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Background: The aging process is associated with a cognitive and physical 
declines that affects neuromotor control, memory, executive functions, and 
motor abilities. Previous studies have made efforts to find biomarkers, utilizing 
complex factors such as gait as indicators of cognitive and physical health in 
older adults. However, while gait involves various complex factors, such as 
attention and the integration of sensory input, cognitive-related motor planning 
and execution, and the musculoskeletal system, research on biomarkers that 
simultaneously considers multiple factors is scarce. This study aimed to extract 
gait features through stepwise regression, based on three speeds, and evaluate 
the accuracy of machine-learning (ML) models based on the selected features 
to solve classification problems caused by declines in cognitive function (Cog) 
and physical function (PF), and in Cog and muscle strength (MS).

Methods: Cognitive assessments, five times sit-to-stand, and handgrip strength 
were performed to evaluate the Cog, PF, and MS of 198 women aged 65  years or 
older. For gait assessment, all participants walked along a 19-meter straight path 
at three speeds [preferred walking speed (PWS), slower walking speed (SWS), 
and faster walking speed (FWS)]. The extracted gait features based on the three 
speeds were selected using stepwise regression.

Results: The ML model accuracies were revealed as follows: 91.2% for the 
random forest model when using all gait features and 91.9% when using the 
three features (walking speed and coefficient of variation of the left double 
support phase at FWS and the right double support phase at SWS) selected for 
the Cog+PF+ and Cog–PF– classification. In addition, support vector machine 
showed a Cog+MS+ and Cog–MS– classification problem with 93.6% accuracy 
when using all gait features and two selected features (left step time at PWS and 
gait asymmetry at SWS).

Conclusion: Our study provides insights into the gait characteristics of older 
women with decreased Cog, PF, and MS, based on the three walking speeds 
and ML analysis using selected gait features, and may help improve objective 
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classification and evaluation according to declines in Cog, PF, and MS among 
older women.
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1 Introduction

Cognitive and physical function declines with natural aging (1), 
such as the degeneration of the neuromotor control system of the 
central nervous system (2). Age-related brain pathological disorders 
cause declines in memory, executive function, visuospatial function, 
and processing and the prevalence of cognitive impairment increases 
with age (1, 3). Furthermore, age-related changes in muscle structure, 
as well as and volume loss in brain structures associated with cognition 
and movement, contribute to a declines in muscle strength and 
function (2, 4, 5). Previous studies associated with cognitive function 
decline in older adults have reported decreased gait speed (6) and 
handgrip strength (HGS) (7), and increased time taken in five times 
sit-to-stand (FSTS) tests (8), as parameters of the physical function in 
older adults as well as in those with sarcopenia (9, 10). This result may 
be due to decreased movement ability because of the decreased motor 
planning and executive function with age (11). Impairments of the 
motor system, such as gait abnormality and low physical function and 
muscle strength levels, precede the onset of cognitive decline with age 
(6, 8) or occur during the early stages of dementia (12). Despite these 
considerations, there remains a significant gap in the studies that 
simultaneously evaluate the interplay of cognitive function (Cog), 
muscle strength (MS), and physical function (PF) based on 
gait analysis.

Gait is a controlled task that requires a high attention level and 
integration of sensory input, cognitive-related motor planning and 
execution, and the musculoskeletal system (11). Gait speed predicts 
declines in Cog, PF, and MS associated with aging (6, 13, 14); however, 
it is unlikely to be sensitive enough to indicate subtle changes in Cog, 
PF, and MS (15, 16). Previous studies on gait characteristics in older 
adults with Cog, PF, and MS declines reported that these characteristics 
were significantly associated with spatiotemporal variables, phase 
variables, and gait variability (GV) (12, 17–19). However, these studies 
measured speed on a short walkway of 4 −10 m (12, 17–19), obtaining 
uncontrolled walking speed with quantitative values (18, 19). In 
addition, most previous studies utilized averaged data from repeated 
trials to gain multiple steps, a practice that may not consistently 
replicate the natural gait patterns of individuals (20). Therefore, 
analyzing gait using continuous steps at slow, fast, and self-preferred 
speeds may be beneficial when evaluating the declines in Cog, PF, and 
MS among older adults.

