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Introduction: Di�erences in control measures and response speeds between

regions may be responsible for the di�erences in the number of infections of

global infectious diseases. Therefore, this article aims to examine the decay stage

of global infectious diseases. We demonstrate our method by considering the

first wave of the COVID-19 epidemic in 2020.

Methods: We introduce the concept of the attenuation rate into the varying

coe�cient SEIR model to measure the e�ect of di�erent cities on epidemic

control, and make inferences through the integrated adjusted Kalman filter

algorithm.

Results: We applied the varying coe�cient SEIR model to 136 cities in

China where the total number of confirmed cases exceeded 20 after the

implementation of control measures and analyzed the relationship between the

estimated attenuation rate and local factors. Subsequent analysis and inference

results show that the attenuation rate is significantly related to the local annual

GDP and the longitude and latitude of a city or a region. We also apply the varying

coe�cient SEIR model to other regions outside China. We find that the fitting

curve of the average daily number of new confirmed cases simulated by the

variable coe�cient SEIR model is consistent with the real data.

Discussion: The results show that the cities with better economic development

are able to control the epidemic more e�ectively to a certain extent. On the

other hand, geographical location also a�ected the e�ectiveness of regional

epidemic control. In addition, through the results of attenuation rate analysis, we

conclude that China and South Korea have achieved good results in controlling

the epidemic in 2020.

KEYWORDS

global infectiousdiseases, varyingcoe�cient SEIRmodel, kalmanfilter, attenuation rate,

reporting delay

1 Introduction

In this paper, we examine the decay stage of global infectious diseases. For

demonstration, we consider the first wave of the COVID-19 epidemic. The first case of

novel coronavirus pneumonia (also known as COVID-19) was reported in December

2019, and it turned into a serious epidemic in 2020 without an effective vaccine or drug

treatment. The epidemic then spread rapidly around the world, infecting millions of

people by the end of that year. Due to the highly contagious and mutable nature of the

virus, the medical research and patient treatment are still ongoing. For more details on

COVID-19, see Pak et al. (1), Nalbandian et al. (2), and Chakraborty and Maity (3),

among others.
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Right after the epidemic began to spread, governments around

the world introduced control policies and implemented measures

such as school closures and traffic control to reduce the spread of

the virus. At the same time, they urged people to take protective

measures such as wearing masks and maintaining social distance.

Different measures appear to be effective in slowing down the

spread of the disease. It is important to find out which elements

play the main roles. On the other hand, it is also important to sum

up the experience and find the most effective way to control the

epidemic.

The epidemic has been analyzed in sociological and medical

contexts (4, 5). There are also many studies discussing the

reproduction number and other characteristics of COVID-19 in

different countries (4, 6–10). Aiming at considering the dynamic

spread of the epidemic (11, 12), statistical models and classic

epidemic models such as the SIR model (13) or SEIR model (14)

have been used at each stage of the epidemic. In recent years,

modified SEIR or SIR models have also been proposed and applied

to COVID-19 outbreak analysis in China (15–18) and other regions

(19, 20).

One of the key questions in this outbreak is the impact of

containment measures on the spread and speed of COVID-19.

Our work will focus on the post-government response stage and

aim to estimate the epidemic dynamics after the implementation

of control measures based on a SEIR model of declining infection

rates. We introduce the concept of “attenuation rate,” which

represents the rate at which infection rates decay under government

control. The goal is to consider the evolution of the epidemic

during its attenuation stage and to measure the impact of control

on the epidemic in different cities. We then test the reliability of

the model by fitting the data with the actual infection curve, and

analyze the relationship between the attenuation rate and other

regional factors.

The rest of this paper is arranged as follows. In Section 2, we

present a variable coefficient SEIR model, and then we provide

details of the iterative algorithm used to estimate the model

parameters and discuss reporting delays (a common problem in

epidemiological data). In Section 3, we present simulation results

and apply the varying coefficient SEIR model to the 2020 COVID-

19 outbreak in Chinese cities. We then conduct statistical analysis

of the attenuation rates of Chinese cities, aiming to explore the

factors related to the ability of these cities to control the epidemic.

We also apply the varying coefficient SEIR model to other epidemic

data. We conclude this paper in Section 4.

Regarding the data used in this paper, we note that the data on

the number of daily infections are taken from the National Health

Commission of the People’s Republic of China (21) and the World

Health Organization (22), and the population and other data are

taken from China’s Bureau of Statistics.

2 Materials and methods

2.1 A varying coe�cient SEIR model

The classic susceptible-exposed-infected-recovered (SEIR)

model has been applied to case analysis of a variety of infectious

disease outbreaks. Among them, susceptible groups, exposed

groups, infected groups and recovered groups transform into each

other. However, due to the high contagiousness and huge number

of infections, the model seems not to work well when applied to

the COVID-19 epidemic. Thus, some improvements are made in

our model with reference to the work of Li et al. (15).

