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Background: Exposure to high levels of heavy metals has been widely 
recognized as an important risk factor for metabolic syndrome (MetS). The main 
purpose of this study is to assess the associations between the level of heavy 
metal exposure and Mets using machine learning (ML) method.

Methods: The data used in this study are from the national health and nutrition 
examination survey 2003–2018. According to the demographic information 
and heavy metal exposure level of participants, a total of 22 variables were 
included. Lasso was used to screen out the key variables, and 9 commonly used 
ML models were selected to establish the associations with the 5-fold cross 
validation method. Finally, we choose the SHapley Additive exPlanations (SHAP) 
method to explain the prediction results of Adaboost model.

Results: 11,667 eligible individuals were randomly divided into two groups to 
train and verify the prediction model. Through lasso, characteristic variables 
were selected from 24 variables as predictors. The AUC (area under curve) of 
the models selected in this study were all greater than 0.7, and AdaBoost was 
the best model. The AUC value of AdaBoost was 0.807, the accuracy was 0.720, 
and the sensitivity was 0.792. It is noteworthy that higher levels of cadmium, 
body mass index, cesium, being female, and increasing age were associated 
with an increased probability of MetS. Conversely, lower levels of cobalt and 
molybdenum were linked to a decrease in the estimated probability of MetS.

Conclusion: Our study highlights the AdaBoost model proved to be  highly 
effective, precise, and resilient in detecting a correlation between exposure to 
heavy metals and MetS. Through the use of interpretable methods, we identified 
cadmium, molybdenum, cobalt, cesium, uranium, and barium as prominent 
contributors within the predictive model.
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1 Introduction

Metabolic syndrome (MetS) constitutes a conglomerate of disorders related to energy 
imbalance and metabolic dysfunction, predisposing individuals to cardiovascular diseases, 
diabetes, and subsequent complications, thereby elevating all-cause mortality rates and 
presenting a significant challenge to public health and socio-economic stability. By 2012, MetS 
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had affected approximately one-third of the adult population in the 
united states (US), with a prevalence rate of 35% (1). The primary 
underlying mechanisms of MetS, attributed to an array of adverse 
lifestyle factors—including genetic predispositions, imbalanced 
nutritional intake, sedentarism, tobacco use, and alcohol 
consumption—entail the disruption of energy metabolism and the 
pathological accumulation of visceral fat (2–4). Moreover, 
environmental pollution has garnered considerable attention in 
recent research.

Growing epidemiological evidence suggests a link between heavy 
metal exposure and the risk of MetS and its components in the general 
population. For example, studies in Korean adults have shown that 
elevated blood levels of cadmium and lead correlate with a higher 
MetS risk, hinting at possible cumulative or synergistic effects among 
various heavy metals (5, 6). Nonetheless, some research has identified 
a negative or inverse relationship between heavy metal concentrations 
and MetS prevalence (7, 8). Compared to the general populace, 
individuals residing in heavy metal-contaminated areas—whether due 
to occupational or environmental factors—are at an increased risk of 
exposure through diverse pathways, which could affect the correlation 
between metal exposure and MetS risk. In Taiwan, particularly in 
industrial regions, there is a noted increase in MetS prevalence and 
blood glucose levels with rising arsenic exposure (9). Furthermore, 
MetS patients in areas endemic with arsenic-related diseases often 
report a history of consuming arsenic-laden water, and early arsenic 
exposure is linked to higher rates of hypertension and dyslipidemia 
(10, 11). While many studies have established a robust connection 
between chronic heavy metal exposure and Mets, the complex, 
nonlinear relationship between heavy metals and MetS complicates 
the use of traditional linear statistical methods. Moreover, 
epidemiological research frequently focuses on the effects of individual 
metals, neglecting the potential interplay among multiple metals and 
the common scenario of simultaneous exposure, which limits the 
ability to interpret complex health outcomes effectively.

To address this challenge, epidemiologists are increasingly 
adopting machine learning (ML) techniques known for their 
interpretability. Unlike traditional logistic regression, ML approaches 
offer several key advantages in the realms of medical research and 
healthcare applications (12). First, ML algorithms exhibit remarkable 
adaptability, adeptly managing complex, non-linear relationships 
among variables (13). This adaptability enables the detection of 
nuanced patterns and interactions within the data, enhancing 
prediction accuracy and overall model efficacy. Second, ML 
techniques generally exhibit greater resilience to outliers compared to 
logistic regression, managing extreme values with higher efficiency 
and less susceptibility to bias (14). Lastly, ML approaches enhance 
modeling of complex relationships in medical research and healthcare 
through their inherent flexibility, automation, and robustness (15).

In this study, we aimed to explore the associations between heavy 
metals and MetS using data from the National Health and Nutrition 
Examination Survey (NHANES, 2003–2018). We assessed nine ML 
models for their efficacy in detecting MetS from heavy metal exposure 
levels. Furthermore, we  employed an advanced ML technique 
involving SHapley Additive exPlanations (SHAP) to shed light on the 
contribution of individual heavy metals to MetS detection. This 
methodology seeks to: (1) quantify the impact of each heavy metal on 
the ML models’ predictions; (2) explore the total effect of different 

heavy metals on metabolic syndrome and (3) enhance the 
development of early detection and intervention strategies specific to 
heavy metal exposure.