Moreover, recent studies have used artificial-intelligence-based 
machine learning (ML) to improve Cog decline detection and 
classification using gait characteristics in older adults (1, 21, 22). These 
studies have reported a classification accuracy of approximately 
60–96% when support vector machines (SVM) (21, 22), random 
forests (RF), and artificial neural networks (1) were used for training. 
However, these ML studies had limitations similar to those mentioned 
above and were vulnerable to data overfitting risks owing to their high 

correlation with multiple variables (1, 23). Furthermore, recent studies 
recommend gait analysis using continuous steps and wearable sensors 
(1, 16), as well as analysis methods that extract optimized gait 
characteristics to overcome these limitations (24). While a previous 
study has demonstrated the capability of wearable sensors to identify 
Cog decline and physical frailty (25), it did not investigate whether 
wearable sensors can distinguish between groups with specific 
impairments, especially those with simultaneous declines in Cog and 
PF as well as those with declines in both Cog and MS. Thus, research 
on objective evaluation using optimized gait feature extraction 
methods to predict declines in PF and MS simultaneously during the 
early stages of Cog decline is needed.

Therefore, this study aimed to (1) use stepwise regression to 
extract gait features based on three walking speeds and (2) evaluate 
the accuracy of ML models based on the selected features to solve 
classification problems caused by declines in PF and MS with Cog 
decline. We hypothesize that analyzing the gait features in the three 
walking speeds will demonstrate objective classification accuracy 
based on the differences in gait characteristics between groups with 
declines in Cog and PF and healthy groups, as well as between groups 
with declines in Cog and MS and healthy groups.

2 Methods

2.1 Participants

Participants in this study were 198 women aged 65 years or older. 
The number of participants was calculated using the G-power test 
program, with the following criteria: effect size of 0.25, significance 
level of 0.05, power of 0.8, and number of groups of 3. A total of 159 
participants was required. Figure 1 presents a flowchart containing the 
details of the study participants, and their demographic and physical 
characteristics are shown in Tables 1, 2. This study’s participant 
inclusion criterion was the ability to walk and move independently. 
The exclusion criteria included participants with a history of 
cardiovascular, musculoskeletal, vestibular, or other neurological 
disorders in the last 6 months and those requiring assistive devices 
for movement.

The participants were grouped based on their performance in the 
Korean Mini-Mental Status Examination (MMSE), using a cut-off 
score of 24 points (26), to assess Cog. In addition, PF and MS 
measurements were used to categorize the groups according to the 
diagnostic criteria for sarcopenia established by the Asian Working 
Group (9). The classification of the participants’ Cog, PF, and MS 
declines were defined as follows: group without signs of declines in 
Cog and PF (Cog+PF+), group with Cog decline but no signs of PF 
decline (Cog−PF+), and group with signs of declines in Cog and PF 
(Cog−PF−), group without signs of declines in Cog and MS 
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(Cog+MS+), group with Cog decline but no signs of MS decline 
(Cog−MS+), and group with signs of declines in Cog and MS (Cog−
MS−). The experimental protocols were approved by the institutional 

review board (IRB number: 2–104,709–AB–N–01–201,808–HR–023–
02), and all participants provided written informed consent before 
participating in this study.

FIGURE 1

Consort flow diagram. MMSE, mini mental state examination; Cog, cognitive function; PF, physical function; MS, muscle strength.

TABLE 1 Demographic and physical characteristics of Cog and PF groups.

Characteristics
Cog  +  PF+ 

(n =  74)
Cog  −  PF+ 

(n =  42)
Cog  −  PF− 

(n =  38)

Cog  +  PF+ Vs 
Cog  −  PF+

Cog  +  PF+ Vs 
Cog  −  PF−

Cog  −  PF+ Vs 
Cog  −  PF−

p value

Age (years) 71.99 ± 5.18 74.71 ± 5.30 77.82 ± 5.31 0.024 <0.001 0.027

Height (cm) 152.47 ± 5.07 152.57 ± 6.33 150.74 ± 6.70 1.000 0.418 0.491

Body weight (kg) 58.66 ± 7.08 57.54 ± 8.21 57.63 ± 9.91 1.000 1.000 1.000

BMI (kg/m2) 25.25 ± 2.93 24.65 ± 2.64 25.28 ± 3.58 0.931 1.000 1.000

Skeletal muscle mass (kg) 20.09 ± 2.54 20.45 ± 3.17 19.08 ± 2.84 1.000 0.213 0.090