The infectious disease cases can be divided into two categories:

confirmed cases, which are infection cases that are included in

official statistics after infection; and unconfirmed cases, which are

infection cases that were not included in official statistics because

of the mild symptoms. To model an epidemic, the infection rate

is one of the most important parameters. It is the number of

people that one patient can infect in one day and represents the

speed of transmission. Another variable with a similar meaning is

the reproductive number R, which represents the total number of

people a patient may infect. In our modeling, we have R = αβD +

(1 − α)µβD, where α is the proportion of confirmed cases over all

cases, β is the infection rate of a confirmed case in one day, µ is

the reduction factor of the infection rate of an unconfirmed case

compared to that of a confirmed case, andD is the average duration

of an infection. When focusing on the early stages of an infectious

disease outbreak, most studies using infectious disease models (15–

17) assumed that the infection rate of the disease is a fixed value,

which is reasonable during the free transmission stage. However,

this assumption became problematic once local governments began

to respond to the epidemic. It can be expected that after the free

spread of infectious diseases in the early stages of the outbreak, the

infection rate should continue to decline at a certain rate as the

government’s control measures advance and the public’s awareness

of prevention and control increases. Therefore, in studying the

outbreak of the COVID-19 epidemic, we divide the spread of the

epidemic into two stages: the first stage is the free spread stage,

and the second stage is when the government implemented control

measures. The infection rate as a function of time kept unchanged

in the first stage, which is β0, but gradually decreased in the second

stage. It would be reasonable and convenient to assume that the

infection rate of the epidemic continued to decrease at a fixed rate,

which implies that the reproduction of the epidemic also decreased

at the same rate. Thus, we set up the modelM as follows:

dSi

dt
= −

β0SiI
r
i τ

t

Ni
−

µβ0SiI
µ
i τ t

Ni

dEi

dt
=

β0SiI
r
i τ

t

Ni
+

µβ0SiI
µ
i τ t

Ni
−

Ei

Z
(1)

dIri
dt

= α
Ei

Z
−

Iri
D

dI
µ
i

dt
= (1− α)

Ei

Z
−

I
µ
i

D

where Si, Ei, Iri , I
µ
i , and Ni are respectively the susceptible

population, exposed population, confirmed infected population,

unconfirmed infected population, and total population in City i, β0

is the basic transmission rate in the free transmission stage, τ is the

attenuation rate of the daily infection rate, so the infection rate of a

confirmed case at time t is β0τ
t , and Z is the average latency period.

The approximate solutions of the above simultaneous

nonlinear equations can be obtained using the fourth-order

Runge-Kutta method. It is noted that the values on the right-hand

sides of these equations in Equation (1) are all determined by
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random samples from Poisson distributions with appropriate

parameters to ensure robustness in the actual calculation.

2.2 Methodology

2.2.1 Ensemble adjustment kalman filter (EAKF)
algorithm

It is well known that any normal distribution is fully

characterized by its mean and variance. Therefore, we conduct

research under the Gaussian framework, assuming that all random

variables in the model obey a normal distribution, and then we can

use the mean and variance to characterize their distributions.

In our study, the parameters required for model inference are

different in the free spread stage and the attenuation stage. In the

attenuation stage, it is no longer necessary to estimate β0 as a

parameter, but to estimate the attenuation rate τ additionally. In the

following, we only discuss the attenuation stage, and the inference

in the free spread stage can be carried out analogously.

Before presenting the algorithm in detail, we briefly introduce

the variables used in the model, since the following discussion

is only for a single city i, we omit the subscript i in Equation

(1). We denote the unobservable variables there by X =

(S,E, Ir , Iµ,α, τ ,µ,Z,D)⊤ and the daily confirmed new cases by

O. Further, we divide X into two parts: the state variables X[s] =

(S,E, Ir , Iµ)⊤, and the global parameters X[g] = (α, τ ,µ,Z,D)⊤,

where the subscripts [s] and [g] are the indices of the state variable

collection and the global parameter collection respectively.

Given the availability of daily number of new confirmed

cases, we employ the Ensemble Adjusted Kalman Filter algorithm

(EAKF) (23, 24) to obtain the maximum likelihood estimate of

the parameters of the Equation (1). First, we introduce the initial

setting of the model. Before the first iteration of the algorithm,

we set an initial range for each element of X, define the element-

wise upper bounds as xmax and the element-wise lower bounds

as xmin which are chosen based on the actual data (An example

will be given in Section 3.1). Let 6 be a diagonal matrix such that

its ith diagonal element is equal to (the ith element of xmax,[g] −

the ith element of xmin,[g])
2/4, i = 1, . . . , 6. In the first iteration, for

ℓ = 1, . . . , L, we generate the initial ensemble state member x
(ℓ)
0 [i]

from the uniform distribution U(xmin[i], xmax[i]), i = 1, . . . , 10.

In the mth iteration with m > 1, we generate the initial ensemble

state member x
(ℓ)
0,[s] in the same way as x

(ℓ)
0 in the first iteration, but

we generate x
(ℓ)
0,[g] from the multivariate normal distribution with

mean vector x̄m−1
[g] and covariance matrix r2(m−1)6, ℓ = 1, . . . , L,

where x̄
(m−1)
[g] is the sample mean of {x

(ℓ)
t,[g]} in the (m−1)th iteration

(see Algorithm 1 for details), and 0 < r < 1 is the variance

shrinking rate.

