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Predicting, issuing early warnings, and assessing risks associated with unnatural 
epidemics (UEs) present significant challenges. These tasks also represent key 
areas of focus within the field of prevention and control research for UEs. A 
scoping review was conducted using databases such as PubMed, Web of Science, 
Scopus, and Embase, from inception to 31 December 2023. Sixty-six studies 
met the inclusion criteria. Two types of models (data-driven and mechanistic-
based models) and a class of analysis tools for risk assessment of UEs were 
identified. The validation part of models involved calibration, improvement, and 
comparison. Three surveillance systems (event-based, indicator-based, and 
hybrid) were reported for monitoring UEs. In the current study, mathematical 
models and analysis tools suggest a distinction between natural epidemics and 
UEs in selecting model parameters and warning thresholds. Future research 
should consider combining a mechanistic-based model with a data-driven 
model and learning to pursue time-varying, high-precision risk assessment 
capabilities.
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1 Introduction

Unnatural epidemics (UEs) are caused by human intervention and may be deliberate or 
accidental releases of naturally occurring or altered pathogens (1). UEs cause substantial harm 
due to their wide range of infectiousness, rapid transmission, insidious processes, and multiple 
transmission methods (2). The intricacy of crowd behaviors and uncertainty regarding time 
and geography in UE outbreaks make prevention and control difficult (3).

This emphasizes the importance of early identification, prediction, and warning in UEs 
(4). Mathematical models and analysis tools can help combat UEs in prediction, early warning, 
and risk assessment (5). A study has proposed a model for labeling abnormal outbreak patterns 
to predict the development trends of complex pathogens (6). To achieve automatic early 
warning and response to UEs, some scholars have proposed real-time surveillance and 
aberration detection algorithms for enhanced outbreak monitoring (7). In addition, analysis 
tools can use simple scoring rules to complete a risk assessment of UEs. Scholars can use the 
analysis tools to assess the needs of applied epidemiology and training programs to develop 
greater capacity (8) and rank highly hazardous microorganisms. To better integrate various 
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mathematical models and analysis tools for disease prediction, early 
warning, and risk assessment, disease surveillance systems have 
emerged as practical application tools. Current disease surveillance 
systems require early warning mechanisms that can detect a significant 
increase in confirmed cases by analyzing historical data. However, 
these methods cannot estimate outbreak size or detect new UEs. The 
data on UEs are scarce, making projections less accurate. Existing 
mathematical models and analysis tools for prediction, early warning, 
and risk assessment of UEs lack comprehensive review.

Therefore, this study aims to address the following research 
questions: What kinds of mathematical models or analysis tools have 
been developed for risk assessment of UEs? How should the suitability 
of the mathematical models and analysis tools be verified? What is the 
application of mathematical models and analysis tools embedded in 
surveillance systems? By reviewing relevant literature, this study will 
provide insights into mathematical models and analysis tools used for 
quantifying the risk of UEs. The findings will assist public health 
officials in making timely projections and decisions about UEs.

2 Methods

2.1 Design

This scoping review was conducted using the recommended 
PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses extension for Scoping Reviews) guidelines published 
in 2018 (9). Supplementary material S1 provides the PRISMA-ScR  
Checklist.

2.2 Information sources and search 
strategy

A rigorous literature search was conducted from inception to 31 
December 2023 using various online databases, such as PubMed, Web 
of Science, Scopus, and Embase. A combination of three types of 
keywords for the issue is necessary: subjects (words such as 
bioterrorism), purposes (words such as predict), and methods (words 
such as model) (10). These search terms are limited to the title, 
abstract, and keywords of the articles. Logical operators “AND” and 
“OR” were used to combine terms to meet PubMed, Web of Science, 
Scopus, and Embase standards. Appropriate filters and keywords were 
selected for the four databases. Supplementary material S2 provides 
detailed search strategies.

2.3 Selection of studies

All peer-reviewed sources were reviewed independently by two 
authors. A third author resolved disagreements. A total of 1992 articles 
were reviewed, and after de-duplication using Endnote X9 (Clarivate 
Analytics, United States), 1,103 articles met the nadir criteria to enter 
the data extraction stage. Seventy-one articles were screened for initial 
inclusion based on the constraints of the selected metrics in this study. 
Twelve articles were chosen using snowball sampling. Seventeen of the 
eighty-three articles were eliminated because the necessary metrics 
could not be derived. Finally, 66 articles were reviewed in this study 

(Figure  1). The study selection form is shown in Supplementary  
material S3.

2.4 Data extraction

Data were extracted from all identified studies using a predefined 
format. Variables included year of publication, country, first author, 
journal, and so on (10). Supplementary material S4 provides the data 
extraction form.