Body fat mass (kg) 21.11 ± 4.96 19.52 ± 4.78 21.68 ± 6.52 0.381 1.000 0.219

Percent body fat (%) 35.40 ± 5.11 33.37 ± 5.40 36.70 ± 5.77 0.155 0.674 0.018

MMSE (scores) 27.16 ± 1.78 21.17 ± 2.23 19.89 ± 3.00 <0.001 <0.001 0.039

Five sit-to-stand (s) 8.69 ± 1.90 9.54 ± 1.76 16.16 ± 4.28 1.000 <0.001 <0.001

Education (years) 12.80 ± 3.45 10.12 ± 1.99 8.82 ± 2.30 0.417 <0.001 <0.001

IPAQ-SF

(MET min/week)
2874.02 ± 2349.09 2972.85 ± 2576.81 1566.53 ± 1734.69 1.000 0.014 0.020

All data represent the mean ± standard deviation; Cog, cognitive function; PF, physical function; BMI, body mass index; MMSE, mini mental state examination; IPAQ-SF, international physical 
activity questionnaire-short form; MET, metabolic equivalents; Boldface indicates significant differences, p < 0.0167.
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2.2 Test procedures

The experimental process involved obtaining informed 
consent, measuring physical characteristics, conducting the 
International Physical Activity Questionnaire-Short Form (IPAQ-
SF), MMSE, performing PF and MS assessments, and gait analysis. 
The IPAQ-SF was used to assess physical activity levels, and the 
frequency of activity (days per week) was assessed and the 
corresponding metabolic equivalent (MET) was calculated (MET 
per week) based on the results of the questionnaire (27). The 
MMSE comprises assessments of orientation, registration, 
attention and calculation, recall, language, and visual–spatial 
abilities. Out of 30 points, scores of 24 or above are considered 
normal, scores between 20 and 23 indicate mild cognitive 
impairment, and scores of 19 or below are categorized as severe 
cognitive impairment (28).

All participants wore comfortable and lightweight attire 
during the experiments. To acclimatize to the experimental 
environment, PF, MS, and gait assessments were conducted after 
warming up, by walking and stretching, for approximately 5 min. 
PF was assessed by using the FSTS test, one of the physical 
performance tests (9). HGS was assessed for MS using an isometric 
digital hand dynamometer (TKK 5401 Grip-D; Takei Scientific 
Co., Ltd., Tokyo, Japan), with the maximum value recorded after 
two measurements for each hand (9). The FSTS test and HGS have 
excellent test–retest reliability in healthy older adults (intraclass 
correlation coefficient (ICC) range: 0.914–0.933 and 0.95–0.96) 
(29, 30).

For gait assessment, all participants walked along a 19-meter 
straight path at their self-selected, comfortable, and usual walking 
pace to measure their preferred walking speed (PWS). Additionally, a 
metronome measurement of PWS was taken simultaneously to 
quantify slower walking speed (SWS) and faster walking speed (FWS). 
The measurements for SWS (80% of PWS) and FWS (120% of PWS) 
were calculated based on the participants’ PWS. Participants practiced 
3–5 repetitions with the metronome to adapt to the quantified speeds. 

After the adaptation phase, the metronome was excluded and gait 
assessment was performed. All gait assessment was calculated by 
dividing the time taken to traverse a 15-meter distance (excluding the 
initial 2 meters of acceleration and final 2 meters of deceleration) 
(Figure 2) (31).

2.3 Instrumentation

The gait analysis equipment used in the study included a shoe-
mounted data collection device equipped with inertial measurement 
unit (IMU) sensors (Smart BalanceⓇ SB-1, JEIOS, Korea) and a gait 
analysis system (DynaStab™, JEIOS, Korea) (Figure 2). The shoe-
mounted data collection device consists of an inertial sensor (IMU-
3000™, Invense, United  States) capable of measuring triaxial 
accelerations (up to ±6 g) and triaxial angular velocities (up to 
±500°s−1) along three orthogonal axes (32, 33). The IMU sensors were 
embedded in the outsoles of both shoes, and the measured data were 
transmitted to the gait analysis system using BluetoothⓇ 
communication.

2.4 Gait data collection and processing

Gait data were collected at a rate of 100 Hz; then, they were filtered 
using a second-order Butterworth low-pass filter with a cutoff 
frequency of 10 Hz (32, 33). We calculated spatiotemporal parameters, 
including walking speed, stride length, step length, real steps, stride 
time, step time, single support, double support, and stance phases. For 
GV, spatiotemporal parameters were quantified as the coefficient of 
variance (CV; standard deviation/mean × 100) to assess their 
variability. Gait asymmetry (GA) was calculated by comparing the 
swing time of one leg with that of the other (34). The phase 
coordination index (PCI) is the sum of the two percentile values that 
reflect the accuracy and consistency of bilateral coordination during 
the gait task (34) (Figure 3).