In light of Li et al. (15), at any time t in an iteration,

we let the prior distribution of O be N(ōt,prior, σ
2
t,prior), where

ōt,prior =

∑L
ℓ=1 o

(ℓ)
t,prior

L , σ 2
t,prior =

∑L
ℓ=1(o

(ℓ)
t,prior−ōt,prior)

2

L−1 , and o
(ℓ)
t,prior

is the output of the number of daily confirmed new cases O at

time t obtained from the SEIR model with the input parameters

X
(ℓ)
t−1. We denote the daily number of new confirmed cases at time

t by ot,obs. We set σ 2
t,obs

= max(4, o2
t,obs

/4) to be the variance

of the observation. Then, we are able to update the ℓth ensemble

member with the formula of Gaussian convolution as Equation (2)

follows:

o
(ℓ)
t,post =

σ 2
t,obs

σ 2
t,obs

+σ 2
t,prior

ōt,prior +
σ 2
t,prior

σ 2
t,obs

+σ 2
t,prior

ot,obs

+

√

σ 2
t,obs

σ 2
t,obs

+σ 2
t,prior

(

o
(ℓ)
t,prior − ōt,prior

)

. (2)

Since X is unknown, for any parameter w in X, we use its

relationship with the daily number of new confirmed cases O to

update its value as Equation (3) follows:

w
(ℓ)
t,post = w

(ℓ)
t,prior +

ς

σ 2
t,prior

(

o
(ℓ)
t,post − o

(ℓ)
t,prior

)

, (3)

where w
(ℓ)
t,prior and w

(ℓ)
t,post are the values of the ith ensemble member

at time t before and after the update, and ς is the sample covariance

of {wt,prior} and the {ot,prior}.

The details of the above calculations are summarized in

Algorithm 1 below. Since we need to preset a value as the variance

of the observation, following the work of Pei et al. (23) and Li et

al. (15), we set the variance σ 2
t,obs

to a quarter of the square of the

daily number of new confirmed cases ot,obs. To prevent it from

being too small, we give a lower bound of 4 in this paper. When

we apply our method to real data, in the initialization phase of the

model, we set the initial daily number of confirmed cases o0,obs to

the total number of confirmed cases in the week before and after the

first day considered (Considering the effect of the reporting delay).

Referring to the work of Li et al. (15), the number of iterationsM is

taken as 10, the number of ensemble state members L is set to 300,

and the variance shrinking rate r is set to 0.9.

2.2.2 A reporting delay
Wehave assumed that all daily numbers of new confirmed cases

are included in official statistics immediately after disease onset

in the subsection above. However, due to the limitations of real

conditions, statistical data cannot be obtained immediately. There

is often a time lag between the occurrence of a case and its inclusion

in statistics. Therefore, when conducting simulation experiments

and mimicking the real situation, we incorporate the reporting

delay td into the iterative process to account for this difference. That

is, new cases every day need to bemoved back td days to be included

in the iteration.

Reporting delay is defined as the duration from the occurrence

of a confirmed case to the date of inclusion in the statistics.

It is not a fixed variable, but a random variable. Following

Li et al. (15), we assume that the reporting delay is gamma-

distributed, which is entirely determined by its shape and

mean parameters. By fitting the model with different values

of these two parameters, the shape and mean parameters can

be selected in real problems. In our example, we find that

setting the shape and rate parameters to 1.85 and 0.23 is

reasonable, which will result in an expected report delay of

about 8.
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Input: The number of ensemble units L, the number of

iterations M, the daily number of new confirmed

cases at time t ot,obs {t = 1, . . . ,T}, the variance

shrinking rate r, the initial range of unobserved

variables xmin and xmax, the SEIR framework M

(see Equation 1).

Output: The estimated global parameters X̄
M
[g] .

1: 6 = diag[(xmax,[g][i]− xmin,[g][i])
2/4]

2: for m in 1 :M do

3: for ℓ in 1 : L do

4: if m = 1 then

5: X
(ℓ)
0 [i] ∼ U(xmin[i], xmax[i]), i = 1, . . . , 10 {the

dimension of X is 10.}

6: else

7: X
(ℓ)
0,[s] ∼ U(xmin,[s], xmax,[s]), X

(ℓ)
0,[g] ∼ N(X̄

m−1
[g] , r2(m−1)6)

8: end if

9: end for

10: for t in 1 :T do

11: σ 2
t,obs = max(4, o2t,obs/4)

12: for ℓ in 1 : L do

13: X
(ℓ)
t,prior = M(X

(ℓ)
t |X

(ℓ)
t−1) , o

(ℓ)
t,prior = M(o

(ℓ)
t |X

(ℓ)
t−1)

{using Equation 1}

14: end for

15: ōt,prior =

∑L
ℓ=1 o

(ℓ)
t,prior
L , σ 2

t,prior =

∑L
ℓ=1(o

(ℓ)
t,prior−ōt,prior)

2

L−1

16: for ℓ in 1 : L do

17: o
(ℓ)
t,post =

σ 2
t,obs

σ 2
t,obs+σ 2

t,prior
ōt,prior +

σ 2
t,prior

σ 2
t,obs+σ 2

t,prior
ot,obs

+

√

σ 2
t,obs

σ 2
t,obs+σ 2

t,prior

(

o
(ℓ)
t,prior − ōt,prior

)