2.5 Characteristics of the included studies

Based on the current literature, risk assessment of UEs began to 
attract scholars from all fields in the 21st century, with more than 60% 
of the articles coming from the United  States, which dominates 
research on mathematical models and analysis tools for risk 
assessment. Sixteen other countries have also published corresponding 
articles. Thirty-five journals contributed sixty-six articles to the study. 
With six articles, Emerging Infectious Diseases, Morbidity and Mortality 
Weekly Report Supplements, and Risk Analysis contributed the most 
articles. Supplementary material S5 summarizes the characteristics of 
the included studies. Supplementary material S6 displays the articles 
published in risk assessment studies using mathematical models and 
analysis tools.

2.6 Evidence synthesis

This scoping review used descriptive-analytical methods. The 
graphs were designed using R statistical software (version 4.1.3).

3 Categorizing of mathematical 
models and analysis tools for risk 
assessment of UEs

3.1 Data-driven models

Data-driven models are commonly used in statistical or machine 
learning methods such as support vector machines. Based on 
goodness-of-fit rather than mode-of-action or mechanism, data-
driven models use correlations to find the optimal input variables to 
predict desired outputs. Therefore, their structure is “driven by the 
data” (11). Table  1 summarizes data-driven models for risk 
assessment of UEs.

3.1.1 Application I: detect outbreaks
Data-driven models have important applications in prediction. The 

first application is to detect outbreaks of UEs. The function of mutual 
information (12) uses daily anti-influenza drug sales to determine 
detection limits (thresholds) of UEs to complete early warning. A first-
order model (13) can identify outbreaks 1–2 weeks before respiratory 
disease events. This model uses patient monitoring data, including age, 
complaints, and discharge diagnoses. Structural model (14) predicts the 
outbreak level 2 weeks after the alert using real and simulated anthrax 
exposure counting with noise. This model can detect and predict 
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partially observed epidemics. Modified cyclical regression model (15) 
uses ambulance dispatch data for outbreak detection to measure 
influenza mortality and report the alarm threshold. Support vector 
regression (16) links dengue cases with weather parameters and predicts 
20-week dengue trends. Cumulative sum (CUSUM) method (17–19) 
and exceedance method by Farrington (FARR) (18) are often used for 
early warning. A “signal” is generated in the system when the observed 
and expected count disparities exceed a threshold. CUSUM is widely 
used to report the epidemic severity of regional outbreaks in a system. 
UEs can also be tracked by the moving average of numerous data cycles 
(20, 21). Furthermore, data-driven models can track public opinions 
during outbreaks. Using supervised machine learning algorithms (47), 
researchers can identify anthrax-related tweets. Plotting data over time 
helped determine if an event was detected (based on a spike in the 
number of tweets occurring three times). This shows that machine 
learning can use not only conventional clinical data but also public 
opinion data for outbreak detection.

3.1.2 Application II: predict the size and time of 
attacks

The second application is directed at predicting the size and time of 
attacks. Bayesian methods and networks (22–26) can predict simulated 
anthrax attacks using case counts and attack time. Bayesian methods can 
quickly assess the extent and time of a biological error attack and predict 
how many people will develop symptoms and need medical care. The 
What’s Strange About Recent Events (WSARE) algorithm (27, 28) 
reports anomalous patterns based on time, location, and population at 
risk to construct an outbreak risk profile. The recursive least square 
adaptive filter (29–31) detects short-term outbreak signals because it 
emphasizes recent past data while calculating forecast counts. Space–
time scan statistics (32–35) prioritize temporal and geographical 
partitions based on attack size and time. Furthermore, generalized linear 
mixed models (36) estimate the infection probability of being a case for 
a surveillance day in a setting area. Time series analysis, such as the 
modified exponentially weighted moving average technique (37), the 

FIGURE 1

Flowchart depicting the study design.
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TABLE 1 Summary of data-driven models for risk assessment of unnatural epidemics.

Model classes Name of model Data type* Data (time or events) Functions Factors Outcomes

Data-driven models Function of mutual information (12) AD Influenza (2003–2006) Early warning Anti-influenza sales daily Detection limit

First-order model (13) AD ED* patient system data (1994–2003) Risk identification Age; gender; arrival/ discharge time and date; 

discharge diagnoses and disposition

Infectious disease 

effects; daily visit 

patterns

Structural models (14) HD Counts of anthrax (2009–2010) Risk prediction Daily visits to care providers; counts of anthrax Outbreak size

Modified cyclical regression model (15) AD Ambulance calls (1993–2003) Early detection Ambulance dispatches; ILI* call types; number of 

virus isolates; temperature

Alarm threshold

SVR* (16) AD Dengue outbreaks (2011–2015) Early detection Dengue cases; weather parameters Short-term trend of 

dengue fever

CUSUM* (17–19) AD Clinical datasets (2001–2002, 2005, 

2012–2014)

Early warning Chief complaints: count of each syndrome in each 

region

Daily counts

FARR* (18) AD Clinical and non-clinical data (2005) Early warning Call types; discharge diagnosis; chief complaints; 

microbiology tests

Syndrome counts

MA* (20, 21) AD Medical institutions and schools 

(2002–2003)