2 Materials and methods

2.1 Study population

The NHANES initiated in the early 1960s, is a comprehensive 
program aimed at evaluating the health and nutritional status of adults 
and children in the US. As a key initiative of the National Center for 
Health Statistics (NCHS), which is under the Centers for Disease 
Control and Prevention (CDC), NHANES uniquely integrates 
interviews with physical examinations to generate essential health 
statistics for the nation. Since 1999, NHANES has operated 
continuously, adapting its focus to address evolving health and 
nutrition issues and examining approximately 5,000 nationally 
representative individuals annually across various counties, with 15 
counties selected each year (16).

The survey’s methodology includes both a detailed interview, 
covering demographic, socioeconomic, dietary, and health-related 
aspects, and a comprehensive examination that entails medical, dental, 
and physiological assessments, along with laboratory tests, conducted 
by skilled medical professionals. The selection process for NHANES 
is designed to reflect the demographic composition of the 
U.S. population, with particular emphasis on over-sampling older 
adults, African Americans, and Hispanics to ensure accurate and 
representative data.

Participants undergo a thorough examination by a physician, 
which includes dietary assessments and body measurements for all, 
blood sampling and dental screenings for most, and age-dependent 
tests and procedures. Data collection occurs in participants’ homes 
and in state-of-the-art mobile examination centers that are equipped 
to travel nationwide. The NHANES team, comprising physicians, 
technicians, and interviewers, utilizes advanced technology for data 
collection and processing, significantly reducing reliance on paper 
forms and manual coding.

Ethical approval for NHANES protocols was granted by the 
National Center for Health Statistics’ research ethics review 
committee, with all participants providing written informed consent.

For this analysis, we compiled NHANES data from 2003 to 2018, 
focusing on blood and urine metal levels and pertinent covariates, 
initially involving 80,312 participants. Exclusions were made for 
pregnant women or individuals under 20 years of age (32,723), those 
lacking heavy metal level data (33,120), and subjects with incomplete 
MetS information (3). Ultimately, 11,667 adults aged 20–79 were 
selected for the study. The selection process is illustrated in 
Supplementary Figure S1.

2.2 Data collection

2.2.1 Participant demographic data
Basic characteristics such as age, race, gender, family poverty to 

income ratio (PIR), education level, smoking and alcohol consumption 
were obtained through questionnaire surveys (17).

https://doi.org/10.3389/fpubh.2024.1378041
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yao et al. 10.3389/fpubh.2024.1378041

Frontiers in Public Health 03 frontiersin.org

2.2.2 Analysis of heavy metals
In this study, 18 kinds of heavy metals in urine and blood were 

analyzed. All samples were collected during laboratory examination, 
and blood and urine samples were stored under appropriate freezing 
(−30 ° C) conditions until the day of detection. The whole blood and 
urine concentrations of heavy metals were determined by inductively 
coupled plasma mass spectrometry (ICP-MS) (16).

During the sample preparation phase of study, researchers 
subjected whole blood specimens to vortexing to achieve 
homogeneous distribution of cellular elements, followed by the 
extraction of a precise volume for metal concentration analysis. This 
procedure is pivotal, especially for metals predominantly located in 
red blood cells, such as lead, to ensure the representation of the 
specimen’s mean metal content. The addition of anticoagulants, 
notably ethylene diamine tetraacetic acid, is critical to prevent 
coagulation and preserve the uniformity of the sample, as coagulation 
can hinder the accurate sampling from the bulk specimen.

The dilution protocol preceding the analysis entails a standardized 
mixture of the sample with water and a specific diluent. This diluent 
comprises agents that liberate metals from red blood cells to facilitate 
ionization, mitigate ionization suppression, avert blockages due to 
biological matter, and incorporate internal standards to enhance 
analytical precision. Key diluent components, including 
Tetramethylammonium hydroxide and Triton X-100™, are 
instrumental in dissolving blood constituents and safeguarding the 
analytical instruments from contamination.

For the analytical phase, researchers employ an ICP-MS, which 
transforms liquid samples into aerosols, subsequently ionized within 
a plasma field, before their admission into the mass spectrometer. 
This stage demands meticulous temperature regulation and the 
application of internal standards to compensate for variations in the 
instrument’s performance. The spectrometer’s Dynamic Reaction 
Cell (DRC) is capable of operating in distinct modes, thereby 
amplifying specificity and sensitivity by diminishing interference, a 
crucial feature for analyzing elements like manganese, mercury, 
and selenium.

When the concentration of biomarkers is lower than the 
detection limit, the limit is divided by the square root of 2 according 
to NHANES scheme. See NHANES website for detailed 
determination methods. The NHANES quality assurance and quality 
control protocol meets the requirements of the clinical laboratory 
improvement act of 1988.