18: for i in 1 : 10 do

19: w
(ℓ)
t,prior = X

(ℓ)
t,prior[i], w̄t,prior =

∑L
ℓ=1 w

(ℓ)
t,prior
L

20: ς =

∑L
ℓ=1(o

(ℓ)
t,prior−ōt,prior)(w

(ℓ)
t,prior−w̄t,prior)

L−1

21: w
(ℓ)
t,post = w

(ℓ)
t,prior +

ς

σ 2
t,prior

(

o
(ℓ)
t,post − o

(ℓ)
t,prior

)

22: X
(ℓ)
t,post[i] = w

(ℓ)
t,post

23: end for

24: X
(ℓ)
t = X

(ℓ)
t,post

25: end for

26: end for

27: X̄
m
[g] =

∑

t

∑

ℓ X
(ℓ)
t,[g]/LT

28: end for

Algorithm 1. Ensemble adjustment kalman filter (EAKF) algorithm.

3 Results

3.1 Simulation

To evaluate the performance of the proposed model in

epidemic modeling, we examine the accuracy of model parameter

estimates by setting up synthetic epidemics with different

parameter values. We simulate two sets of bursts with different

parameter values, one with larger parameter values τ = 0.8, α =

0.5, µ = 0.6, Z = 3.0, D = 3.0, denoted by 41, and the other

with smaller parameter values τ = 0.6, α = 0.3, µ = 0.5, Z =

2.5, D = 2.5, denoted by 42. The initial number of confirmed

cases is generated based on a discrete uniform distribution between

0 and 1000.

As mentioned in the previous section, before the first iteration

of the algorithm, we need to select an initial range for each

parameter. In light of Li et al. (15), we let the upper and lower

bounds of S be Smax = Smin = s, and the lower bounds of E, Ir ,

and Iµ is Emin = Irmin = I
µ
min = 0, where s is the total population of

a city. However, since our inferences involve the decay phase of the

epidemic, it is no longer appropriate to set upper bounds on E, Ir , Iµ

to fixed values as in (15). In order to be closer to the actual situation,

based on the approximate ratios of E, Ir , and Iµ given in Li et al.

(15), we let Emax = 4× o0,obs, I
r
max = o0,obs, and I

µ
max = 3× o0,obs

using the most recent number of new daily confirmed cases o0,obs.

By taking into account the impact of reporting delays, the initial

number of confirmed cases o0,obs is set to the total number of

confirmed cases in the twoweeks closest to the first day of inference.

We now consider the global parameters. In our simulation

studies, we find that the estimates of global parameters are sensitive

to the initial ranges given beforehand. If we adopt the method in

Li et al. (15), we need to set a relatively large initial range for each

global parameter, which would result in that if 41 is the true set

of global parameters, X[g] can be well estimated, and if 42 is the

true set of global parameters, only the estimates of α and D have

small biases. After appropriately narrowing the initial range of each

global parameter, we obtain an estimate of X[g] with acceptable

biases when its true value is 41 or 42.

The simulation results, shown in Table 1 and Figure 1,

demonstrate that in the model we build, the algorithm can estimate

the parameters well given an appropriate initial range. This fact

allows us to apply it to real data in the framework of the model.

3.2 Real data application

In this subsection, we apply the methodology in Section 2 to

the 2020 outbreak in Chinese cities. Because many cities had too

few infections then, which would lead to incorrect results, we only

consider 136 cities with at least 20 cases there.

Since the Chinese government issued a national-level response

on January 23, 2020, and implemented direct measures such as the

lockdown of Wuhan, this date divides the 2020 epidemic into two

time periods: the period before January 23, 2020, when the epidemic

was in the stage of free transmission, and the period after January

23, 2020, the attenuation stage, where the spread of the epidemic

was gradually restricted. Our analysis is mainly on the second stage,

because there are already many studies on the first stage.

In the attenuation stage, the base value of the transmission rate

is 1.12, which is the infection rate we have estimated in the first stage

using the SEIR framework [consistent with Li et al. (15)], and the

actual infection rate decreased at a fixed rate of τ over time, which,

as explained in Section 2.1, represents the percentage reduction in

the transmission rate per day. It is obvious that the smaller the τ ,

the faster the transfer rate will drop. Table 2 displays the global

parameter estimates for fifteen cities.

By Table 2, it can be seen that the infectious attenuation rates

of different cities are mostly in the range of [0.7, 0.8], which means

that their reproductive numbers Res drop below 1 after four days

and falls to a low level (0.4) a week later. We believe this fact shows

that the epidemic has basically been brought under control.
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TABLE 1 The simulation results and the root mean squared errors (RMSE).

Parameter
setting

41 42

Actual value Estimation RMSE Actual value Estimation RMSE

Attenuation rate τ 0.8000 0.7953 0.0058 0.6000 0.6088 0.0098

Reporting rate α 0.5000 0.5077 0.0116 0.3000 0.3045 0.0065

Reduction ratio µ 0.6000 0.6065 0.0090 0.5000 0.5039 0.0070

Infectious period D 3.0000 3.0071 0.0341 2.5000 2.5421 0.0542

Latency period Z 3.0000 3.0099 0.0369 2.5000 2.4534 0.0669

A

B

FIGURE 1

The simulation results, where the global parameter settings are 41 (top panel) and 42 (bottom panel), and actual parameter values are shown as red

lines and distributions of parameter estimates are shown as blue bars. (A) The simulation results for 41. (B) The simulation results for 42.

