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Background: Exposure to environmental metals has been increasingly

associated with systemic inflammation, which is implicated in the pathogenesis

of various chronic diseases, including those with neurodegenerative aspects.

However, the complexity of exposure and response relationships, particularly

for mixtures of metals, has not been fully elucidated.

Objective: This study aims to assess the individual and combined e�ects of lead,

cadmium, and mercury exposure on systemic inflammation as measured by C-

reactive protein (CRP) levels, using data from the National Health and Nutrition

Examination Survey (NHANES) 2017-2018.

Methods: We employed Bayesian Kernel Machine Regression (BKMR) to

analyze the NHANES 2017-2018 data, allowing for the evaluation of non-

linear exposure-response functions and interactions between metals. Posterior

Inclusion Probabilities (PIP) were calculated to determine the significance of each

metal’s contribution to CRP levels.

Results: The PIP results highlighted mercury’s significant contribution to CRP

levels (PIP= 1.000), followed by cadmium (PIP= 0.6456) and lead (PIP= 0.3528).

Group PIP values confirmed the importance of considering the metals as a

collective group in relation to CRP levels. Our BKMR analysis revealed non-

linear relationships between metal exposures and CRP levels. Univariate analysis

showed a flat relationship between lead and CRP, with cadmiumhaving a positive

relationship. Mercury exhibited a U-shaped association, indicating both low and

high exposures as potential risk factors for increased inflammation. Bivariate

analysis confirmed this relationship when contaminants were combined with

lead and cadmium. Analysis of single-variable e�ects suggested that cadmium

and lead are associated with higher values of the h function, a flexible function

that takesmultiplemetals and combines them in away that captures the complex

and potentially nonlinear relationship between the metals and CRP. The overall

exposure e�ect of all metals on CRP revealed that exposures below the 50th

percentile exposure level are associated with an increase in CRP levels, while

exposures above the 60th percentile are linked to a decrease in CRP levels.

Conclusions: Our findings suggest that exposure to environmental metals,

particularly mercury, is associated with systemic inflammation. These results

highlight the need for public health strategies that address the cumulative e�ects

of metal exposure and reinforce the importance of using advanced statistical

methods to understand the health impact of environmental contaminants.

Future research should focus on the mechanistic pathways of metal-induced

inflammation and longitudinal studies to ascertain the long-term e�ects of

these exposures.
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Introduction

Lead, cadmium, and mercury are pervasive environmental

contaminants with a well-documented history of toxicity (1–4).

Human exposure to these metals can occur through various routes,

including inhalation, ingestion of contaminated food and water,

and occupational exposure. Additionally, incidental ingestion of

soils and household dust, are increasingly recognized as concerning

exposure routes (5–7). Despite extensive regulation and efforts

to reduce environmental contamination, these metals continue to

pose a significant public health challenge due to their persistence

in the environment and their potential for bioaccumulation in the

human body (8, 9).

The association between metal exposure and systemic

inflammation is biologically plausible, given the known

mechanisms of metal-induced toxicity (10). These metals can

induce oxidative stress by generating reactive oxygen species

(ROS) (11, 12), which in turn can activate a range of inflammatory

pathways. Additionally, these metals have been shown to disrupt

the normal functioning of the immune system, either by directly

affecting immune cells or by altering the expression of cytokines,

chemokines, and other inflammatory mediators (13, 14).

This research article delves into the intricate relationship

between these metals and systemic inflammation, a critical

pathophysiological process underlying numerous chronic diseases.

Systemic inflammation, characterized by the activation of immune

pathways and the release of inflammatory mediators throughout

the body, has been implicated in the progression of a variety of

conditions, including cardiovascular diseases, neurodegenerative

disorders, and certain cancers (15). When the body’s immune

system detects a threat, such as an infection, injury, or the presence

of harmful substances like heavy metals, it triggers an inflammatory

response to neutralize the threat and initiate healing processes.

While acute inflammation is a protective mechanism, chronic

systemic inflammation can become detrimental.