Early warning Disease clusters; selected syndromes; personal 

information; ICD-9*; chief complaint; school 

absence rates; calls

Outbreak limits; event 

counts

Bayesian approach (22) SD Anthrax attack (spread of anthrax) Estimate the size and time of 

attack

Case counts; report timing Attack size and time

Bayesian aerosol release detector (23) HD ED* and meteorological data (1999–

2005)

Estimate the size and time of 

attack

Complaint ED* visits vector; geography matrix; 

weather matrix

Location, quantity, time, 

and release probability

Population-wide anomaly detection 

and assessment (24)

HD Anthrax attack (spread of anthrax) Estimate the size and time of 

attack

Chest X-ray or blood culture likelihood; Last ED* 

case; spore distribution; weather; location, height, 

date, and spore amount

Maximum joint 

detection time; patient 

count

Bayesian networks (25) AD Simulated daily time series without 

outbreaks (1994–1999)

Early warning Days of epidemic signal; day outbreak signal 

peaks; outbreak signal standard deviations above 

baseline; outbreak spike

Outbreak signals

Bayesian approach (26) HD Sverdlovsk anthrax attack (1979) Estimate the size, time, and 

dose of attack

Symptoms; incubation; attack rate; dose Attack size, average 

dose; and time

WSARE* algorithm (27, 28) AD/ SD Influenza B outbreak (2004) or 

epidemic data

Early detection Clinic visit date; city code; ICD*; Age Anomalous patterns

Recursive least square adaptive filter 

(29–31)

AD Urgent care, emergency, and polyclinic 

data (from 2002)

Estimate the size of attack Chief complaints; demographic data Number infected

Space–time scan statistic (32–35) HD Outpatient data (spread of anthrax or 

respiratory)

Early warning Patient visits/calls; count of each syndrome and 

zip code

Number of events

Small area regression and testing (34) AD Outpatient data (spread of anthrax) Early warning ICD-9*; count of each syndrome Number infected

(Continued)
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TABLE 1 (Continued)

Model classes Name of model Data type* Data (time or events) Functions Factors Outcomes

GLMM* (36) AD Electronic medical, demographic, and 

eligibility records (1996–2000)

Estimate infection 

probability

Individual measures; area or population measures; 

day descriptions; pre-surveillance days

Probability of a 

surveillance day case in 

an area

Modified EWMA* (37) AD Clinical and non-clinical data 

(abnormal symptom attacks)

Early warning Emergency room respiratory syndrome counts; 

office visit respiratory counts; OTC* influenza 

drug sales; school absence totals

Alarm threshold

Seasonal ARIMA* (38) HD Syndromic surveillance systems data 

(2001–2003)

Estimate the size and time of 

attack

Respiratory syndromes; infected people; median 

incubation and prodromal times; proportion 

seeking prodromal care

Number infected

Trimmed-mean seasonal models (39, 

40)

HD ED* data (1992–2002) Estimate the size of attack Daily visit totals Number of visits

Aggregate and local model (41) HD Hospital data (1998–2002) Estimate the size of attack Overall series mean; weekly signal; Yearly trend; 

chief complaint; ICD*

Daily visit totals

Decision analytic model (42) HD Surveillance system data (2003) and 

simulated attack

Estimate the size and time of 

attack

Health state transition probability; utility values; 

cost estimates

Number of infected, 

lives, QALYs* and costs

G- / P-Surveillance Methods (43) AD CDSC* (1997–2002) Early detection Brucellosis counts per week Number of events

CC and CI* (44, 45) AD Cryptosporidiosis outbreak (1997); 

Symptoms data (from 2001)

Early warning NHSD* call data; incubation time distribution Upper prediction limits 

for calls

Recombinant temporal aberration 

detection algorithms (46)

AD RESP*, GI* or other diseases (spread 

of RESP*, GI* or other diseases)

Early detection Military clinic diagnosis; prescriptions; civilian 

doctor visits

Outbreak signals

Supervised machine learning 

algorithms (47)

AD Tweets in English (2017–2018) Early detection Tweet content; time of news story; first news 

article-related tweet or retweet; event-to-detection 

time

Number of tweets

Risk analysis approach (48, 49) SD Coccidioides immitis and the anthrax 

attack (spread of Bacillus anthracis and 

Coccidioides immitis)

Estimate infection risk Infectious inhalation dosage; expected exposure 

times; Infection threshold

Infection risk

*The following abbreviations are used. SD, Simulated data; AD, Authentic data; HD, Hybrid data (simulated data and authentic data); ILI, Influenza-like illness; EWMA, Exponentially weighted moving average; NA, No answer, used on forms; OTC, Over-the-counter; 
ICD-9, International Classification of Diseases, Ninth Revision; WSARE, What’s strange about recent events; ED, Emergency department; CDSC, Communicable disease surveillance center; GLMM, Generalized linear mixed models; MA, Moving average; CUSUM, 
Cumulative sum; ARIMA, Autoregressive integrated moving average model; CC and CI, Control chart and Confidence interval method; NHSD, National health service direct; RESP, Respiratory; GI, Gastrointestinal; FARR, Exceedance method by Farrington; QALYs, 
Quality-adjusted life years; SVR, Support vector regression.
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seasonal autoregressive integrated moving average model (ARIMA) (38), 
trimmed-mean seasonal models (39, 40) and ARIMA (39), is frequently 
used to examine epidemic trends. It uses count data to predict outbreaks 
and detect abnormal epidemics early.

