

FIGURE 3

Mutations of interest (MOIs) identified for Dataset_2.

TABLE 3 Descriptive statistics of Omicron set of sequences of Dataset_1, comparing fully vaccinated and booster doses with non-fully vaccinated 
COVID-19 patients.

Set5_ds1
n  =  176

Set6_ds1
n  =  453

Set7_ds1
n  =  179

Set8_ds1
n  =  294

Full active immunity, n 144 384 155 259

FDRa value 1.58E-41 1.32E-122 1.12E-50 1.24E-88

Booster, n 118 341 139 228

FDR value 3.20E-31 1.18E-118 2.21E-50 4.88E-83

Clade
21L (Omicron)

22B (Omicron)

22E (Omicron)

22B (Omicron)

22E (Omicron)

22F (Omicron)

23A (Omicron)

Peakb (n) May 2022

(108)

September 2022

(109)

December 2022

(52)

April 2023

(94)

aFDR, False discovery rate.
bReferred to the highest number of cases.
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TABLE 5 Descriptive statistics comparing fully vaccinated and booster-dosed COVID-19 patients with those who are not fully vaccinated for Omicron 
sets of sequences.

Set7_ds2
n  =  685

Set8_ds2
n  =  1,184

Set9_ds2
n  =  507

Full active immunity, n 137 408 80

FDRa Value 1.96E-16b 0.928 2.37E-19b

Booster, n 121 365 59

FDR Value 3.89E-19c 0.074 6.34E-26c

Clade 21K (Omicron) 21L (Omicron) 22B (Omicron)

Peakd (n) February 2022 (479) April 2022 (383) June 2022 (239)

aFDR, False discovery rate.
bExpected frequency exceeded the observed frequency for fully vaccinated patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates 
to vaccine coverage or efficacy.
cExpected frequency exceeded the observed frequency for booster patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates to 
booster dose efficacy.
dReferred to the highest number of cases.

TABLE 6 Set of sequences sharing the same combination of MOIs in Dataset_1 and Dataset_2 for 22B (Omicron) and 22E (Omicron) variants and their 
distribution based on vaccine brands.

Non-defining MOIs

A27- (S) I68- (S) R346T (S) G30- (N) FDRa FDRb

Dataset_1
Set6_ds1 - - R - 1.32E-122 1.18E-118

Set7_ds1 - - T - 1.12E-50 2.21E-50

Dataset_2 Set9_ds2 - - R - 2.37E-19c 6.34E-26d

Fully vaccinated Booster Fully vaccinated Booster

Set6_ds1, 
n  =  384

Set9_ds2, 
n  =  80

Set6_ds1, 
n  =  341

Set9_ds2, 
n  =  59

Set7_ds1, 
n  =  155

Set9_ds2, 
n  =  80

Set7_ds1, 
n  =  139

Set9_ds2, 
n  =  59

BioNTech-Pfizer, n 

(%) 197 (51.3) 73 (91.3) 179 (52.5) 53 (89.8) 73 (47.1) 73 (91.3) 66 (47.5) 53 (89.8)

Moderna-Lonza, n 

(%) 176 (45.8) 2 (2.5) 161 (47.2) 1 (1.7) 78 (50.3) 2 (2.5) 72 (51.8) 1 (1.7)

Oxford-

AstraZeneca, n (%) 0 (0.0) 4 (5.0) 0 (0.0) 4 (6.8) 0 (0.0) 4 (5.0) 0 (0.0) 4 (6.8)

J&J-Janssen, n (%) 11 (2.9) 1 (1.3) 1 (0.3) 1 (1.7) 4 (2.6) 1 (1.3) 1 (0.7) 1 (1.7)

p Value 3.45E-15 1.40E-13 5.34E-13 6.65E-11

aFalse discovery rate value for the comparison of fully vaccinated vs not fully vaccinated COVID-19 patients.
bFalse discovery rate value for the comparison of the patients who received booster dose versus not fully vaccinated COVID-19 patients.
cExpected frequency exceeded the observed frequency for fully vaccinated patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates 
to vaccine coverage or efficacy.
dExpected frequency exceeded the observed frequency for booster patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates to 
booster dose efficacy.

TABLE 4 Descriptive statistics for non-Omicron sets in Dataset_2 among fully vaccinated and non-fully vaccinated COVID-19 patients.