In cardiovascular diseases, systemic inflammation contributes

to the development and progression of atherosclerosis, where

inflammatory cells and mediators promote the formation of

plaques in the arterial walls (16). This can lead to reduced blood

flow, increasing the risk of heart attacks and strokes. Inflammatory

markers like C-reactive protein (CRP) are often elevated in

individuals with cardiovascular conditions, indicating ongoing

inflammation that exacerbates these diseases.

Neurodegenerative disorders, such as Alzheimer’s disease and

Parkinson’s disease, are also linked to systemic inflammation (17,

18). Chronic inflammation can lead to the activation of microglia,

the immune cells of the brain, which release pro-inflammatory

cytokines that damage neurons. This persistent inflammatory state

contributes to the progressive loss of neuronal function and

structure, leading to cognitive decline and motor impairments.

In the context of cancer, systemic inflammation creates

a tumor-promoting environment. Inflammatory mediators can

induce genetic mutations, promote tumor growth, and enhance the

ability of cancer cells to invade surrounding tissues and metastasize

to distant organs (19). Chronic inflammation is associated with

increased cancer risk and poorer prognosis, as it supports the

hallmarks of cancer, including sustained proliferative signaling,

evasion of apoptosis, and angiogenesis.

Moreover, systemic inflammation is linked to metabolic

disorders such as obesity and type 2 diabetes (20). Inflammatory

cytokines interfere with insulin signaling, leading to insulin

resistance, a key feature of type 2 diabetes. In obese individuals,

adipose tissue becomes a source of chronic inflammation,

contributing to the development of metabolic syndrome and

associated complications.

In the context of assessing the impacts of environmental

exposures, such as those from heavy metals like lead, cadmium,

and mercury, on systemic inflammation, traditional analytical

approaches often consider each pollutant in isolation (21).

However, in real-world scenarios, individuals are typically exposed

to a mixture of pollutants, rather than a single contaminant. This

complexity necessitates the use of advanced statistical methods

capable of evaluating the health effects of multiple pollutants

simultaneously (22). One such method that has gained prominence

in environmental health research is Bayesian Kernel Machine

Regression (BKMR) (23).

BKMR is a novel statistical approach designed to address the

challenges posed bymulti-pollutant exposure analysis. Thismethod

allows researchers to evaluate the health effects of a mixture of

pollutants, considering potential interactions and synergistic effects

among the different components of the mixture (24). BKMR is

particularly advantageous in its ability to handle highly correlated

exposures and to provide insights into the combined and individual

effects of each component in the mixture.

BKMR offers a comprehensive and nuanced approach in

environmental health research, particularly for studying the

effects of metal exposures like lead, cadmium, and mercury on

systemic inflammation. This method allows for the evaluation

of the collective impact of these metals, providing a holistic

understanding of associated health risks (24, 25). The flexibility

of BKMR in modeling non-linear relationships and varying

sensitivities to different exposure levels is crucial, considering

the complex nature of biological responses to toxicants (23,

26). Moreover, this approach not only assesses the joint effect

of these metals on inflammation but also distinguishes the

specific contribution of each individual metal, enhancing our

understanding of their respective roles in systemic inflammation.

We chose to study lead, cadmium, and mercury due to their

common co-existence in the environment, significant toxicological

effects, and strong links to systemic inflammation. These metals

are prevalent in industrial emissions, contaminated food and

water, and certain consumer products, leading to higher combined

exposure risks. Previous research has shown that they induce

oxidative stress, a known pathway for systemic inflammation.

Understanding their combined effects can inform risk assessment

and the development of targeted strategies to mitigate exposure and

protect public health.

Materials and methods

Study cohort and design

Data from the NHANES 2017-2018 was utilized in this

investigation. This dataset is a representative sample of non-

institutionalized people residing in all 50U.S. states and the
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District of Columbia. The U.S. Centers for Disease Control and

Prevention (CDC) collected the data, which are available in two-

year cycles and include multi-year, stratified, multi-stage, and

clustered samples. The NHANES employs a complex, multistage

probability sampling design to ensure that the data is representative

of the U.S. civilian non-institutionalized population. The 2017–

2018 NHANES cycle includes thousands of participants, providing

sufficient power to detect significant associations and enabling

subgroup analyses. This large sample size enhances the robustness

and credibility of the study results. Additionally, the data is

collected by the CDC, ensuring rigorous data collection methods

and high-quality standards. The consistency and reliability of

the data make it a trusted source for epidemiological studies.