2.2.3 Ascertainment of outcomes
Metabolic syndrome can be diagnosed if the following ≥3 items 

are met (18):

 1. Hypertension is systolic blood pressure ≥ 130 mmHg, diastolic 
blood pressure ≥ 85 mmHg, or has been diagnosed with 
hypertension and treated;

 2. Fasting triglyceride ≥150 mg/dL, or the current use of drugs to 
treat high triglyceride;

 3. Female HDL-c < 50 mg/dL, male hdl-c < 40 mg/dL, or the 
current use of drugs to reduce HDL;

 4. Female waist circumference ≥ 88 cm, male waist 
circumference ≥ 102 cm;

 5. Hyperglycemia is defined as fasting blood glucose ≥100 mg/dL 
or diabetes mellitus diagnosed and treated.

2.3 Data preprocessing and feature filtering

The data set was initially composed of 24 variables, called features 
in ML. It can be seen from Supplementary Tables S1, S2 that most of 
the data in this study sample are complete, and the missing data are 
less than 10%. According to the type of missing values, random forest 
filling method is used to deal with the missing data and the abnormal 
value is handled (Supplementary Tables S3, S4). The distribution of 
interpolated data is similar to the observed data 
(Supplementary Figure S2). In order to ensure that the data follow the 
normal distribution in the subsequent analysis, we  performed 
logarithmic transformation on metal variables 
(Supplementary Table S5). Collinearity makes the parameter 
estimation of the model inaccurate, resulting in the model being too 
complex and over fitting the training data. We performed Pearson 
correlation analysis to test the relationship between these metals 
(Supplementary Figure S3). Using the least absolute shrinkage and 
selection operator (LASSO), the regularization term is introduced into 
the loss function to punish the model parameters and reduce the 
influence of collinearity. Variance inflation factor (VIF) is used to help 
identify the high correlation between independent variables, where 
VIF value below 10 indicates that there is no multicollinearity.

2.4 ML model strategies

The purpose of the multi-model classification approach is to 
identify the optimal model type, rather than to directly construct the 
final model. It employs a resampling mechanism (similar to k-fold) for 
training/validation to deduce the performance of each model (e.g., 
average AUC scores and variance) across multiple training sessions, 
focusing on the overall performance of each model category within the 
dataset. Then we will employ the best machine learning method for 
classification, with a total dataset sample size of N = 11,667, containing 
the following class information: Class (0): N = 7,827, Class (1): N = 3,840. 
From the total sample, a test set of N = 2,333 (20.00%) is randomly 
drawn, with the remaining samples used as a training set for 5-fold 
cross-validation. In this study, we used nine ML algorithms, namely 
extreme gradient boosting (xgboost) algorithm, logistic regression (LR), 
random forest (RF), AdaBoost, gaussian Nb (GNB), complementnb 
(CNB), multi-layer perceptron (MLP), and support vector machine 
(SVM) and k-nearest neighbor machine (KNN) learning models. See 
Supplementary Table S6 for specific parameters of each model. In order 
to further evaluate the predictive ability of the model for the final 
treatment results, the model was evaluated by area under the curve 
(AUC) value, accuracy, kappa coefficient, sensitivity, specificity, 
accuracy, recall rate, F1 and other indicators of the test data set (19).

SHAP additivity analysis is a method to explain individual 
prediction. It was originally evolved from the best Shapley value in 
game theory. The goal is to explain the prediction of instance X by 
calculating the contribution of each feature to prediction X. In this 
study, the algorithm is mainly used to sort according to the importance 
of variable characteristics in the model established by xgboost 
classifier, and screen out the top ten predictive factors in tb-dm 
patients. SHAP can reasonably explain the contribution value of each 
variable to the model, and avoid the long-standing “black box” theory 
in ML. Therefore, clinicians can make more optimal judgments when 
formulating treatment plans for patients (20).
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2.5 Statistical analysis

In this study, continuous variables were expressed as 
mean ± standard deviation or interquartile interval (IQR; 25–75%). T 
test was used for normal continuous variables, while Mann Whitney 
U test was used for non-normal continuous variables. Categorical 
variables are described as percentages (%). Chi square or Fisher exact 
probability test is used for constituent ratio comparison. All statistical 
analyses were conducted using Python (version 3.10.9) and R software 
(version 4.2.3), with the Lasso R package glmnet at version 4.1.8, 
XGBoost in Python at xgboost = 2.0.1, and other methods in Python 
using scikit-learn = 1.1.3.The overall design of the paper is shown in 
Figure 1.

3 Results

3.1 Baseline data comparison

Table  1 presents the demographic characteristics of the study 
participants. A total of 11,667 individuals were included in the 
analysis, with 48.99% being male and an average age of 48.0 
(interquartile range, 34.0–64.0). Out of the participants, 3,840 were 
diagnosed with MetS. Individuals with MetS tended to be older, have 
a higher body weight, be  non-Hispanic white, and have a higher 
average family income (all p < 0.05). The content distribution of heavy 
metals in blood or urine in each two cycles from 2003 to 2018 is 
shown in Table 2.