3.1.3 Model performance
With the emergence of more and more mathematical models for 

the risk assessment of UEs, there is a growing focus on evaluating the 
performance of these models. Some studies (34, 41) use a single input 
data or multivariate aggregated data to check the sensitivity of the model 
prediction performance. The results prove that two-stream surveillance 
is superior to one-stream surveillance. Model performance can also 
be measured by model practice effectiveness. Decision-analytic model 
(42) predicts lives, quality-adjusted life years (QALYs), and costs for a 
series of simulated bioterrorist attacks. However, false positives of the 
model were also noticed. G-/P-surveillance methods (43) that use only 
incidence case count data set the time to 21–30 days or 1 year to detect 
a relatively sudden increase in incidence. It greatly reduces false alarms 
but decreases sensitivity. Control chart and confidence interval methods 
(44) use call data and incubation periods for early warning of outbreaks. 
In comparison, the control chart for false alarm control is stricter. On 
top of having case data, different models incorporate additional data 
based on factors affecting the issue. Recombinant temporal aberration 
detection algorithms (46) also employ outpatient diagnoses, volume, 
and other relevant factors to decompose existing temporal aberration 
detection algorithms into two consecutive phases. This method 
investigates the impact of each phase on outbreak detection performance 
by reporting outbreak signals. In addition, the algorithms enhance the 
model’s detection of UEs.

3.2 Mechanistic-based models

Mechanistic-based models use mechanisms and algorithms 
regardless of data availability (50, 51). Data are used to fit these 
mechanistic-based models and enable their operations. They aim to 
describe causation, although they typically contain empirical 
components as well (11). Table  2 summarizes mechanistic-based 
models for risk assessment of UEs.

Mechanistic-based models for risk assessment of UEs mainly rely on 
infectious disease transmission mechanisms to construct a skeleton-like 
framework and commonly include Susceptible-Exposed-Infected-
Removed (SEIR) models (52, 54), disease propagation differential 
equations, and other models (64, 65). Unlike data-driven models, 
mechanistic-based models emphasize fitting the model to the data. 
Mechanistic-based models can predict the size of UEs. A probabilistic 
anthrax model (55) uses a Markov chain Monte Carlo sampling 
algorithm to estimate the outbreak size. It evaluates post-anthrax release 
mitigating measures to better estimate unnatural outbreaks. Most 
mechanistic-based models (53, 56–59) predict cumulative infections, 
daily numbers of infections, and the size of UEs based on pathogen 
transmission in the target population. These models create rapid reaction 
systems and procedures by identifying and geospatially analyzing UEs. 
A few mechanistic-based models focus on the impact of dose–response 
mechanisms on the risk assessment of UEs. Input indicators are crucial 
to dose–response models (48, 49, 60–63). The input indicators can 
be  included in clinical indicators (e.g., human respiration rate), 
environmental indicators (e.g., indoor room area), and pathogen 
dispersal indicators (e.g., spore dispersal rate). Dose–response models 

can estimate the size and timing of UEs for airborne pathogen infections, 
using human, environmental, and pathogen data to assess infection risk. 
Dose–response models can provide a reliable reference for risk assessors 
and healthcare decision-makers.

3.3 Analysis tools

In addition to data-driven and mechanistic-based models, analysis 
tools are often applied to UEs. Analysis tools, including qualitative and 
quantitative tools, enable decision-makers to quickly and reliably 
differentiate between natural epidemics and UEs (66). Scores are 
assigned based on answers, similar to questionnaire scoring. Finally, 
these characteristics are scored to reflect the risk of UEs. Table  3 
provides analysis tools for risk assessment of UEs.

A qualitative tool (67) presents epidemiological clues that 
highlight features of an epidemic that may suggest an unnatural attack. 
Another class of quantitative tools (68–77, 79–81) can calculate the 
risk factor scores to differentiate between natural epidemics and UEs. 
If the risk factor scores exceed the threshold, the event is likely 
unnatural. Such a simple and useful scoring method enables rapid 
differentiation between biological attacks and other epidemics, 
shortens the time for decision-makers to report the epidemic situation, 
and develops appropriate responses. Some scoring tools (8, 78) also 
assess biological weapon danger.