The sampling process involves the selection of primary sampling

units (PSUs), which are typically counties or groups of counties,

followed by the selection of segments within PSUs, households

within segments, and finally, individuals within households.

Oversampling of certain subgroups, such as Hispanics, non-

Hispanic Blacks, and low-income individuals, is conducted to

improve the reliability and precision of health status indicator

estimates for these groups. Selected individuals in the NHANES

undergo a comprehensive physical examination conducted in

mobile examination centers (MECs), which include detailed

medical, dental, and physiological measurements. In addition to the

physical examination, participants complete extensive interviews

that collect demographic, socioeconomic, dietary, and health-

related information. Blood samples are drawn from participants

and sent to laboratories for themeasurement of various biomarkers,

including metal concentrations and C-reactive protein (CRP)

levels. The NHANES dataset includes extensive quality control and

quality assurance protocols to ensure the accuracy and reliability

of the data. Data collection procedures are standardized, and

staff are rigorously trained. The CDC continuously monitors

data collection and laboratory procedures to maintain high

standards of data quality. On the NHANES website of the CDC,

additional descriptions and detailed information about the study

design, sampling methodology, data collection procedures, and

protocols are provided. Researchers can access comprehensive

documentation and resources to understand and utilize the dataset

effectively for their investigations (27).

Metals and CRP measurements

Metals measurement
Metals in diluted whole blood were measured using inductively

coupled plasma mass spectrometry (ICP-MS). ICP-MS is a

validated technique widely recognized for its accuracy and

precision in analyzing metals in biological media (28). All metal

analytes in the dataset had the same detection limits. For analytes

below the lower limit of detection, an imputed fill value was used,

calculated as the lower limit of detection divided by the square

root of 2. The NHANES Laboratory Procedures Manual provides

detailed descriptions of specimen collection and processing. The

National Center for Environmental Health (NCEH) within the

CDC’s Division of Laboratory Sciences performed the metal assays

on whole blood samples using the ICP-MS method (Method

No. ITB0001A).

CRP measurement
The concentration of C-reactive protein (CRP) in the blood

was assessed using a two-reagent immunoturbidimetric approach.

In this method, the blood sample was initially mixed with a Tris

buffer and allowed to incubate. Following this, latex particles coated

with mouse-derived antibodies against human CRP were added.

These antibodies bind to CRP present in the sample, forming

immune complexes that increase the solution’s turbidity. This

increase in turbidity, caused by light scattering, is proportional

to the CRP concentration in the sample. The degree of light

scattering was quantitatively measured at primary and secondary

wavelengths of 546 nm and 800 nm, respectively. The resulting light

absorbance was compared against a calibrated CRP standard curve

to determine the CRP levels in the specimen.

These detailed and standardized procedures ensure the

reliability and validity of the metal and CRP measurements in the

NHANES dataset.

Statistical analysis

Our study utilized linear regression and Bayesian Kernel

Machine Regression (BKMR) analysis to evaluate the relationship

between metal exposure and systemic inflammation. To ensure

the integrity of our analysis, we addressed missing values in the

variables of interest by imputing them with the median value.

This approach helped to maintain a complete dataset and reduce

potential bias associated with missing information.

Our data analytics approach began with thorough data cleaning

to address any inconsistencies, duplicate records, or irrelevant

information. This crucial step ensured that our analysis was based

on accurate and reliable data. For any missing values within the

variables of interest, we used median imputation, replacing missing

values with the median value of the observed data. This method

preserved the overall distribution of the data and minimized the

impact of outliers.

We initially applied linear regression to examine the individual

relationships between metal exposures and CRP levels, providing a

preliminary understanding of potential associations. To capture the

complex and potentially non-linear interactions between multiple

metals and CRP levels, we then employed BKMR. This advanced

statistical method allows for the evaluation of non-linear exposure-

response functions and interactions between multiple exposures

simultaneously, providing a more comprehensive analysis of

the data.