After obtaining the global parameter estimates, we generate

the daily number of new confirmed cases by putting the global

parameter estimates into our SEIR framework, where the state

variables are generated as before. We repeat it 100 times and

compute the average simulated daily number of new confirmed

cases. Figure 2 displays the actual daily number of new confirmed

cases and the fitted curve of the average simulated daily number

of new confirmed cases. For comparison with our results, we also

apply the modified SEIR model in Li et al. (15) to the epidemic in

the corresponding city, and compute the average simulated daily

number of new confirmed cases in 100 replicates. The results are

shown in the Figure 2, from which it can be seen that the average

simulated daily number of new confirmed cases of the modified

SEIR model in Li et al. (15) is only in good agreement with the

actual number of cases at the early stage of the outbreak, while the

average simulated daily number of new confirmed cases from our

varying coefficient SEIR model closely matches the number of daily

new confirmed COVID-19 cases observed each day throughout

the outbreak.

To show the impact of reporting delays, in Figure 3, we

display fitted curves of the average simulated daily number of new

confirmed cases by the varying coefficient SEIR model with and

without considering reporting delays for Beijing and Shanghai. It

can be seen that if the reporting delay is considered, the fitted curves

are closer to the real data for both cities. Ignoring reporting delays

will cause the estimated number of new confirmed cases to peak

earlier than the peak of the true number of new confirmed cases,

resulting in a non-negligible estimation bias.

3.3 Factors associated with the attenuation
rate τ

After obtaining the estimate of τ , a common interest is to

find out the factors associated with it. Generally speaking, people

believe that cities with better economic development conditions are

better able to control the epidemic. Strong local governments can

effectively improve the efficiency of epidemic control. On the other

hand, the attenuation rate may be affected by the location of the

city, and some other factors. For demonstration purposes, we use

the real data example from the previous subsection.

We consider the following factors: the total local GDP in 2019

and the number of permanent urban residents, which represent

the impact of urban development on the attenuation rate; the

GDP growth rate in 2019, which represents the capacity of

local governments. In addition, we also measure the impact of
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TABLE 2 The global parameter estimates by the varying coe�cient SEIR model for selected cities.

City τ̂ µ̂ Ẑ α̂ D̂

Beijing 0.719 0.505 3.346 0.472 3.265

Shanghai 0.684 0.512 3.054 0.482 3.232

Chongqing 0.717 0.488 3.360 0.445 3.277

Chengdu 0.682 0.518 3.001 0.445 3.259

Suzhou 0.726 0.521 3.451 0.471 3.287

Wenzhou 0.690 0.520 3.231 0.472 3.214

Tianjing 0.782 0.518 3.605 0.495 3.485

Haerbin 0.884 0.581 3.713 0.373 3.575

Ningbo 0.753 0.566 3.656 0.384 3.426

Hefei 0.808 0.528 3.662 0.409 3.516

Fuzhou 0.676 0.523 2.952 0.461 3.097

Zhengzhou 0.764 0.547 3.531 0.463 3.329

Guangzhou 0.758 0.550 3.755 0.365 3.519

textShenzhen 0.727 0.532 3.459 0.421 3.293

Xi’an 0.794 0.551 3.658 0.449 3.482

geographical location by the city’s latitude and longitude and the

city’s distance from Wuhan. Because the size of a local outbreak

may affect the difficulty of controlling the outbreak, we include the

total number of local cases as a factor.

Since the effect of the attenuation rate τ on the infection

rate and the number of daily new confirmed cases is obviously

nonlinear, it does not seem appropriate to assume that the

attenuation rate is linear with local factors. To find out which

local factors have non-negligible correlation with τ , we perform

the Spearman correlation test. Considering that the attenuation

rate τ is positive, we use log τ in the Spearman correlation test.

The Spearman correlation test results between each local factor and

log τ based on 136 cities are shown in Table 3, in which the local

GDP in 2019, urban latitude and longitude, and urban population

in 2019 were all respectively correlated with log τ , except for the

significance level of urban longitude, which is <0.1, the significance

levels are all <0.05. The remaining issue is deciding whether to

include urban longitude as a local factor correlated with log τ . Note

that the normality assumption for both log τ and urban longitude

is acceptable at the 0.01 significance level after removing a small

number of outliers (<5) by Shapiro-Wilk’s test. Hence, we test the

Pearson correlation between log τ and urban longitude and find

that the Person correlation coefficient is 0.1998 and the p-value is

0.0197, indicating a non-negligible correlation between log τ and

urban longitude. Therefore, we have included urban longitude in

the analysis below as well.

It can be seen from our analysis that in those 136 Chinese

cities, the attenuation rate has a tendency to increase as the

regional longitude or latitude increases, which may be affected

by the regional climate due to the corresponding changes in

longitude and latitude. Furthermore, cities with better economic

development tend to exhibit lower attenuation rates, consistent

with general thinking that developed economy often indicates

strong government execution and perfect public health system.