3.2 Feature selection

16 variables were selected using LASSO regression analysis based 
on their non-zero coefficients, as shown in Figure 2. These selected 
variables were blood cadmium, blood lead, blood mercury total, 
arsenous acid, arsenobetaine, arsenocholine, dimethylarsonic acid, 
barium, cadmium, cesium, lead, antimony, thallium, tungsten, 
uranium, molybdenum. The evaluation of multicollinearity among the 
various chosen metals and covariates using VIFs revealed no evidence 
of multicollinearity (Supplementary Table S7).

3.3 Evaluation and comparison of the 
model

The AdaBoost model exhibited superior performance compared 
to other models, achieving a larger AUC as depicted in Figure 3 and 
Supplementary Table S8. Precision-recall curve are shown in Figure 4. 
A forest plot of the AUC score for the multiple models based on the 
AUC of the nine models was created (Figure 5), with the AdaBoost 
algorithm demonstrating the best predictive performance, achieving 
an AUC of 0.807. Since the performance of the validation set under the 
AUC index does not exceed the test set or the exceeding ratio is less 
than 10%, it can be considered that the fitting is successful (Figure 6). 
Consequently, the AdaBoost algorithm was chosen for further analyses. 
The training dataset values are presented in Table 3, and the validation 
set values are available in Table 4. Supplementary Figure S4 displays the 
confusion matrix for the nine ML algorithms used.

FIGURE 1

Model-making process and article framework. This figure shows how the data were obtained from electronic medical record systems, and the 
collection of data on all study variables, including demographic characteristics, laboratory indicators. Data on a total of 24 variables were collected, 22 
of which were selected. The 22 variables were used to establish the machine learning models.
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3.4 Visualization of feature importance

After the above analysis, we use the SHAP method to explain the 
model established by AdaBoost. Figures 7, 8 shows the contribution 
of each screened feature to the model obtained by the SHAP method. 
Figure 8 offers an illustration of the assessment of MetS risk, showing 
the influence of features such as cadmium, body mass index (BMI), 
cesium, gender, and age on the estimated probability of MetS.

4 Discussion

In our study, we utilized a ML approach, complemented by an 
intuitive process, to investigate the relationships between heavy metal 
exposure levels and Mets. We developed nine ML models to detect 
MetS, achieving noteworthy predictive accuracy and interpretability 
from heavy metal datasets. The AdaBoost model, in particular, 
exhibited outstanding performance, pinpointing cadmium, 
molybdenum, cobalt, cesium, uranium, and barium as critical 
contributors to MetS detection. This ML model holds promise for 

supporting the creation of tailored healthcare strategies for individuals, 
based on their specific heavy metal exposure profiles.

This study extends previous work that employed ML algorithms 
for disease prediction, as demonstrated in several key studies (21–23). 
These investigations have underscored the capability of sophisticated 
classification algorithms to enhance prediction accuracy. In recent 
years, ML algorithms have increasingly contributed valuable insights 
to clinical decision-making processes. Leveraging vast clinical 
datasets, ML has rapidly advanced and proven its efficacy in 
forecasting the outcomes of various diseases (14). ML algorithms excel 
at synthesizing and analyzing large volumes of diverse data, a task that 
poses significant challenges for human analysts. Nonetheless, 
interpreting the outputs of ML algorithms remains complex (24). To 
address this complexity, we utilized SHAP values within the AdaBoost 
model to facilitate optimal interpretation and elucidate their influence 
on the predictive outcomes. In the context of the 2003–2018 NHANES 
survey, a positive SHAP value suggests that certain features elevate 
MetS risk, whereas a negative SHAP value indicates a lower risk.

This research revealed significant correlations between MetS and 
exposure to certain heavy metals, emphasizing the importance of 

TABLE 1 Characteristics of the study participants with and without MetS form 2003–2018 in US NHANES.

Characteristics Total (n =  11,667)
Without MetS 

(n =  7,827)
With MetS 
(n =  3,840)

p

Education Level, n (%) <0.001

Less than high school 1,410 (12.085) 839 (10.719) 571 (14.870)

High school or equivalent 4,359 (37.362) 2,865 (36.604) 1,494 (38.906)

College or above 5,898 (50.553) 4,123 (52.677) 1775 (46.224)

Alcohol user, n (%) <0.001

No 1,634 (14.005) 1,052 (13.441) 582 (15.156)

Former 2,237 (19.174) 1,358 (17.350) 879 (22.891)

Mild 3,834 (32.862) 2,513 (32.107) 1,321 (34.401)

Moderate 1756 (15.051) 1,286 (16.430) 470 (12.240)

Heavy 2,206 (18.908) 1,618 (20.672) 588 (15.313)

Smoke, n (%) <0.001

No 6,367 (54.573) 4,415 (56.407) 1952 (50.833)

Former 2,908 (24.925) 1,655 (21.145) 1,253 (32.630)

Current 2,392 (20.502) 1757 (22.448) 635 (16.536)

Race, n (%) <0.001

Non-Hispanic Black 2,402 (20.588) 1,559 (19.918) 843 (21.953)

Other Hispanic 1,039 (8.905) 702 (8.969) 337 (8.776)

Non-Hispanic White 5,188 (44.467) 3,403 (43.478) 1785 (46.484)