4 Validation of mathematical models 
and analysis tools for risk assessment 
of UEs

Model validation checks if a “model reliably reproduces the 
crucial behavior and quantities of interest within the intended context 
of use” (82). Model validation enhances model performance and 
applicability. The general analytical perspective of model validation 
starts with model uncertainty. Model uncertainty requires further 
refinement or tests of the model itself to affect final results. The validity 
of models and tools is increased by calibration (12, 14), improvement 
(74–76), and comparison (13, 55, 59, 63) under model uncertainty. 
Table 4 shows the model validation.

4.1 Model calibration

Model calibration is a performance test of the model that has been 
built. Model calibration, which adjusts model parameters to match 
experimental data, affects a model’s ability to predict the future (83). 
This approach is particularly useful when a model involves multiple 
inputs or parameters (84). This study summarizes three directions for 
model validation.

First, it involves changing various inputs or model parameters (17, 
23, 26, 38, 42, 52, 54, 55, 59, 63). Different model input–output 
combinations are tested to see how they affect results. Modeling risk 
sensitivity to input uncertainties is commonly studied. Then, method 
validation analyses the same scenario for different combinations of 
inputs and is assessed with evaluation indicators, such as R-squared, 
root mean square error (RMSE), mean square error (MSE), mean 
absolute error (MAE), mean absolute percentage error (MAPE), 
sensitivity, and receiver operating characteristic (ROC) curve. In 
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TABLE 2 Summary of mechanistic-based models for risk assessment of unnatural epidemics.

Model classes Name of model Data type* Data (time or events) Functions Factors Outcomes

Mechanistic-based 

models

SIR* (52, 53) SD Synthetic population data 

(spread of smallpox)

Estimate the size of attack Contact patterns; initial population size; initial infected 

population; susceptibility; relative infectivity; relative disease 

progression; relative mortality

Outbreak size

SID* (54) NA Smallpox attack (spread of 

smallpox)

Estimate the size and time of 

attack

R0; incubation, prodromal, and symptomatic periods; initial-

exposure cases; initial susceptibility; public health staff; 

vaccination count; processed daily per public health worker; 

contact count; maximum daily quarantine during symptoms

Total patients; duration; epidemic 

peak

Back-calculation 

method (55)

HD National statistics data (1991) 

and anthrax outbreaks

Estimate the size and time of 

attack

Initial cases; weather; population; travel patterns Attack time, size, and location

Markov chain model 

(56)

AD Smallpox cases (1950–1971) Estimate the size of attack Numbers originally infected; transmission rate; daily quarantine 

and removal rate; intervention day; vaccine doses per case; 

Incubation time

Daily new-onset and cumulative 

cases; store vaccines

Within-host 

mathematical model 

with spatial back-

calculation method 

(57)

SD Anthrax attack (spread of 

anthrax)

Risk identification and 

assessment

Previous antibiotic adherence; Postexposure vaccination; initial 

case delay range

Outbreak size

Transmission model 

(58)

SD Anthrax attacks (2006) Estimate the size and time of 

attack

Personal data; behavior; social interactions Patients and fatalities; vaccine 

dosages; eradication time

Epidemic curve model 

(59)

AD Sverdlovsk anthrax attack 

(1979)

Estimate the size of attack Case numbers; incubation period Outbreak size

Dose- and time-

dependent 

mathematical model 

(60)

AD Bacillus tularemiatularensis 

dataset (1998)

Predict health effects Fever incubation; fever onset; near-maximum body temperature Disease incidence

Simulation modeling 

(61)

SD Anthrax attack (spread of 

anthrax)

Estimate the time interval of 

attack

Released spores; floor; air exchange rate; spore sedimentation; 

suspended spores; transfer processes

Spore dispersion time; aerosol 

removal time interval

Wells-Riley 

mathematical model 

(62)

SD Anthrax attack (spread of 

anthrax)

Risk identification Environment; host; organism virulence Infection risk

Pathogen fate and 

transport model (63)

AD Anthrax attacks (2001) Estimate attack risk Spore release; risk of sickness; spore setting velocity; 

resuspension rate; sample recovery efficiency

Mortality risk

*The following abbreviations are used. SD, Simulated data; AD, Authentic data; HD, Hybrid data (simulated data and authentic data); SID, Susceptible-infected-dead model; NA, No answer, used on forms; SIR, Susceptible-infected-recovered model.
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TABLE 3 Summary of analysis tools for risk assessment of unnatural epidemics.