More populous cities have lower attenuation rates, which, contrary

to popular belief, may be due to the high correlation between urban

population and the local GDP. The Spearman correlation analysis

shows that the correlation between the urban population and the

local GDP is as high as 0.79, indicating that the correlation between

the urban population and the epidemic attenuation rate is affected

by the local GDP, and hence urban population can be ignored when

modeling the relationship between attenuation rates and other

factors. Therefore, we fit a log-linear model of the attenuation rate

based only on longitude, latitude, and local GDP. The results are

shown in Table 4.

From Table 4, it is obvious that the local GDP and the longitude

and latitude of a city are significant in the log-linear model.

The parameter coefficients are –0.0347, 0.00284, and 0.00231,

respectively, that is, for every 10 degrees increase in latitude or

longitude, the regional attenuation rate increases by 1.0288 times or

1.0234 times. This may be caused by the climate difference between

coastal and inland regions in China, similar conclusions can be

found in the work of Wu et al. (25) and Srivastava (26). For every 1

trillion yuan increase in the region’s total GDP, the attenuation rate

would be reduced to 0.9659 times its original value, indicating that

the local development level might have an impact on the speed of

epidemic containment, which is consistent with Bambra et al. (27).

Although the p-value of less than 0.01 for the F-test indicates

that the model is significant, the fitting performance of our log-

linear model is still not good enough, with an R2 of 0.216,

suggesting that the explanatory variables we included in the log-

linear model only explain part of the attenuation rate, and the

rest may be local subjective factors such as the enthusiasm of the

government and residents to control the epidemic. For city i, if

we set the attenuation rate inferred by the varying coefficient SEIR

model to τ i1 and the attenuation rate estimated by the log-linear
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FIGURE 2

The six cities’ daily numbers of new confirmed cases (bars) and the fitted curves of the average simulated daily numbers of new confirmed cases by

the varying coe�cient SEIR model (solid red line) and the modified SEIR model in Li et al. (15) (dotted blue line) with 100 replicates.

FIGURE 3

The daily numbers of new confirmed cases (bars) in Beijing and Shanghai and the fitted curves of the average simulated daily numbers of new

confirmed cases by the varying coe�cient SEIR model (solid red line if the reporting delay is considered, dotted green line if the reporting delay is not

considered), the number of replications is 100.

model to τ i2, then we can evaluate this city’s ability to control the

epidemic after eliminating objective factors by τ i1−τ i2. That is to say,

for controlling the epidemic, City i is considered to have a strong

ability to do so if τ i1 − τ i2 is low, otherwise, City i is considered to

have a poor ability to achieve it.

3.4 Application of the varying coe�cient
SEIR model to other epidemic data

From the real data analysis in Section 3.2 above, we can

see that the varying coefficient SEIR model performs well in
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FIGURE 4

The daily numbers of new confirmed cases (bars) in Tokyo and Seoul and the fitted curves of the average simulated daily numbers of new confirmed

cases by the varying coe�cient SEIR model (solid red line) with a replication number of 100.

TABLE 3 The results Spearman correlation test for each local factor with log τ using data from the 136 Chinese cities.

Local GDP Daily No. of new
confirmed cases

Urban
population

GDP
growth

Latitude Longitude Distance to
Wuhan

Correlation

coefficient

–0.2395 –0.1377 –0.2272 –0.0204 0.2815 0.1496 –0.1269

p-value 0.0051 0.1098 0.0079 0.8141 0.0009 0.0822 0.1410

TABLE 4 The log-linear model fit of log τ on the local GDP, and latitude, longitude of 136 Chinese cities.

Regression Coe�cient Confidence interval T-test p-value

Local GDP of 2019(trillion

yuan)

–0.0347 –0.0506 –0.0188 <0.01

Latitude (degree) 0.0028 0.0010 0.0047 <0.01

Longitude (degree) 0.0023 0.0004 0.0042 0.0188

modeling China’s first epidemic in 2020. We are also interested in

seeing how the varying coefficient SEIR model performs on other

epidemic data. Therefore, in this subsection, we apply the varying

coefficient SEIR model to COVID-19 data from other regions

in Asia. Subsequently, we also use a log-linear model to fit the

attenuation rate. We then compare the attenuation rate estimate

from the varying coefficient SEIR model to the prediction from the

log-linear model.

An outbreak of COVID-19 infections occurred in Seoul, the

capital of South Korea, in early August 2020, and the local

government announced on August 16 an elevated quarantine

response level to deal with the crisis. Local measures were as harsh

as those in China: intercity transport was closed, public gatherings

were banned, and schools were required to hold online classes.

Using the varying coefficient SEIR model, the attenuation rate of

the epidemic in Seoul after August 16 is estimated to be 0.7089,

and the log-linear model predicts 0.7038. These two numbers are

very close.

In early April 2020, a large-scale epidemic occurred in Tokyo,

the capital of Japan, and the Japanese government declared a state

of emergency on April 7, 2020. Based on the daily case data after

April 7, 2020, the attenuation rate was 0.6869, compared to the

log-linear model’s estimate of 0.6309, which means that Tokyo

was actually declining more slowly than it should be, most likely

because Japan’s control measures are much less stringent than

those in China and South Korea. Instead of locking down the

city, the government only restricted restaurant hours and public

events, and urged people to stay indoors. We display the daily

numbers of new confirmed cases and the fitted curves of the

average daily numbers of new confirmed cases simulated by the

varying coefficient SEIR model for outbreaks in Tokyo and Seoul

in Figure 4.