These steps ensured a robust and thorough analytical process,

enabling us to derive meaningful insights from the NHANES 2017-

2018 data.

Descriptive statistics
Descriptive statistics are presented to describe the distribution

of the exposure and demographic variables in the dataset and

stratify them by the c-reactive protein. Spearman correlation

was used to assess the relationships among the metal’s exposure

variables and c-reactive protein.
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Bayesian Kernel Machine Regression (BKMR)
In this research, we employed Bayesian Kernel Machine

Regression (BKMR) with theMarkov ChainMonte Carlo (MCMC)

sampling method, following the methodology outlined by Bobb

et al. (24). Our process involved conducting 5,000 iterations

to ensure robust analysis. The choice of priors in our BKMR

model was guided by established Bayesian practices to ensure

meaningful inference and computational efficiency. Specifically,

we utilized non-informative priors for parameters where prior

knowledge was limited, allowing the data to primarily inform the

posterior distributions. Convergence diagnostics were meticulously

conducted to validate the stability and reliability of our results. This

included assessing trace plots, autocorrelation plots, density plots,

and the Gelman-Rubin convergence statistics for each parameter,

ensuring they exhibited stable and consistent patterns without

trends. The Gelman-Rubin statistic was confirmed to be below

1.1, indicating successful convergence. A central component of our

BKMR analysis was the use of Posterior Inclusion Probabilities

TABLE 1 Comparative analysis of study variables by median CRP levels:

statistical significance and variations.

Variable CRP
above
median

CRP
below
median

p-values

Mercury (mean/SE) 1.04 (0.056) 1.15 (0.069) 0.134

Cadmium (mean/SE) 0.387 (0.017) 0.332 (0.010) 0.006

Lead (mean/SE) 1.01 (0.030) 0.928 (0.021) 0.026

BMI (mean/SE) 30.04 (0.288) 24.23 (0.178) <0.0001

Age (mean/SE) 40.98 (0.511) 34.89 (0.823) <0.0001

SE, Standard error.

(PIPs). PIPs, which range from 0 to 1, are critical in assessing the

impact of individual metals within an environmental mixture. They

help quantify the relative importance of each metal, such as lead,

cadmium, and mercury, in influencing the outcome of interest.

To understand the interaction between these metals and systemic

inflammation, we computed high-dimensional exposure-response

functions, denoted as h(z), at various intervals. This was done while

keeping other influencing variables constant at their median values,

allowing us to isolate the effects of each metal. BKMR’s graphical

interpretation capabilities were particularly valuable in our study.

These features enabled us to visually compare the effects—both

collective and individual—of metal exposures. Specifically, we

could contrast outcomes observed at specific exposure percentiles

against those at median exposure levels. This approach highlighted

the unique relationships between eachmetal and the outcome while

considering the constant median values of other exposures. We

adjusted our analysis for potential confounders, including body

mass index (BMI), gender, age, education, and ethnicity. This

methodological approach provided a nuanced understanding of the

individual and combined effects of metals like lead, cadmium, and

mercury on systemic inflammation. The analyses were completed

using R (version 4.2.3; R Foundation for Statistical Computing,

Vienna, Austria)(29). The significance level was set at 0.05.

Results

Comparative analysis of critical study
variables: CRP levels and their associations

The mean levels of critical study variables were explored by

CRP levels above and below the median (Table 1). The results

FIGURE 1

Spearman Correlation among variables of interest.
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indicated that all variables apart from mercury had a statistically

significantly higher level above the median for CRP as compared

to below.

Figure 1 presents the Spearman correlation analysis conducted

on the study’s exposure and outcome variables. The results reveal

strong correlations among the metals themselves, indicating inter-

metal correlations. Other notable correlations are between CRP

levels and cadmium, emphasizing the notable relationship between

these two variables. Statistical analysis unveiled notable associations

(p < 0.05) among various pairs of variables, including significant

correlations between CRP and cadmium, lead and cadmium, lead

and mercury, and cadmium and mercury.