Tools Functions Factors Outcomes

Epidemiologic clues (67) Risk identification Epidemiologic clues of unusual illness (rare agent/rare disease) or unusual patterns of 

person, place, and time; routine illnesses that some agents cause or infection with some 

agents

Possibility of bioterrorism

Original GFT* (68, 69) Risk identification Political, military, and social analysis of the crisis zone; pathogen traits; epidemic 

features; disease incidence; early-stage fever profile

Bioterrorism likelihood

New gradual model of bioterrorism risk assessment 

(70)

Define suspended perpetrators Perpetrators; agents; means or media of delivery; targets Score of suspended perpetrators

Scoring system for unusual epidemic events (71) Risk identification Cases; time and spatial distribution of cases Possibility of a deliberate or accidental outbreak

Risk assessment matrix (72) Risk assessment Public health impact; suspected purposeful act; information source Score of biological threats risk

Scoring method with 33 parameters (73) Risk assessment Infection/reservoir or pathogen; transmission, distribution, and biological agent target 

group

Bioterrorism likelihood

Modified GFT* (74–76) Risk identification Demographic data; location data; data of multiple risk factors Bioterrorism likelihood

Radosavljevic-belojevic method (77) Risk identification Unusual biological cases; unusual epidemic spread; higher morbidity/mortality; 

abnormal contact; pathogen reservoir/perpetrator; pathogen/biological agent; delivery 

methods; target/vulnerable population

Outbreak score

Existing reclassification of potential biological weapons 

method (78)

Risk identification Ease of use; virulence; mortality; person-to-person transmission; inoculation period; 

discreet clinical picture; laboratory diagnosis; treatment choices; environmental/animal 

impacts; disease chronicity; hospital burden; pathogen public perception

Score of biological threats risk

Generic risk ranking system (8) Risk identification History; agent accessibility; production and storability; diagnostics; agent dispersion; 

human and animal population countermeasures; public health impact; ecological and 

economic effects; panic risk

Risk ranking of agents

Bioweapon risk assessment tool (79, 80) Risk assessment Infectivity; infection-to-disease ratio; predictability (and incubation period); morbidity 

and mortality; ease of large-scale production and storage; aerosol stability; 

environmental stability; ease of dispersal; communicability; prophylactic 

countermeasure availability; therapeutic countermeasure availability; ease of detection

Score of biological threats risk

Assessment method for potential biological threat 

agents (81)

Risk identification Public health impact; dissemination potential; Public perception; special preparation Categories for potential biological threat agents

*The following abbreviations are used. GFT, Grunow–Finke assessment tool.

https://doi.org/10.3389/fpubh.2024.1381328
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2024.1381328

Frontiers in Public Health 09 frontiersin.org

addition to modifying model inputs and outputs, model 
misspecifications can affect model estimate accuracy. Legrand et al. (55) 
replicated the process of estimating anthrax spread in a model but 
intentionally misspecified parameter values, data, or model structure. 
The results suggest this can affect model estimation accuracy. Second, it 
involves reducing the influence of noisy data on genuine data. 
Background subtraction can test the multiple forward predictions of the 
established structural model (14). The final model was able to correctly 
isolate the simulated epidemic from the “normal” background signal. 
Third, it involves changing data sources to test model applicability. One 
approach (12) is to expand the monitored area by collecting data on 
daily sales of disease-related drugs. Researchers can then check drug 
purchase records for abnormalities to assess whether an epidemic has 
occurred. To test the sensitivity of the model’s prediction ability, another 
approach (34, 41) involves using a single input data set and multivariate 
aggregated data. Model calibration is common when a system is poorly 
understood or measured (83). However, model calibration is difficult 
because quantitative epidemic prediction models have many parameters 
to calibrate. Thus, poor parameter determination is the main obstacle 
to model prediction accuracy.

4.2 Model improvement

Model improvement extends beyond method validation. It 
involves calibrating the model to increase event risk assessment 
accuracy. This process typically leads to improved accuracy of a single 
model. The original technique is insensitive to unnatural infectious 
diseases and is weak at spotting previous epidemics with known 
causes. The Grunow-Finke tool (GFT) is the best-known tool for such 
differentiation. The recalibration of GFT for identifying UEs (74–76) 
involved removing criteria from the old GFT. In addition, it also 
adjusts weighting factors for additional criteria and reintroduces 
significant ones. It sets evaluation tools that identify the thresholds of 
natural epidemics and UEs, too. Model improvement focuses on the 
lower sensitivity and specificity of the model or tool to improve the 
broad applicability of them. Model improvement involves reviewing 
the original model’s assumptions and determining if existing changes 
conflict with existing data.

4.3 Model comparison

Knowing the right model’s structure may make it more interesting 
to determine its absolute performance. This situation involves model 

comparison for various defined models (83). Model comparison 
involves comparing and observing the results of different methods for 
the same problem. It compares multiple models to prove its 
performance. Building multiple models for the same problem and 
comparing their predictions help determine the best model and 
algorithm for forecasting unnatural outbreaks (13, 25, 34, 42, 46, 47). 
In general, when assessing model outbreak thresholds, three or more 
standard deviations from the baseline model can be  used. 
Exponentially weighted moving averages (EWMA) (13) can be used 
as a method to modify the forecast based on recent errors. Finally, 
various models are compared to the baseline model to assess its 
predictive power. Accuracy, recall, F1-score, sensitivity, specificity, 
ROC, and p-value measure model efficacy. When attempting to 
predict UEs, not all models can be assessed for efficacy using the same 
set of evaluation indicators. This is where attention must be paid to 
model comparison for risk assessments of UEs.