Set1_ds2
n  =  211

Set2_ds2
n  =  138

Set3_ds2
n  =  480

Set4_ds2
n  =  226

Set5_ds2
n  =  507

Set6_ds2
n  =  105

Full active immunity, n 8 86 176 82 200 39

FDRa value 1.03E-12b 5.08E-13 0.529 0.737 0.034 0.818

Clade 20I (Alpha) 21J (Delta) 21J (Delta) 21J (Delta) 21J (Delta) 21J (Delta)

Peakc (n) February 2021 (72) July 2021 (69) November 2021 (233) November 2021 (87) November 2021 (265) December 2021 (48)

aFDR, False discovery rate.
bExpected frequency exceeded the observed frequency for fully vaccinated patients infected by SARS-CoV-2 sequences sharing the same combination of MOIs, in clinical terms this translates 
to vaccine coverage or efficacy.
cReferred to the highest number of cases.
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3.4 Vaccine effectiveness

Given the significant role of non-clade-defining mutations in the risk 
of vaccine failure, the next step was to conduct a joint analysis of both 

datasets. This analysis aimed to identify non-clade defining MOIs 
associated with vaccine failure caused by the Omicron (21L, 22B and 
22E) and Delta (21J) clades, which are common variants present in both 
datasets but were not initially linked to vaccine failure in the same manner.

TABLE 7 Set of sequences sharing the same combination of MOIs in Dataset_1 and Dataset_2 for 21J (Delta) variant and their distribution based on 
vaccine brands.

Non-defining MOIs

P2046L 

(ORF1a)

P2287S 

(ORF1a) L829I (ORF1b) T95I (S) Y145H (S) R158- (S) Q9L (N) FDRa

Dataset_1 Set1_ds1 L S L T Y - Q 2.00E-13vc

Dataset_2

Set2_ds2 L S I T Y - L 5.08E-13

Set3_ds2 L S L I Y - Q 0.529

Set4_ds2 L S L T Y - Q 0.737

Set5_ds2 L S I T Y - L 0.034

Set6_ds2 L S L I H - Q 0.818

Set2_ds2, n  =  86 Set5_ds2, n  =  200

BioNTech-Pfizer, n (%) 74 (86.0) 141 (70.5)

Moderna-Lonza, n (%) 0 (0.0) 6 (3.0)

Oxford-AstraZeneca, n (%) 11 (12.8) 42 (21.0)

J&J-Janssen, n (%) 1 (1.2) 8 (4.0)

Unknown, n (%) 0 (0.0) 3 (1.5)

p Value 0.049

aFalse discovery rate value for the comparison of fully vaccinated vs not fully vaccinated COVID-19 patients.

TABLE 8 Physicochemical properties of the amino acids substituted in Dataset_1 and Dataset_2.

Dataset_1
Whole

Dataset_1
Omicron

Dataset_1
Omicron 

Additional

Dataset_2
Whole

Dataset_2
21J (Delta)

Dataset_2
21J (Delta) 
Additional

Number of amino 

acids substitution

74 55 14 81 26 6

Property, n (%)

Hydrophobic 49 (66.2) 35 (63.6) 6 (42.9) 56 (69.1) 18 (69.2) 5 (83.3)

Polar 41 (55.4) 34 (61.8) 9 (64.3) 43 (53.1) 11 (42.3) 2 (33.3)

Small 29 (39.2) 20 (36.4) 8 (57.1) 31 (38.3) 11 (42.3) 1 (16.7)

Proline 2 (2.7) 2 (3.6) 1 (7.1) 1 (1.2) 0 (0.0) 0 (0.0)

Tiny 12 (16.2) 7 (12.7) 3 (21.4) 14 (17.3) 6 (23.1) 1 (16.7)

Aliphatic 18 (24.3) 11 (20.0) 2 (14.3) 22 (27.2) 10 (38.5) 4 (66.7)

Aromatic 13 (17.6) 12 (21.8) 2 (14.3) 14 (17.3) 2 (7.7) 1 (16.7)

Positive 19 (25.7) 17 (30.9) 3 (21.4) 21 (25.9) 4 (15.4) 1 (16.7)

Negative 4 (5.4) 4 (7.3) 2 (14.3) 3 (3.7) 1 (3.8) 0 (0.0)