India does not release city-specific epidemic data, so we have

to use nationwide data to make a rough estimate. The second

outbreak in India, which began in April 2021, was a major outbreak

in the country. Many local governments announced strengthened

prevention and control measures from May 6, 2020. Therefore, we

regard this date as the dividing line of the epidemic. By using the

approach in Section 2, India’s attenuation rate after May 6, 2020,

is estimated to be 0.6919. In terms of the GDPs, longitudes and

latitudes of several major cities in India, India’s attenuation rate

would have been around 0.65, which implies that the prevention

and control measures implemented in India were not effective

enough. This result is consistent with the conclusions of other

articles (8, 9) analyzing the effectiveness of control measures in

various countries. We believe that during the 2020 epidemic, the

control measures taken by China and South Korea weremuchmore

effective compared to other countries.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1379481
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2024.1379481

4 Discussion

In this paper, we modify the traditional SEIR model by

proposing a varying coefficient SEIR model that takes into account

daily unconfirmed cases and introduces the attenuation rate. For

demonstration, we apply the model to the COVID-19 epidemic in

136 cities in China in 2020 (with more than 20 people infected) and

obtain the infection attenuation rates of these cities in the epidemic

control stage. We also investigate the relationship between the

attenuation rate and other local factors, and find out that the

attenuation rate has a significant correlation with the local GDP

as well as the latitude and longitude of a city. The results obtained

show that the cities with better economic development to a

certain extent could control the epidemic more effectively. On the

other hand, geographical location also affected the effectiveness of

regional epidemic control. In addition to this, we apply the varying

coefficient SEIR model to COVID-19 data from other regions in

Asia and conclude that China and South Korea achieved better

results in controlling the 2020 outbreak.

Our research on the infection attenuation rate can help us

more intuitively judge the effectiveness of control measures in

different regions, and provide a reference for the effectiveness

of control measures when new epidemics occur. However, an

important fact derived from the real data example above is that

the goodness of fit of log-linear models may not be satisfactory,

and the attenuation rate may be affected by other unknown factors,

including local government efficiency and public awareness of

epidemic prevention and control. At the same time, although

the varying coefficient SEIR model can be applied to epidemic

data in different countries and periods, due to the differences in

reporting delays and other factors in different regions, the use of the

attenuation rate estimation of the varying coefficient SEIRmodel to

evaluate the effectiveness of control measures in a country needs to

be further studied.

Data availability statement

Publicly available datasets were analyzed in this study. We

collected and collated the original data from the websites: http://

www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml and http://www.who.in

t/emergencies/diseases/novel-coronavirus-2019/situation-reports.

The datasets generated in this study are available upon request

from the corresponding author.

Author contributions

TS: Formal analysis, Methodology, Software, Writing – original

draft, Writing – review & editing. BJ: Funding acquisition,

Methodology, Writing – original draft, Writing – review & editing.

YW: Funding acquisition, Methodology, Writing – original draft,

Writing – review & editing. JB: Formal analysis, Methodology,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

is partially supported by the National Natural Science Foundation

of China (Grant Nos. 72111530199, 12231017, and 72293573), the

Natural Science Foundation of Anhui Province of China (Grant No.

2108085J02), and the Natural Sciences and Engineering Research

Council of Canada (Grant No. RGPIN-2023-05655).

Acknowledgments

The authors thank Ying Li, Mengyao Chen, and Rongbao Gao

for sharing information and insights.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Pak A, Adegboye OA, Adekunle AI, Rahman KM, McBryde ES, Eisen
DP. Economic consequences of the COVID-19 outbreak: the need for epidemic
preparedness. Front Public Health. (2020) 8:546036. doi: 10.3389/fpubh.2020.00241

2. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens
JS, et al. Post-acute COVID-19 syndrome. Nat Med. (2021) 27:601–15.
doi: 10.1038/s41591-021-01283-z

3. Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society,
global environment and prevention. Sci Total Environ. (2020) 728:138882.
doi: 10.1016/j.scitotenv.2020.138882

4. Tian HY, Liu YH Li YD, Wu CH, Chen B, Kraemer MUG, et al. An investigation
of transmission control measures during the first 50 days of the COVID-19 epidemic
in China. Science. (2020) 368:638. doi: 10.1126/science.abb6105

5. Chen SM, Yang JT, Yang WZ, Wang C, Barnighausen T. COVID-19 control in
China during mass population movements at New Year. Lancet. (2020) 395:764–6.
doi: 10.1016/S0140-6736(20)30421-9

6. Jia JSS, Lu X, Yuan Y, Xu G, Jia JM, Christakis NA. Population flow
drives spatio-temporal distribution of COVID-19 in China. Nature. (2020) 582:389.
doi: 10.1038/s41586-020-2284-y

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1379481
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.3389/fpubh.2020.00241
https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1016/j.scitotenv.2020.138882
https://doi.org/10.1126/science.abb6105
https://doi.org/10.1016/S0140-6736(20)30421-9
https://doi.org/10.1038/s41586-020-2284-y
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2024.1379481

7. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the
transmission dynamics of SARS-CoV-2 through the postpandemic period. Science.
(2020) 368:860. doi: 10.1126/science.abb5793

8. Gu J, Yan H, Huang YX, Zhu YR, Sun HX, Qiu YM, et al. Comparing containment
measures among nations by epidemiological effects of COVID-19. Nat Sci Rev. (2020)
7: 5909037. doi: 10.1093/nsr/nwaa243

9. YanH, Zhu Y, Gu J, Huang Y, SunH, Zhang X, et al. Better strategies for containing
COVID-19 pandemic: a study of 25 countries via a vSIADRmodel. Proc R Soc A. (2021)
477:20200440. doi: 10.1098/rspa.2020.0440

10. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility
and severity in China outside Hubei after control measures, and second-wave
scenario planning: a modelling impact assessment. Lancet. (2020) 395:1382–93.
doi: 10.1016/S0140-6736(20)30746-7

11. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL,
et al. Global trends in emerging infectious diseases. Nature. (2008) 451:990–4.
doi: 10.1038/nature06536

12. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging
infectious diseases. Nature. (2004) 430:242–9. doi: 10.1038/nature02759

13. Kermack WO, McKendrick AG. Contributions to the mathematical
theory of epidemics V. Analysis of experimental epidemics of mouse-typhoid; a
bacterial disease conferring incomplete immunity. J Hygiene. (1939) 39:271–88.
doi: 10.1017/S0022172400011918

14. Hethcote HW. The mathematics of infectious diseases. Siam Rev. (2000)
42:599–653. doi: 10.1137/S0036144500371907

15. Li RY, Pei S, Chen B, Song YM, Zhang T, Yang W, et al. Substantial
undocumented infection facilitates the rapid dissemination of novel
coronavirus (SARS-CoV-2). Science. (2020) 368:489. doi: 10.1126/science.abb
3221

16. Sun H, Qiu Y, Yan H, Huang Y, Zhu Y, Gu J, et al. Tracking reproductivity of
COVID-19 epidemic in China with varying coefficient SIR model. J Data Sci. (2021)
18:455–472. doi: 10.6339/JDS.202007_18(3).0010

17. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCoV outbreak originating in Wuhan,

China: a modelling study. Lancet. (2020) 395:689–97. doi: 10.1016/S0140-6736(20)3
0260-9

18. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The
effect of control strategies to reduce social mixing on outcomes of the COVID-19
epidemic inWuhan, China: a modelling study. Lancet Public Health. (2020) 5:E261–70.
doi: 10.1016/S2468-2667(20)30073-6

19. Reiner RC Jr, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et
al. Modeling COVID-19 scenarios for the United States. Nat Med. (2021) 27:94.
doi: 10.1038/s41591-020-1132-9

20. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R,
et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of
emergency containment measures. Proc Natl Acad Sci U S A. (2020) 117:10484–91.
doi: 10.1073/pnas.2004978117

21. National Health Commission of the People’s Republic of China. COVID-19 Data
Platform (2020). Available online at: http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

22. World Health Organization. 2020 WHO Situation Report (2020). Available
online at: http://www.who.int/emergencies/diseases/novel-coronavirus-2019/
situation-reports

23. Pei S, Kandula S, Yang W, Shaman J. Forecasting the spatial transmission
of influenza in the United States. Proc Natl Acad Sci U S A. (2018) 115:2752–7.
doi: 10.1073/pnas.1708856115

24. Anderson JL. An ensemble adjustment Kalman filter for
data assimilation. Monthly Weather Rev. (2001) 129:2884–903.
doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

25. Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and
humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci
Total Environ. (2020) 729:139051. doi: 10.1016/j.scitotenv.2020.139051

26. Srivastava A. COVID-19 and air pollution and meteorology-
an intricate relationship: a review. Chemosphere. (2021) 263:128297.
doi: 10.1016/j.chemosphere.2020.128297

27. Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic
and health inequalities. J Epidemiol Commun Health. (2020) 74:964–8.
doi: 10.1136/jech-2020-214401

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1379481
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1093/nsr/nwaa243
https://doi.org/10.1098/rspa.2020.0440
https://doi.org/10.1016/S0140-6736(20)30746-7
https://doi.org/10.1038/nature06536
https://doi.org/10.1038/nature02759
https://doi.org/10.1017/S0022172400011918
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1126/science.abb3221
https://doi.org/10.6339/JDS.202007_18(3).0010
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.1016/S2468-2667(20)30073-6
https://doi.org/10.1038/s41591-020-1132-9
https://doi.org/10.1073/pnas.2004978117
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1073/pnas.1708856115
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1016/j.scitotenv.2020.139051
https://doi.org/10.1016/j.chemosphere.2020.128297
https://doi.org/10.1136/jech-2020-214401
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	A study of the attenuation stage of a global infectious disease
	1 Introduction
	2 Materials and methods
	2.1 A varying coefficient SEIR model
	2.2 Methodology
	2.2.1 Ensemble adjustment kalman filter (EAKF) algorithm
	2.2.2 A reporting delay


	3 Results
	3.1 Simulation
	3.2 Real data application
	3.3 Factors associated with the attenuation rate τ
	3.4 Application of the varying coefficient SEIR model to other epidemic data

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