BKMR results

The significant correlations identified among the variables in

our dataset signaled the necessity for employing Bayesian Kernel

TABLE 2 BKMR analysis of systemic inflammation: group and conditional

posterior inclusion probabilities for lead, cadmium, and mercury.

Variable Group PIP Conditional PIP

Lead 1 0.01000

Cadmium 1 0.0032

Mercury 1 0.9868

Machine Regression analysis as opposed to traditional linear

regressionmethods. In traditional linear regression, the assumption

of linearity between the independent and dependent variables is

fundamental. However, in real-world scenarios like ours, where

intricate and potentially nonlinear relationships exist among the

variables, these linear methods may not capture the complexity of

the data adequately.

BKMR, on the other hand, is a statistical technique that

excels in situations where the relationships among variables are

intricate and nonlinear. By utilizing flexible kernel functions and

Bayesian modeling, BKMR helped to uncover hidden patterns,

account for interactions, and capture intricate dependencies that

linear regression models might overlook. This adaptability makes

BKMR a powerful tool ultimately leading to more accurate and

informative insights.

Quantifying metal-related factors in CRP
variations: PIP and BKMR analysis

The Posterior Inclusion Probability (PIP) for each metal

concerning its relationship with CRP serves as a metric quantifying

the likelihood of each contaminant playing a significant role in

explaining the variations observed in CRP levels. The PIP values

for the influence of lead, cadmium, and mercury on systemic

inflammation are 0.3528, 0.6456, and 1.000, respectively.

Table 2 provides hierarchical BKMR analysis for CRP. The

analysis categorizes exposure variables into a group and presents

the Group PIP and Conditional PIP (values for the group). For CRP,

FIGURE 2

Univariate exposure–response functions and 95% credible interval for association between single metal exposure when other metals exposures are

fixed at the median.
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FIGURE 3

Bivariate exposure-response function of metals with CRP.

group 1 includes metals (lead, cadmium, and mercury) all of which

have group PIP values of 1 but only mercury has a high condition

PIP of 0.9868 suggesting a major influence on CRP.

Univariate analysis: examining the isolated e�ects
of mercury, cadmium, and lead on CRP

The univariate approach visually examines the individual effect

of Mercury, Cadmium, and Lead on CRP. Figure 2 shows the

impact of each metal on CRP when the other metals are fixed at

the median and the covariates are held constant with cadmium and

mercury having the largest impact. Regarding the figure, the flat

curve in the Lead panel suggests that variations in Lead exposure

do not significantly affect CRP levels across the range of exposures

analyzed. This could mean that Lead, within the study’s observed

exposure range, might not be a major determinant of CRP levels,

or that its effect is overshadowed by other factors not captured in

this plot.

The curve for Cadmium rises at lower exposure levels before

plateauing, indicating that an increase in Cadmium exposure may

be associated with higher CRP levels initially. However, as exposure

continues to increase, this effect does not appear to intensify.

This might suggest a threshold effect, where below a certain level

of exposure, changes in Cadmium concentrations have a more

pronounced impact on CRP levels.

The U-shaped curve observed for Mercury implies a non-linear

relationship with CRP levels. Low and high levels of Mercury

exposure are associated with higher CRP levels, whereas moderate

levels correlate with lower CRP. This could be indicative of

a complex mechanism by which Mercury affects inflammation,

potentially having a hormetic effect where it might exert different

biological effects at different concentrations.
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FIGURE 4

Bivariate exposure-response function of metals with CRP–investigating predictor-response function with varying quantiles of the second predictor,

while other predictors are fixed.

Visualizing bivariate exposure-response
functions with fixed percentile values

Bivariate metals exposure on CRP was explored where two

metals of interest effects on CRP were examined while all other

predictors were fixed at a particular percentile. In these plots

(Figure 3), the color scale (est) represents the estimated effect on

the health outcome. In this plot, red indicates a higher positive

effect (which means an increased risk of a negative health outcome

associated with increasing levels of the biomarker CRP), blue

indicates a negative effect, and white or gray indicates no effect.