Mexican American 1957 (16.774) 1,319 (16.852) 638 (16.615)

Other race – including multi-racial 1,081 (9.265) 844 (10.783) 237 (6.172)

Sex, n (%) 0.078

Male 5,716 (48.993) 3,790 (48.422) 1926 (50.156)

Female 5,951 (51.007) 4,037 (51.578) 1914 (49.844)

Age 48.000[34.000,64.000] 42.000[30.000,58.000] 61.000 [48.000,71.000] <0.001

Poverty 2.110 [1.130,3.920] 2.100 [1.100,3.930] 2.131 [1.180,3.900] 0.049

BMI 27.810 [24.290,32.290] 26.410 [23.250,30.620] 30.440 [27.290,34.600] <0.001

https://doi.org/10.3389/fpubh.2024.1378041
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yao et al. 10.3389/fpubh.2024.1378041

Frontiers in Public Health 06 frontiersin.org

TABLE 2 Geometric means and geometric standard deviations of heavy metals by each cycle of US NHANES (2003–2018).

Heavy metal

Year 
2003–
2004 

(n =  1,488)

Year 
2005–
2006 

(n =  1,457)

Year 
2007–
2008 

(n =  1714)

Year 
2009–
2010 

(n =  1934)

Year 
2011–
2012 

(n =  1,622)

Year 
2013–
2014 

(n =  1741)

Year 2015–
2016 

(n =  1711)
p

Blood cadmium 0.40[0.20,0.60] 0.34[0.21,0.60] 0.35 [0.23,0.62] 0.35 [0.22,0.62] 0.33 [0.21,0.61] 0.30 [0.18,0.58] 0.30 [0.18,0.53] <0.001

Blood lead 1.70 [1.10,2.60] 1.48 [0.92,2.37] 1.41 [0.96,2.24] 1.29 [0.84,2.00] 1.08 [0.72,1.71] 1.00 [0.64,1.56] 0.97 [0.60,1.59] <0.001

Blood mercury total 0.90 [0.50,1.70] 0.94 [0.50,1.73] 0.87 [0.48,1.58] 0.93 [0.50,1.85] 0.88 [0.44,1.88] 0.79 [0.42,1.63] 0.77 [0.42,1.55] <0.001

Arsenous acid 0.80 [0.80,0.80] 0.85 [0.85,0.85] 0.85 [0.85,0.85] 0.85 [0.85,0.85] 0.34 [0.34,0.56] 0.46 [0.08,0.73] 0.14 [0.08,0.56] <0.001

Arsenic acid 0.70 [0.70,0.70] 0.71 [0.71,0.71] 0.71 [0.71,0.71] 0.71 [0.71,0.71] 0.62 [0.62,0.62] 0.56 [0.56,0.56] 0.56 [0.56,0.56] <0.001

Arsenobetaine 1.40 [0.30,6.10] 1.85 [0.40,7.42] 0.98 [0.28,5.07] 1.27 [0.28,7.02] 1.40 [0.84,7.39] 1.17 [0.82,4.85] 0.82 [0.82,5.64] <0.001

Arsenocholine 0.40 [0.40,0.40] 0.42 [0.42,0.42] 0.42 [0.42,0.42] 0.42 [0.42,0.42] 0.20 [0.20,0.20] 0.08 [0.08,0.08] 0.08 [0.08,0.08] <0.001

Dimethylarsonic acid 4.00 [2.00,6.00] 3.96 [2.39,6.46] 3.70 [2.28,6.42] 3.69 [2.06,6.59] 3.99 [2.16,7.44] 3.33 [1.35,5.66] 3.35 [1.35,5.87] <0.001

Barium 1.35 [0.66,2.44] 1.31 [0.68,2.57] 1.32 [0.66,2.46] 1.30 [0.66,2.48] 1.08 [0.54,2.17] 0.93 [0.48,1.93] 1.03 [0.51,2.03] <0.001

Cadmium 0.30 [0.15,0.56] 0.27 [0.13,0.52] 0.27 [0.14,0.52] 0.26 [0.13,0.48] 0.22 [0.11,0.44] 0.18 [0.08,0.38] 0.20 [0.09,0.42] <0.001

Cobalt 0.31 [0.19,0.49] 0.36 [0.23,0.58] 0.34 [0.21,0.53] 0.34 [0.20,0.54] 0.30 [0.18,0.48] 0.38 [0.22,0.64] 0.40 [0.24,0.63] <0.001

Cesium 4.84 [2.84,7.30] 5.06 [3.07,7.59] 4.72 [2.95,6.92] 4.37 [2.76,6.50] 4.19 [2.56,6.36] 4.09 [2.47,6.46] 4.45 [2.68,6.53] <0.001

Lead 0.70 [0.40,1.17] 0.67 [0.37,1.15] 0.59 [0.32,0.97] 0.53 [0.31,0.90] 0.41 [0.24,0.73] 0.33 [0.18,0.57] 0.35 [0.19,0.62] <0.001

Antimony 0.07 [0.05,0.12] 0.07 [0.04,0.12] 0.05 [0.03,0.09] 0.05 [0.02,0.09] 0.04 [0.02,0.07] 0.04 [0.01,0.07] 0.04 [0.02,0.08] <0.001