5 Difference between natural 
epidemics and UEs in mathematical 
models and analysis tools

Mathematical models and analysis tools are used for UEs in our 
review, but they can also be used to determine the occurrence of 
natural epidemics. The difference exists between natural epidemics 
and UEs when using mathematical models and analytical tools. The 
values for natural epidemics and UEs are not the same in the choice 
of model parameters (60, 62, 63) and warning thresholds (19). 
However, some studies (13, 20, 44) have also pointed out that some 
models and tools used for natural epidemics are currently unlikely to 
provide early detection of UEs. In the current study, data-driven 
models and mechanistic-based models are less likely to mention the 
difference between natural epidemics and UEs in terms of model use.

6 Mathematical models and analysis 
tools for risk assessment in various 
surveillance systems

Several syndrome surveillance systems have been created recently 
to detect natural epidemics and UEs. Mathematical modeling of 
surveillance systems has two general directions. One approach 
simulates various UEs. The second approach is to evaluate warning 
algorithms for reported event outbreaks using surveillance system 
data. Currently, the system’s mission is to detect historical outbreaks 

TABLE 4 Validation of mathematical models and analysis tools for risk assessment of unnatural epidemics.

Type of model validation Validation focus Descriptions

Model calibration Change the data volume (4) Adapt the data monitoring area’s size or the variety of data sources

Lessen noisy data (14) Simulated outbreak is correctly isolated from “normal” background 

signal

Influence of different model input/output on model results 

(17, 23, 26, 38, 42, 52, 54, 55, 59, 63)

Assess the sensitivity of modeling risk to different input uncertainties

Model improvement Recalibration of tool (74–76) Recalibration of the Grunow–Finke assessment tool

Model comparison Comparison of different models (13, 25, 34, 42, 46, 47) Comparison of algorithms and identification of suitable algorithms 

for use
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and determine when the disease will be detected. The systems used in 
this study are divided into three types: event-based surveillance 
systems, indicator-based surveillance systems, and hybrid surveillance 
systems. Supplementary material S7 shows the mathematical models 
and analysis tools applied in the surveillance systems.

6.1 Event-based surveillance systems

Event-based surveillance systems use unstructured data from 
non-health-sector sources (85). Frequently, data seen daily in society, 
such as drug sales and absence data, are used as early warning signals 
(86). It is a common way for such surveillance systems to conduct risk 
assessment with mathematical models, such as the National Health 
Service Clinical Assessment System (NHSCAS) and Early Alerting 
and Reporting (EAR) project. NHSCAS (44, 45) provides early 
warning of outbreaks caused by UEs or more common infections. The 
syndrome surveillance system overlays cryptosporidiosis epidemic 
data onto a statistical model of health hotline (NHS Direct) call data 
to test it. It calculates the upper limit of prediction for the proportion 
of diarrhea calls using the confidence interval and control chart 
methods. A scored risk assessment tool is used in the EAR project 
(72). It is based on the etiology, health effects, clinical presentation, 
and epidemiology of the project’s event or outbreak, as well as the 
sources of information and the potential for intentional release.

6.2 Indicator-based surveillance systems

Indicator-based surveillance systems generally analyze data 
routinely collected from healthcare facilities through institutional 
disease reporting (87). WSARE algorithm (27, 28) detects outbreak-
related anomalies. Date-indexed biomonitoring data (e.g., emergency 
department data) feeds the algorithm. By comparing date events, 
statistically significant abnormalities are found and analyzed for early 
warning. Demographic and hospital monitoring data will alert 
systems to UEs (19, 20, 29, 30). If a signal exceeds the statistical 
distortion threshold, an alarm is raised. Commonly used models for 
this type of system are time series methods (moving average method), 
CUSUM, and recursive least square adaptive filter. The WHO 
recommends event-based surveillance to supplement indicator-based 
surveillance. Indicator-based surveillance may not uncover outbreaks 
and major public health problems. Additionally, current techniques 
cannot detect rare but significant outbreaks such as Ebola and avian 
influenza, as well as novel diseases (86).

6.3 Hybrid surveillance systems

Hybrid surveillance systems use both event and indicator variables 
to construct the model. Mostashari et al. (15) monitor UEs using 
ambulance dispatch calls. They also employ statistical techniques to 
measure retrospective data on influenza-like illness (ILI) call types. 
An alarm was raised when the observed ILI rate exceeded the expected 
upper confidence limit by 1 day. A system that uses a dengue 
prediction model using support vector regression (16) relates cases to 
weather parameters (i.e., temperature, humidity, and rainfall). Even 
with a small amount of data training, the system can capture dengue 

trends. The national bioterrorism syndromic surveillance 
demonstration program (32, 33) combines incidence counts and zip 
codes to predict the number of episodes of illness using space–time 
scan statistics. Absenteeism rates (21) are used in system data to track 
abnormal occurrences. A multi-data surveillance system (18) uses 
CUSUM and FARR by chief complaints, NHS call types, and the 
number of records assigned to each syndrome. They detect syndrome 
numbers rising slowly, acutely, and locally. Time series analysis 
employed by Early Notification of Community-Based Epidemics 
(ESSENCE) II (37) for early warning reveals that high-profile events 
may change detection and alert thresholds.