Charged 23 (31.1) 21 (38.2) 5 (35.7) 24 (29.6) 5 (19.2) 1 (16.7)

Number of MOIs 119 52 11 119 26 6

Conservation Index, value (symbol), n (%)

10 (*) 19 (16.0) 0 (0.0) 0 (0.0) 18 (15.1) 1 (3.8) 1 (16.7)

9 and 8 (:) 27 (22.7) 17 (32.7) 5 (45.5) 29 (24.4) 9 (34.6) 1 (16.7)

7 and 6 (.) 29 (24.4) 21 (40.4) 1 (9.1) 28 (23.5) 10 (38.5) 4 (66.7)

≤ 5 (blank space) 44 (37.0) 14 (26.9) 5 (45.5) 44 (37.0) 6 (23.1) 0 (0.0)
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Both set5_ds1 and set8_ds2 belonged to the 21L clade and 
shared three additional mutations: L3201F (ORF1a), A27- (S), and 
G30- (S) (Table 9). However, while set5 was associated with vaccine 
failure even after receiving a booster dose (FDR = 1.58 × 10−41 and 
3.20 × 10−31, respectively), set8_ds2 did not exhibit the same level of 
association. The Chi-Square test revealed statistically significant 
differences in vaccine distribution between fully vaccinated 
individuals (FDR = 3.58 × 10−17) and those who received a booster 
dose (FDR = 1.71 × 10−20) when comparing set5_ds1 and set8_ds2, 
respectively. Set5_ds1 was primarily associated with the Pfizer and 
Moderna vaccines (61.1 and 35.4% for fully vaccinated, and 59.3 and 
39.0% for booster doses, respectively). In contrast, set8_ds2 was 
predominantly associated with Pfizer and AstraZeneca vaccines 
(77.9 and 13.6% for fully vaccinated, and 78.9 and 14.5% for booster 
doses, respectively). Furthermore, the analysis of the genetic distance 
in the sets of sequences showed remarkable differences between sets, 
with the genetic distance of set8_ds2 being 3.8 times higher 
compared to set5_ds (Figure 3).

For the sets of sequences isolated from COVID-19 patients 
infected with clades 22B and 22E of the Omicron variant (Table 6), 
set6_ds1 and set7_ds1 (Dataset_1) and set9_ds2 (Datataset_2) shared 
the same non-clade defining mutations in the spike (A27-, I68- and 
R346T) and nucleocapsid (G30-). However, from Dataset_1 only two 
sequence sets corresponding to fully vaccinated patients (set6_ds1 
FDR = 1.32 × 10−122; set7_ds1 FDR = 1.12 × 10−50) and patients who 
received the third dose (set6_ds1 FDR = 1.18 × 10−118; set7_ds1 
FDR = 2.21 × 10−50) were associated with vaccine failure. Fully 
vaccinated patients from Dataset_1 primarily received Pfizer (51.3% 
for set6_ds1 and 47.1% for set7_ds1) and Moderna (45.8% for set6_
ds1 and 50.3% for set7_ds1) vaccines, in contrast to Dataset_2, where 
91.3% of patients received Pfizer. Statistically significant differences 
were found when comparing the FV distribution of these sets 
(FDR = 3.45 × 10−15 for set6_ds1 vs. set9_ds2 and 5.34 × 10−13 for 
set7_ds1 vs. set9_ds2, respectively). For patients who received a 
booster dose, the main vaccine brands and their associations with 
vaccine failure remained consistent (FDR = 1.40 × 10−13 (set6_ds1 vs. 
set9_ds2); FDR = 6.65 × 10–11 (set7_ds1 vs. set9_ds2)). Set6_ds1 and 

set7_ds1 displayed comparable genetic distances among sequences. 
However, set9_ds2 exhibited a higher genetic distance (Figure 4).

In both datasets, the set of sequences identified as 21J (Delta) 
shared three additional MOIs, specifically P2046L (ORF1a), P2287S 
(ORF1a) and R158- (S) (Table 7). Dataset_2 exclusively featured four 
mutations including L829I (ORF1b), T95I (S), Y145H (S) and Q9L 
(N). In contrast, these mutations did not meet the MOI criteria for 
Dataset_2, bearing the wild type amino acids.