Thallium 0.16 [0.09,0.25] 0.16 [0.10,0.25] 0.14 [0.09,0.23] 0.15 [0.08,0.23] 0.16 [0.09,0.25] 0.15 [0.08,0.23] 0.16 [0.09,0.25] <0.001

Tungsten 0.06 [0.03,0.11] 0.07 [0.03,0.14] 0.08 [0.04,0.17] 0.07 [0.03,0.13] 0.06 [0.03,0.13] 0.05 [0.02,0.11] 0.05 [0.02,0.11] <0.001

Uranium
0.007 

[0.004,0.012]

0.005 

[0.003,0.010]

0.007 

[0.004,0.013]

0.007 

[0.004,0.014]

0.005 

[0.002,0.011]

0.005 

[0.002,0.011]
0.005 [0.003,0.010] <0.001

Molybdenum
41.50 

[22.60,71.0]

46.70 

[25.70,75.10]

45.60 

[23.80,79.10]

42.20 

[23.90,73.50]

40.20 

[21.30,67.50]

34.46 

[17.72,62.15]
38.50[19.44,66.70] <0.001

FIGURE 2

Features selection used the LASSO regression. (A) A coefficient profile plot is created against the logarithmic (lambda) sequence. In this study, the 
selection of predictors is based on the minimum criteria (indicated by the left dotted line), resulting in the selection of 16 nonzero coefficients using 
the LASSO regression model. (B) The tuning parameter (lambda) selection is based on the deviance in the LASSO regression, using both the minimum 
criteria (indicated by the left dotted line) and the 1-SE criteria (indicated by the right dotted line). LASSO, least absolute shrinkage and selection 
operator; SE, standard error.
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recognizing the various dietary pathways through which these metals 
can be ingested. For instance, cadmium, commonly found in cereals, 
leafy vegetables, and shellfish, and chromium, present in meat, whole 
grains, and fruits, represent notable sources of exposure (25). 
Additionally, the consumption of fatty fish, dairy products, and meats 
may lead to exposure to Persistent Organic Pollutants (POPs), such as 
polychlorinated biphenyls (PCBs) and dioxins, which accumulate in 
the food chain and are associated with various negative health 
outcomes, including metabolic disorders (26–28). The identification 

of these heavy metals as factors contributing to MetS highlights the 
urgent need for comprehensive public health measures to mitigate 
exposure to these detrimental elements. Such measures could 
encompass policy-level initiatives to enforce stricter controls on 
industrial discharges and agricultural chemicals, alongside community 
and individual initiatives to enhance awareness of heavy metal and 
POP sources. Public health campaigns and dietary guidelines could 
also be instrumental in reducing consumption of contaminated foods. 
Furthermore, healthcare professionals have a pivotal role in screening 

FIGURE 3

AUC curves for nine machine learning models. The AdaBoost model achieved a larger (better) AUC compared with the other models. (A) Training 
dataset (B) Validation dataset.

FIGURE 4

Precision-recall curve curves for nine machine learning models. (A) Training dataset (B) Validation dataset.
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for heavy metal exposure among susceptible groups and advising on 
dietary modifications to reduce such exposure.

The findings derived from SHAP analysis align with prior research 
outcomes. Specifically, Lee and Kim identified a notable positive 
association between blood cadmium levels and MetS risk in Korean 
males, utilizing data from the Korean National Health and Nutrition 
Examination Survey for the periods 2005–2010 and 2008–2012 (5, 
29). Similarly, an Iranian study reported elevated urine cadmium 
levels in individuals with MetS (30). Additionally, experimental 
evidence revealed that serum chromium concentrations were lower in 
the diabetes group (0.0205 ± 0.0012 μg/mg) compared to the control 
group (0.0267 ± 0.0009 μg/mg). This finding was corroborated by 
Flores et  al., who reported serum chromium levels in healthy 
individuals and diabetes patients to be  1.44 μg/L and 0.66 μg/L, 
respectively, further substantiating the observed disparity (31). From 
a mechanistic perspective, chromium enhances insulin sensitivity by 
activating insulin receptor kinase and facilitating insulin’s interaction 
with its cellular receptors, thus amplifying its biological efficacy.

Metals exhibit either additive or synergistic effects due to shared 
exposure routes and mechanisms of action, with oxidative stress being 
a principal shared pathway (32). Chronic exposure to heavy metals 
such as cadmium and lead results in glutathione depletion and the 
binding to sulfhydryl groups in proteins (33). The oxidation of 

Arsenite (As III) to Arsenate (As V) leads to the formation of hydrogen 
peroxide and the interaction with critical thiol groups (34). This 
cascade triggers an extensive production of free radicals, reactive 
oxygen species (ROS), and reactive nitrogen species (RNS), disrupting 
the balance within the antioxidant/oxidant system. The ensuing 
oxidative stress culminates in lipid peroxidation, Deoxyribo Nucleic 
Acid (DNA) and cellular membrane damage, protein alterations, and 
other detrimental effects, ultimately contributing to the onset of 
chronic conditions such as diabetes and cardiovascular diseases (35).