The results seen in Figure 3 suggest that in the ‘Lead’ vs. ‘Cadmium’

plot (top left), higher levels of both exposures seem to have no effect

on the outcome as indicated by the white and blue regions. In the

‘Cadmium’ vs. ‘Mercury’ plot (bottom right), there appears to be

a region where increasing levels of both ‘Cadmium’ and ‘Mercury’

are associated with a positive effect on the outcome, as indicated

by the red area. This happens also with Lead and Mercury but to a

lesser extent.

The bivariate relationship was further explored by examining

metal pairs. The analysis examined the relationship between

individual metals and CRP by fixing the second metal at different

quantiles: 25th (red line), 50th (green line), and 75th (blue line),

with other metals held at the median (Figure 4). These models were

adjusted for the covariates of interest. The x-axis, labeled “expos1”,

shows the levels of one exposure, while the y-axis, labeled “est”,

represents the estimated effect on CRP levels. Each row of plots

corresponds to a different exposure being considered as “expos1”.

Interaction Effects: Each plot shows how the relationship

between “expos1” and CRP changes at different quantiles of

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1385500
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Obeng-Gyasi and Obeng-Gyasi 10.3389/fpubh.2024.1385500

a second exposure, “expos2”. The three lines within each plot

correspond to the 25th, 50th, and 75th quantiles of “expos2”, as

indicated by the color legend.

The interpretation of the plot by each metal is as follows.

Cadmium (as expos1): When interacting with Cadmium (top

row), the effects on CRP appear relatively flat across all

quantiles of Lead and Mercury, suggesting that Cadmium’s effect

on CRP levels is consistent regardless of the levels of the

other metals.

Lead (as expos1): For Lead, the plots show a U-shaped

relationship with CRP at different quantiles of Cadmium and

Mercury, indicating that both low and high levels of Lead

are associated with higher CRP levels, suggesting a non-

linear interaction.

Mercury (as expos1): Mercury’s interaction plots show a strong

U-shaped relationship with CRP at different quantiles of Cadmium

and a similar but less pronounced U-shape with Lead. This

suggests that Mercury has a non-linear association with CRP levels,

potentially indicating a more complex interaction.

Effect of Quantiles: The differences in the shapes of the lines

across different quantiles of “expos2” within each plot indicate how

the effect of “expos1” on CRP varies with the levels of “expos2”.

For example, in the bottom left plot (Mercury interacting with

Cadmium), the curves for the 25th and 50th quantiles of Cadmium

are relatively similar, suggesting consistent effects at lower to mid-

levels of Cadmium. However, at the 75th quantile, the curve rises

more steeply, suggesting a stronger interaction effect of Mercury

on CRP at higher levels of Cadmium.

Overall risk summary of CRP levels in
relation to exposure percentiles

Figure 5 measures the total effect of all exposures or mixtures.

The exposures are fixed at different quantities starting from the

25th percentile to 75th percentile at increments of 5 using the 50th

percentile (median) to compare the exposures. The estimation for

all exposures at the 50th percentile shown at zero (dashed line)

demonstrates that when comparing all exposures between the 20th

and 55th percentile exposure level to the 50th percentile exposure

level, the CRP is above zero while after the 60th percentile exposure

level CRP falls below zero. This analysis reveals that exposures

below the 50th percentile exposure level are associated with an

increase in CRP levels, while exposures above the 60th percentile

are linked to a decrease in CRP levels.

FIGURE 5

Summary of overall health e�ects of the exposures (multimixers) on the outcome depends on various percentiles (form 25th to 75th percentiles).
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FIGURE 6

Single-variable e�ect of metals at increasing quartiles for CRP.

Single-variable e�ects of metals on CRP

The single-variable effect helps to understand the effect of a

single predictor at different quantiles giving us the ability to assess

their contribution to the overall risk of elevated CRP. Figure 6

demonstrates the single-variable effects of metals on CRP at the

75th (blue), 50th (green), and 25th (red) quantile and suggest

cadmium and lead are associated with higher values of the h

function, a flexible function which takes multiple metals and

combines them in a way that captures the complex and potentially

nonlinear relationship between the metals and CRP. Overall, the

plot and the quantiles specifically show how the relationship

between each metal and CRP may change across the distribution

of the metal exposure.