Only Set2_ds2 and Set5_ds2 from Dataset_2 were associated with 
vaccine failure. The vaccine distribution between these risk sets 
exhibited marginal significance (FDR = 0.049), with the major vaccine 
brands being both Pfizer and AstraZeneca. The genetic distances for 
set2_ds2 were twice as high as those observed in set5_ds2 (Figure 4).

There was no correlation between the variability of amino acids in 
the sets of sequences, measured by the genetic distance, and the loss 
of vaccine effectiveness for the compared clades.

4 Discussion

Mutations and deletions in SARS-CoV-2 proteins can significantly 
alter their structure and function. This study investigated the impact 
of mutations of interest (MOI) across the entire SARS-CoV-2 
proteome on vaccine escape using two datasets. The analysis revealed 
several mutations and combinations of residues that may influence 
vaccine coverage, particularly concerning the Delta (clade 21J) and 
Omicron BA.2 (clade 21L) variants.

For the Delta variant, mutations at P2046L (ORF1a), P2287S 
(ORF1a), L829I (ORF1b), R158- (S) and Q9L (N) were identified as 
potentially crucial for vaccine effectiveness. Similarly, mutations such 
as L3201F (ORF1a), A27- (S) and G30- (N) in the Omicron variant 
were found to impact vaccine effectiveness. However, deletions A27- 
(S), I68- (S) and G30- (N), along with the R346T mutation in the spike 
protein of the Omicron variant, may further compromise 
vaccine effectiveness.

Observations of mutations in the spike protein, particularly A27-, 
I68-, and R158- located within the N-terminal domain (NTD), and 

TABLE 9 Set of sequences sharing the same combination of MOIs in Dataset_1 and Dataset_2 for 21L (Omicron) variant and their distribution based on 
vaccine brands.

Non-defining MOIs

L3201F (ORF1a) A27- (S) G30- (N) FDRa FDRb

Dataset_1 Set5_ds1 F - - 1.58E-41 3.20E-31

Dataset_2 Set8_ds2 F - - 0.928 0.074

Fully vaccinated Booster

Set5_ds1, n  =  144 Set8_ds2, n  =  408 Set5_ds1, n  =  118 Set8_ds2, n  =  365

BioNTech-Pfizer, n (%) 88 (61.1) 318 (77.9) 70 (59.3) 288 (78.9)

Moderna-Lonza, n (%) 51 (35.4) 27 (6.6) 46 (39.0) 20 (5.5)

Oxford-AstraZeneca, n (%) 2 (1.4) 55 (13.5) 0 (0.0) 53 (14.5)

J&J-Janssen, n (%) 3 (2.1) 5 (1) 2 (1.7) 1 (0.3)

Unknown, n (%) 0 (0.0) 3 (0.7) 0 (0.0) 3 (0.8)

p value 3.58E-17 1.71E-20

aFalse discovery rate value for the comparison of fully vaccinated vs not fully vaccinated COVID-19 patients.
bFalse discovery rate value for the comparison of the patients who received booster dose versus not fully vaccinated COVID-19 patients.
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the R346T mutation within the Receptor Binding Domain (RBD), 
align with previous studies. Molecular dynamics simulations have 
shown the critical involvement of NTD residues in interactions with 
monoclonal antibodies (42), suggesting potential immune evasion 
risks for viruses carrying mutations in these regions. Furthermore, 
mutations within the RBD have been shown to affect the binding 
affinity to the ACE2 receptor, indicating potential shifts in the binding 
free energy of the RBD-ACE2 complex and modified chemical 
interactions, leading to increased stability (43).

Limited published data on vaccine efficacy or immunity related to 
the A27-(S) deletion were found. However, the spike 68–76 deletion 
within the NTD was identified in a human hepatoma cell clone termed 
Huh7.5-adapted-SARS2, indicating genetic adaptations. This modified 
version of SARS-CoV-2 effectively infiltrated A549 lung cancer cells, 
inducing cellular damage, a capability absent in the original strain, 
which exhibited no infectivity toward A549 cells. Additionally, the 
Spike 68–76 deletion variant displayed increased susceptibility to 
IFN-α2b treatment in comparison to the wild-type SARS-CoV-2 
strain. However, the Spike 68–76 deletion was not found in SARS-
CoV-2 isolates obtained from VERO E6 cells (44). In the context of 
vaccine stability and effectiveness, it suggests that despite the presence 
of the 68–76 deletion in vaccine batches (CoronaVac), it might not 
drastically alter the vaccine’s effectiveness. The R158- (S) mutation in 
combination with E156G/157 deletion and L452R mutation has been 
suggested to exhibit higher infectivity in spike-pseudotyped viruses 
(45). However, experimental evidence points to the 156–158 deletion 
notably diminishing the neutralization capacity against antibodies 
present in the sera of convalescent COVID-19 patients and vaccinated 
individuals (42, 46, 47).