The AdaBoost model is distinguished by several key features. It 
leverages existing demographic, laboratory, and questionnaire data 
from the US NHANES, obviating the need for new data collection. 
This model integrates data from various sources to pinpoint the top 10 
variables crucial for ML applications. Furthermore, between 2009 and 
2013, heightened attention by the US government on heavy metal 
exposure, particularly in the context of environmental health, led to 
the initiation of numerous environmental governance initiatives (36). 
These initiatives resulted in reduced heavy metal levels and diverse 
MetS occurrences. Our ML models were developed and assessed using 
detailed participant data on blood heavy metal concentrations. 
Despite a general decline in heavy metal levels during 2009–2013, the 
NHANES dataset represents a single-time participation for 
individuals, implying that the heavy metal data does not reflect annual 

FIGURE 5

Forest plot of the AUC Score of the nine models. The AdaBoost model achieved a smaller (better) standard deviation (SD) compared with the other 
models.
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average exposure levels. However, this did not compromise the 
models’ stability, with the AdaBoost model demonstrating consistent 
reliability, indicated by an average AUC of 0.807. In addition to 
AdaBoost, we explored nine other ML techniques to detect MetS 

based on heavy metal exposure, drawing from recent cardiovascular 
disease research for enhanced insights. Certain models showed greater 
robustness and predictive accuracy with the incorporation of more 
granular data (37). An exhaustive evaluation of the ML models’ 

FIGURE 6

AUC performance of training set and validation set.

TABLE 3 Performance metrics for nine models in the training dataset.

Characteristics AUC Cutoff Accuracy
Sensitivity/

Recall
Specificity PPV NPV

F1 
score

Kappa

XGB 0.822 

(0.005)

0.357 

(0.038)

0.730 (0.011) 0.808 (0.040) 0.690 (0.037) 0.571 

(0.016)

0.877 

(0.017)

0.668 

(0.003)

0.452 

(0.008)

logistic 0.783 

(0.000)

0.313 

(0.009)

0.698 (0.006) 0.777 (0.014) 0.659 (0.016) 0.533 

(0.005)

0.855 

(0.003)

0.632 

(0.001)

0.390 

(0.005)

RF 1.000 

(0.000)

0.535 

(0.015)

1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 

(0.000)

1.000 

(0.000)

1.000 

(0.000)

1.000 

(0.000)

AB 0.800 

(0.003)

0.475 

(0.012)

0.711 (0.001) 0.783 (0.003) 0.674 (0.001) 0.552 

(0.000)

0.858 

(0.003)

0.647 

(0.001)

0.414 

(0.002)

GNB 0.713 

(0.001)

0.923 

(0.023)

0.664 (0.007) 0.715 (0.022) 0.638 (0.021) 0.500 

(0.010)

0.815 

(0.009)

0.589 

(0.001)

0.319 

(0.004)

CNB 0.629 

(0.004)

0.986 

(0.006)

0.649 (0.002) 0.453 (0.006) 0.748 (0.008) 0.476 

(0.008)

0.730 

(0.003)

0.464 

(0.001)

0.203 

(0.004)

MLP 0.776 

(0.002)

0.329 

(0.023)

0.692 (0.005) 0.757 (0.013) 0.660 (0.014) 0.530 

(0.007)

0.843 

(0.005)

0.623 

(0.001)

0.377 

(0.005)

SVM 0.560 

(0.049)

0.437 

(0.039)

0.536 (0.111) 0.627 (0.178) 0.488 (0.260) 0.413 

(0.063)

0.710 

(0.017)

0.475 

(0.013)

0.113 

(0.088)

KNN 0.852 

(0.001)

0.500 

(0.000)

0.776 (0.001) 0.723 (0.002) 0.798 (0.001) 0.758 

(0.001)

0.781 

(0.001)

0.740 

(0.001)

0.451 

(0.004)

XGB, extreme gradient boosting; RF, random forest; AB, AdaBoost; SVC, support vector classification; NB, Naive Bayes; MLP, multilayer perceptron; SVM, support vector machine; KNN, 
K-Nearest Neighbor; AUC, area under the receiver operator curve; FPR, false positive rate; FNR, false negative rate; PPV, positive predictive value; NPV, negative predictive value.
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TABLE 4 Performance metrics for nine models in the validation dataset.