Discussion

This study embarked on a nuanced exploration of the

relationships between exposure to various heavy metals and

systemic inflammation, as quantified by C-reactive protein

levels, utilizing the robust Bayesian Kernel Machine Regression

(BKMR) methodology. Our results substantiate the proposed link

between metal-induced oxidative stress and heightened systemic

inflammation, drawing attention to the intricate interplay between

lead, cadmium, and mercury and their collective influence on

CRP. Studying the combined effects of heavy metals like lead,

cadmium, and mercury provides a more accurate assessment

of health risks. These metals often coexist in the environment,

and their interactions can amplify their harmful effects on

systemic inflammation and overall health. Understanding the

combined impact of these metals can inform more effective

public health policies and regulations. Policies can be tailored to

address the cumulative risks posed by mixed metal exposures,

leading to better protection for at-risk populations. Highlighting

the combined effects of heavy metals is crucial for promoting

environmental and health justice. Marginalized communities often

face higher exposures to multiple pollutants, and this research can

support the development of strategies to reduce environmental

health disparities and ensure equitable health outcomes for all

communities. By recognizing the complex interactions between

different heavy metals, healthcare providers can develop more

effective interventions and treatments. This knowledge can lead

to better screening protocols, preventive measures, and treatment

plans for individuals exposed to these harmful substances.

Studying the combinations of heavy metals advances scientific

understanding of their synergistic effects. This knowledge is

essential for developing innovative solutions to mitigate the

health impacts of environmental contaminants and improve public

health outcomes.

Through the lens of BKMR, we were able to unveil complex

non-linear relationships and potential synergistic interactions

among metal exposures, phenomena that remain obscured within

the confines of conventional linear models. Mercury, in particular,
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emerged with a pronounced non-linear relationship with CRP

levels, a biphasic pattern suggesting that both deficient and

excessive exposures bear the potential to exacerbate inflammation.

The complexity of Mercury’s relationship with health outcomes

has been demonstrated in other studies (30). Mercury’s effects

on inflammation are well known (31), but these findings add

to the nuance of how exposure context shapes inflammation-

related outcomes. This nuanced understanding has profound

clinical implications, especially for populations burdened with

high environmental exposure, prompting a shift in public health

initiatives to consider the intricate and cumulative effects of

metal exposures.

To further dissect these complexities, we leveraged the

Posterior Inclusion Probability (PIP) as an analytical compass

to gauge the significance of each metal’s role in the observed

variations in CRP levels. Mercury’s unequivocal PIP of 1.000

firmly establishes its significant influence on CRP levels, indicating

its strong role in systemic inflammation. Cadmium’s substantial,

albeit less consistent PIP of 0.6456, along with lead’s more modest

PIP of 0.3528, paint a more heterogeneous picture of influence,

suggesting that their impact on inflammation may be modulated

by a confluence of exposure levels (32), biological interactions (33),

and other methodological nuances of the model. The substantial

impact of cadmium in a mixture have been noted elsewhere (34).

The collective importance of these metals is underscored by

Group PIP values of 1, yet it is mercury, with a high conditional

PIP of 0.9868, that stands out as a pivotal individual factor in the

elevation of CRP levels. This differentiation in the PIP spectrum

not only holds clinical weight but also kindles a policy discourse

on prioritizing interventions (35) to curtail exposures, with a

particular focus on mercury.

Our comparative analysis across critical study variables

disclosed a notable divergence, with cadmium and lead exposures

correlating with statistically higher CRP levels, an affirmation of

their differential impact on inflammation markers. While mercury

did not exhibit a similar direct correlation, its U-shaped response

curve in the BKMR analysis reveals a potential hormetic effect

(36), signifying that varying exposure levels may instigate distinct

biological responses. The U-shape may also be due to their

mechanism. Specifically, at low levels, mercury exposure might

stimulate inflammatory pathways or immune responses, potentially

through the activation of oxidative stress or inflammatory signaling

pathways. Conversely, at high levels, mercury’s toxic effects could

overwhelm these pathways, leading to immunosuppression or

reduced inflammation. This dual effect could explain the observed

U-shaped curve. Additionally, Previous studies have reported

similar U-shaped dose-response relationships for other toxicants,

suggesting that the effect of mercury on inflammation may not be

linear (30). For instance, some research has shown that low-level

exposure to certain metals can enhance pro-inflammatory cytokine

production (37), while high levels may induce apoptosis or other

protective mechanisms that reduce inflammation (38).