The R346T change in the RBD is a key mutation for neutralization 
escape, enhanced fusogenicity, and enhanced S protein processing. 
Structural modeling suggests that R346T appears to disrupt salt bridge 
formation between the S protein and class III monoclonal antibodies 
(e.g., Cilgavimab), lowering effectiveness (48, 49). However, in our 

study the set of sequences containing R indicates poorer vaccine 
coverage than T for the Omicron clades 22B/22E.

The outcomes related to spike mutations impacting the infectivity 
of SARS-CoV-2 appear to exhibit a wide-ranging scope. Conversely, 
the available data regarding the influence of mutations occurring in 
other viral proteins seems comparatively constrained.

An analysis conducted on 244 SARS-CoV-2 positive samples, 
gathered during the second wave of the pandemic, indicated that 
mutations P2046L and P2287S in the nsp3 (ORF1a) gene might 
contribute to persistent symptomatic COVID-19 infections post-
vaccination (50). Additionally, an investigation involving severe, 
moderate, and mild COVID-19 cases, encompassing individuals who 
were either partially or fully vaccinated (with Covishield/Covaxin) or 
unvaccinated, revealed a marginal association of the P2287S mutation 
with disease severity (51). The nsp3 protein in the SARS-CoV-2 virus 
constitutes a crucial component of the viral replicase complex, 
contributing significantly to multiple functions associated with viral 
replication (52), transcription (53), and modulation of the host 
immune response (54), but no specific data on the impact of the 
L3201F mutation on these functions have been found in the literature.

A study aimed at modeling the fitness of several SARS-CoV-2 
lineages by combining the effect of individual mutations introduced a 
scalable hierarchical Bayesian regression model to analyze all available 
SARS-CoV-2 genomes. The study identified the L829I (ORF1b) 
mutation in nsp12, which promotes an amino acid change in the 
RdRp (RNA-dependent RNA polymerase) thumb subdomain that 
could affect the function of the enzyme. RdRp plays a critical role in 
replicating and transcribing the viral genome in RNA viruses like 
SARS-CoV-2 (55).

The N protein consists of different structural components, namely, 
an N-arm, an N-terminal RNA-binding domain, a linker region 
containing serine/arginine-rich loops (SR-rich region), a C-terminal 
RNA-binding domain, and a C-tail (56–61). Some regions of the 
N-arm (amino acids 1–46) have been identified as immunodominant 

FIGURE 4

Genetic distances between amino acids per site within each sequence set of Dataset 1 and 2 obtained by averaging all sequence pairs, along with the 
standard error estimates The average distance was calculated using the Bootstrap method for variance estimation, with 1,000 bootstrap replicates. The 
p-distance model was used for the amino acid substitution type. Ambiguous positions were removed for each pair of sequences using the pairwise 
deletion option. The bars are organized based on the datasets and are color-coded according to sets of sequences that share the same MOIs.
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epitopes. Specifically, five monoclonal antibodies were developed 
through a study of epitopes targeting the N protein of SARS-CoV-2. 
The research revealed that one particular antibody had a specific 
affinity for the N-arm region of the N protein (62), suggesting the 
possible involvement of mutations identified in this study such as Q9L 
and G30- in immune evasion.

As mentioned, some of the substitutions and deletions associated 
with vaccine failure in our study seem to be in line with previous 
studies. However, others have not been previously linked to vaccine 
coverage or immunity. Therefore, a genome-wide analysis of SARS-
CoV-2 mutations, and their effects on the proteome, could help to 
understand the molecular basis of viral vaccine escape, in connection 
with vaccine and therapeutic drug development.