7 Strengths and weaknesses of 
mathematical models and analysis 
tools for risk assessment of UEs

7.1 Strengths of mathematical models and 
analysis tools

This study involves two models and a class of tools with established 
theoretical and computational background. Data-driven models solve 
biosafety challenges and self-learn for epidemic prediction and 
monitoring, while mechanistic-based models use extensive knowledge 
of disease transmission mechanisms to forecast epidemics. This makes 
disease development more traceable. For decision-makers addressing 
biosecurity events, the analysis tools in this study are user-friendly and 
adaptable to multiple diseases. They facilitate quick collaboration 
among agencies to combat UEs. Machine learning methods are 
increasingly preferred by researchers in data-driven models. With 
massive data, machine learning is being applied in UEs. Machine 
learning enhances tracking and real-time reporting of highly hidden, 
short-spread, and rapidly spreading unnatural outbreaks.

7.2 Weaknesses of mathematical models 
and analysis tools

Although there are many variations of algorithms in data-driven 
models in terms of technical means, there are certain requirements for 
data. The data quality tries to be complete and accurate. If the quality 
of the data is not satisfactory, it is often necessary to find a way out of 
the algorithms. Therefore, data-driven models increasingly favor 
machine learning algorithms. Model parameter fitting makes 
mechanistic-based model prediction harder. The use of analysis tools, 
although simple, is generally not superior to the above two types of 
models in terms of accuracy for event identification.

8 Recommendations for the 
development and applications of 
mathematical models and analysis 
tools for risk assessment of UEs

8.1 Aspect I: improvements

Mathematical models and analysis tools have advanced, but 
challenges remain. First, the difficulty of data collection; Complete 
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and accurate data are crucial for data-driven models but limited for 
UEs. Mechanistic-based models are not influenced by external data, 
but parameters must be  fitted multiple times to improve risk 
assessment. Second, updating the models is also challenging due to 
uncertain biological factors. Transmission characteristics of viruses 
and bacteria need to be  accurately identified. Mechanistic-based 
models struggle with spatial predictions. At the same time, syndromic 
surveillance solutions typically target one illness. It has a limited 
ability to distinguish between outbreaks of individual diseases with 
similar syndromes.

8.2 Aspect II: promotional applications

Fully digitized demographic and health data and efficient testing 
and reporting systems are crucial for effective disease control. 
Mathematical models and analysis tools play a vital role in controlling 
epidemics by providing risk assessment. Future applications will focus 
on improving model parameters to consider social exposure, human 
activity, economic impact, and environmental impact. Machine 
learning algorithms will play a significant role in case detection, 
contact tracking, and intervention responses, narrowing risk 
assessment to smaller scales and shorter timeframes.

9 Conclusion

UEs generate social and work disruptions, mortality, and 
economic losses due to their covert spread. Current research in this 
field focuses on analyzing the risk of UEs using symptoms and social 
data for prediction, early warning, and risk assessment. Mathematical 
models and analysis tools can be very useful for risk assessment of 
UEs. Now, using data-driven models combined with non-medical data 
(such as opinion data) for risk assessment of UEs is indeed becoming 
more prevalent. Most approaches for differentiating from natural 
epidemics and UEs globally use analysis tools. However, there are 
limitations to existing mathematical models and analysis tools, such 
as limited data availability and the inability to update models in real 
time. Risk analysis tools rely on data inputs such as data source validity 
and specified illness parameters of recognized pathogens, which is a 
limitation. Furthermore, the data used to generate the risk scores was 
gathered from multiple sources and at various points in time, which 
may be out of date or contain biases in some circumstances. Data and 
monitoring errors may also arise during actual events. Most 
importantly, the included studies, while showing that the models they 
examined were used for UEs, can also be  used to identify the 
occurrence of natural epidemics. In the current study, mathematical 
models and analysis tools suggest a distinction between natural 
epidemics and UEs in the selection of model parameters and 
warning thresholds.

This review summarizes mathematical models and analysis tools 
for risk assessment of UEs. If data limitations persist, subsequent 
model development should focus on model structure or data. For 
example, the model structure can be improved by replacing the model 
calculation method to reduce data integrity dependence (e.g., 
combining a mechanism model with a data-driven approach). In 
terms of used data, data cleaning can interpolate missing values or 

consider noisy data. For model factors, the selection will affect the 
methods of model validation. High-quality surveillance data and 
indicators are necessary for future surveillance systems. Future model 
development should consider combining a mechanistic-based model 
with a data-driven model and learning in the pursuit of time-varying, 
high-precision risk assessment capabilities.
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