Characteristics AUC Cutoff Accuracy Sensitivity/
Recall

Specificity PPV NPV F1 
score

Kappa

XGB
0.799 

(0.006)

0.357 

(0.038)
0.713 (0.010) 0.778 (0.034) 0.694 (0.034)

0.555 

(0.017)

0.863 

(0.010)

0.647 

(0.000)

0.420 

(0.012)

logistic
0.776 

(0.000)

0.313 

(0.009)
0.694 (0.005) 0.773 (0.039) 0.658 (0.033)

0.548 

(0.015)

0.841 

(0.015)

0.640 

(0.003)

0.388 

(0.004)

RF
0.801 

(0.009)

0.535 

(0.015)
0.736 (0.003) 0.758 (0.005) 0.706 (0.012)

0.667 

(0.018)

0.754 

(0.004)

0.710 

(0.012)

0.339 

(0.012)

AB
0.807 

(0.011)

0.475 

(0.012)
0.720 (0.009) 0.792 (0.016) 0.686 (0.031)

0.556 

(0.016)

0.862 

(0.001)

0.653 

(0.005)

0.426 

(0.017)

GNB
0.708 

(0.010)

0.923 

(0.023)
0.658 (0.006) 0.755 (0.015) 0.609 (0.004)

0.500 

(0.017)

0.815 

(0.006)

0.602 

(0.017)

0.315 

(0.020)

CNB
0.643 

(0.003)

0.986 

(0.006)
0.658 (0.006) 0.488 (0.006) 0.746 (0.010)

0.508 

(0.011)

0.730 

(0.012)

0.498 

(0.008)

0.234 

(0.002)

MLP
0.775 

(0.000)

0.329 

(0.023)
0.697 (0.006) 0.697 (0.025) 0.733 (0.023)

0.545 

(0.004)

0.835 

(0.004)

0.611 

(0.007)

0.385 

(0.003)

SVM
0.583 

(0.031)

0.437 

(0.039)
0.539 (0.105) 0.649 (0.206) 0.495 (0.256)

0.412 

(0.063)

0.744 

(0.026)

0.477 

(0.019)

0.125 

(0.062)

KNN
0.715 

(0.004)

0.500 

(0.000)
0.692 (0.009) 0.790 (0.002) 0.551 (0.011)

0.578 

(0.035)

0.722 

(0.003)

0.667 

(0.024)

0.245 

(0.029)

XGB, extreme gradient boosting; RF, random forest; AB, AdaBoost; SVC, support vector classification; NB, Naive Bayes; MLP, multilayer perceptron; SVM, support vector machine; KNN, 
K-Nearest Neighbor; AUC, area under the receiver operator curve; FPR, false positive rate; FNR, false negative rate; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 7

SHAP analysis of the AdaBoost model. (A) A visual representation of each feature of the AdaBoost model, showing the relationship between the 
importance of each feature. The color represents the value of the variable, with red representing the larger value and blue representing the smaller 
value. (B) The contributing variables are arranged in the horizontal line, sorted by the absolute value of their impact.

https://doi.org/10.3389/fpubh.2024.1378041
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yao et al. 10.3389/fpubh.2024.1378041

Frontiers in Public Health 11 frontiersin.org

predictive capabilities revealed that the AdaBoost model stood out for 
its superior classification performance, underscored by nine 
distinguishing features.

This research presents novel insights, yet it is constrained by 
certain limitations that warrant acknowledgment. The cross-sectional 
nature of this study curtails the ability to establish causality or 
temporal sequences. Although the presence of heavy metals in 
biological specimens might indicate a connection with MetS or its 
constituents, the singular biomarker assessments in this study provide 
only a snapshot of exposure, with blood lead levels particularly 
reflecting recent exposures. Moreover, the dependence on self-
reported data for MetS diagnosis in the US NHANES survey 
introduces a potential for information bias, including inaccuracies 
related to memory, which could affect the precision of the ML models 
in pinpointing MetS. The lack of an external validation group within 
our study design also limits the possibility of further substantiating 
the model’s reliability and its generalizability to a wider population.

Future research should emphasize the need for longitudinal 
studies to elucidate the causal connections between exposure to heavy 
metals and POPs and MetS. Exploring alternative biological matrices 
such as toenails or hair could provide more dependable indicators of 
long-term metal exposure, albeit with potential challenges related to 
measurement precision and varying growth rates. Subsequent 
inquiries should delve into the underlying mechanisms by which such 
exposures influence metabolic health, potentially through pathways 
like oxidative stress, inflammation, or hormonal disruption. A 
comprehensive understanding of the combined impacts of various 
metals and pollutants is crucial for developing effective prevention 
and intervention strategies. Expanding research to encompass diverse 
populations and settings will enhance the relevance and applicability 
of the findings, thereby informing public health initiatives tailored to 
the unique needs and risks of different communities. Furthermore, 
continuous analysis and interpretation of critical features will 
empower professionals with the insights necessary for informed 

decision-making, transcending mere dependency on algorithmic 
outputs. Efforts should also focus on validating the performance of 
models by enlarging the database and refining the interface between 
healthcare providers and ML models to improve their interpretability 
and practicality in clinical contexts.

5 Conclusion

In our study, the AdaBoost model exhibited exceptional 
effectiveness, precision, and resilience in identifying the association 
between heavy metal exposure and the incidence of MetS in 
participants from the US NHANES spanning 2003 to 2018. Employing 
transparent methods, we identified cadmium, molybdenum, cobalt, 
cesium, uranium, and barium as key contributors to the model’s 
predictive performance. Our results highlight the benefits of 
integrating machine learning approaches with SHAP techniques to 
explore the intricate impact of environmental exposures on health. 
Additionally, the predictive framework established by this research 
holds promise for devising targeted interventions to prevent and 
control MetS.
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