The effect of COVID-19 booster-dose vaccination against the 
Omicron variant has been reviewed by a study that identified a total 
of 27 published studies supporting the effectiveness of booster dose 
vaccine (63). Our results are consistent with the improved effectiveness 
of the booster dose against the Omicron variant in Dataset_2, where 
the vaccines show high coverage further improved by the 
administration of the third dose for clades 21L and 22B. However, in 
Dataset_1 where the vaccine is not effective for Omicron clades, 
administration of the third dose showed a slight protection for clades 
21L, 22B/22E, and 22F/23A. We hypothesize that the discrepancies 
observed between these datasets might be attributed to the molecular 
composition of the administered vaccines.

Full implementation of SARS-CoV-2 vaccines is a major goal facing 
the COVID-19 pandemic. A comparative analysis of COVID-19 vaccine 
characteristics, adverse events, efficacy and effectiveness reported that all 
vaccines up to 22nd September 2021 appeared to be safe and effective 
tools against all variants of concern to prevent severe COVID-19, 
hospitalization, and death. However, the evidence varies greatly 
depending on the vaccines considered (64). In addition, the effectiveness 
of BNT162b2/Comirnaty vaccine (Pfizer) against the Omicron variant 
has been reported as 60% (65). Conversely, the effectiveness of the 
Spikevax/mRNA-1273 vaccine (Moderna) was published for 
symptomatic and asymptomatic cases, without specifying effectiveness 
for different clades of SARS-CoV-2 (66–68). In this line, in our study, the 
set of sequences associated with vaccine failure were mainly related to 
nucleic acid-based vaccines developed by BioNTech-Pfizer and 
Moderna-Lonza. However, Omicron cases where the vaccine exhibited 
a protective effect showed a high percentage of the Pfizer brand.

Investigation of the physicochemical attributes of amino acids 
enables an understanding of the intricate dynamics between viral 
proteins and the host immune system. This exploration provides 
valuable insights into viral pathogenicity, contributes to vaccine design 
and shapes strategies for drug development. In our study a significant 
number of substitutions, evaluated by conservation scores, showed a 
robust conservation index, indicating a strong correlation with amino 
acid physicochemical properties in approximately one-third of the 
changes. Furthermore, a comparable proportion of these substitutions 
exhibited lower conserved similarities in both datasets, implying an 
equal prevalence of such disparities among substitutions analyzed 
using conservation scores. Analysis of the physicochemical properties 
of amino acid changes revealed a predominant occurrence of 
hydrophobic and polar amino acid substitutions in both datasets. 
Substitutions in the Omicron variant (clades 21L, 22B/22E, and 
22F/23A) were predominantly characterized by hydrophobic and 
polar properties. However, the non-defining mutations of each 

Omicron clade were mainly polar and small. The 21J (Delta) clade 
sequence set featured mainly amino acid substitutions with 
hydrophobic properties. The non-defining mutations of 21J (Delta) 
were distinguished by prevalent hydrophobic and aliphatic amino acid 
substitutions. This is agreed with the research that showed the 
significant role of hydrophobic residues in the spike protein, 
enhancing interactions in the Delta variant (69). Recently, it was 
highlighted that the defining mutations in the Delta and Omicron 
variants markedly impact hydrophobicity, polarity, and charge 
distribution in all regions of the N-protein (70).

The role of missense mutations and deletions in SARS-CoV-2 has 
been recognized as pivotal for vaccine effectiveness and residue 
interactions, highlighting the need to elucidate the molecular basis of 
these substitutions and deletions for advancing vaccine and drug 
development. Our investigation identified six mutations significantly 
associated with reduced vaccine coverage, such as P2046L (ORF1a), 
P2287S (ORF1a), L3201F (ORF1a), L829I (ORF1b), R346T (S), and 
Q9L (N), along with the four deletions A27- (S), I68- (S), R158- (S), 
and G30- (N). Analysis of whole proteome sequences of SARS-CoV-2 
derived from COVID-19 patients revealed a correlation between 
non-clade-defining mutations and vaccine effectiveness. Currently 
approved vaccines primarily target the spike protein. Thus, changes in 
this protein could challenge vaccine effectiveness. Our findings 
support a proteome perspective in SARS-CoV-2 vaccine design, which 
could improve vaccine effectiveness. In addition, we found that amino 
acid substitutions exhibited predominantly hydrophobic and polar 
properties. Understanding the physicochemical properties of amino 
acid substitutions is crucial, as it reveals how these modifications affect 
protein structure, function, and interactions. This understanding 
provides valuable insights into disease mechanisms and the 
identification of potential therapeutic targets.
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