Cadmium’s threshold effect, with a plateauing of CRP levels in

response to increasing exposure, suggests a saturation point in its

inflammatory potential, whereas the absence of a pronounced dose-

response relationship for lead signals a more intricate or subdued

influence on inflammation.

The outcome of the bivariate exposure-response functions

further illuminated the potential for synergistic interactions

between metals (39), particularly in the dynamic interplay between

lead and cadmium and between cadmium and mercury. This

synergy, which could amplify inflammation, underscores the need

for public health policies (40) to address the multifaceted risk of

mixed metal exposures.

Our analysis also highlighted a paradoxical inverse relationship

at higher metal exposure percentiles, where increased metal levels

were correlated with a decrease in CRP, hinting at possible

saturation effects or adaptive biological mechanisms that mitigate

inflammation at heightened concentrations of these metals.

The implications of our findings are manifold, extending

beyond immediate clinical concerns to inform future research

agendas. For example, in the context of our findings on metal-

induced oxidative stress and inflammation, the role of CRP as

a clinical biomarker gains additional significance. CRP, produced

in response to inflammation, serves as a crucial indicator for

a range of conditions, including those within the neurosurgical

sphere. Elevated CRP levels, linked to an increased risk of

neurodegenerative diseases and stroke, underscore the broader

implications of metal exposure in systemic inflammation (41). This

insight is vital in, for example, neurosurgery, where understanding

such inflammatory markers can profoundly impact surgical

outcomes and recovery processes (42). Thus, our study’s revelation

of the nuanced influence of metals like mercury on CRP levels

brings to light the critical intersection of environmental health and

neurosurgical care.

The need for advanced statistical tools to decipher the labyrinth

of complex environmental exposures is clear. Future research

should focus on elucidating the mechanistic pathways by which

these metals influence inflammation and the progression of

related chronic diseases. Longitudinal studies are particularly

warranted to unravel the temporal intricacies between metal

exposure and inflammation, potentially paving the way for

targeted therapeutic and preventive measures. Moreover,

public health policies must adapt to address the complex and

cumulative risks posed by mixed metal exposures, emphasizing

the need for stricter regulations and interventions, particularly

concerning mercury. Clinicians and policymakers should

collaborate to develop strategies that mitigate metal exposure,

enhance environmental safety, and improve health outcomes for

affected populations.

One limitation of our study is the lack of specific

geographical information in the NHANES dataset, as it is

de-identified to protect participant privacy, which precludes

analysis of localized environmental exposure risks. Another

limitation of our study is that we focused on the end

result of systemic inflammation rather than incorporating

parameters such as morbid obesity, waist circumference, and

other well-known contributors to systemic inflammation

and elevated CRP levels, which could provide additional

context and enhance the understanding of the relative impact

of heavy metal exposures. Additionally, the cross-sectional

design of the NHANES dataset limits our ability to infer

temporality and causality between heavy metal exposures

and systemic inflammation. Longitudinal studies are needed
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to better understand the temporal relationships and causal

pathways involved.

Conclusions

This study highlights the complex interactions between

lead, cadmium, and mercury exposures and systemic

inflammation, as measured by C-reactive protein (CRP)

levels. Utilizing Bayesian Kernel Machine Regression

(BKMR) and Posterior Inclusion Probabilities (PIPs), we

revealed significant non-linear relationships, particularly

noting mercury’s pronounced U-shaped association with

CRP. The findings underscore the importance of considering

combined metal exposures in public health strategies. Future

research should focus on the mechanistic pathways and long-

term effects of these exposures to better inform policy and

therapeutic interventions.
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