TABLE 2 Demographic and physical characteristics of Cog and MS groups.

Characteristics
Cog  +  MS+ 

(n =  78)
Cog  −  MS+ 

(n =  48)
Cog  −  MS− 

(n =  32)

Cog  +  MS+ 
Vs 

Cog  −  MS+

Cog  +  MS+ 
Vs 

Cog  −  MS−

Cog  −  MS+ 
Vs 

Cog  −  MS−

p value

Age (years) 72.54 ± 4.84 74.38 ± 4.65 78.91 ± 5.61 0.135 <0.001 <0.001

Height (cm) 153.87 ± 4.58 153.79 ± 5.50 148.56 ± 6.78 1.000 <0.001 <0.001

Body weight (kg) 59.66 ± 7.63 59.83 ± 8.44 54.22 ± 8.89 1.000 0.005 0.009

BMI (kg/m2) 25.22 ± 3.25 25.23 ± 2.76 24.53 ± 3.59 1.000 0.906 1.000

Skeletal muscle mass (kg) 20.72 ± 2.45 20.98 ± 2.94 18.03 ± 2.39 1.000 <0.001 <0.001

Body fat mass (kg) 21.32 ± 5.47 20.94 ± 5.47 19.97 ± 6.17 1.000 0.761 1.000

Percent body fat (%) 34.89 ± 5.88 34.28 ± 5.50 35.96 ± 6.15 1.000 1.000 0.625

MMSE (scores) 27.13 ± 1.78 21.35 ± 1.85 19.38 ± 3.28 <0.001 <0.001 <0.001

Handgrip strength (kg) 23.12 ± 3.35 22.71 ± 3.04 14.48 ± 2.74 1.000 <0.001 <0.001

Education (years) 11.91 ± 3.63 9.85 ± 2.14 8.97 ± 2.28 0.001 <0.001 0.591

IPAQ-SF (MET min/week) 2336.22 ± 2039.29 2536.36 ± 2558.40 1957.56 ± 1874.85 1.000 1.000 0.740

All data represent the mean ± standard deviation; Cog, cognitive function; MS, muscle strength; BMI, body mass index; MMSE, mini mental state examination; IPAQ-SF, international physical 
activity questionnaire-short form; MET, metabolic equivalents; Boldface indicates significant differences, p < 0.0167.
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2.5 Statistical analysis

The Shapiro–Wilk test revealed that the data followed normal 
distribution. A one way analysis of variance (ANOVA) with the 
Bonferroni post-hoc test was performed to analyze the mean, 
standard deviation (SD), and 95% CI (min to max) for the groups 
(Cog+PF+, Cog−PF+, and Cog−PF− and Cog+MS+, Cog−MS+, 

and Cog−MS−) with the statistical significance levels set at 
0.0167 (0.05/3). An ICC analysis (2,1) was conducted to 
confirm the reliability between the relatively calculated and 
executed SWS and FWS values based on the participants’ 
PWS. The limits of agreement (LoAs) between the measured and 
estimated walking speeds were calculated using the Bland–
Altman plot (35).

FIGURE 2

Shoe-type inertial measurement units-based gait analysis system for the study; (A) Data Collection and analysis phase; (B) Detection of gait events with 
the shoe-type inertial measurement unit (IMU) system. Data is collected at 100  Hz. HS, heel stride; TO, toe-off.
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Univariate and multivariate logistic regression analyses using 
stepwise regression were performed to identify the best 
combination of gait characteristics for the optimal classification 
of groups. Covariates included age, height, body mass index 
(BMI), and years of education. Before additional analyses, all 
variables were Z-normalized (value–mean/standard deviation). 
Stepwise binary logistic regression analysis was performed to 
identify the classifier variables that distinguish the groups. The 
classifier variables were expressed as the odds ratios (OR) 
with 95% CI.

Moreover, to distinguish each group, the optimal cut off values of 
the gait features were identified using receiver operating characteristic 
(ROC) curves. This cut-off value was defined as the point on the ROC 
curve closest to the upper-left corner of the graph. Areas under the 

curve (AUC) of the ROC curves were calculated to determine the 
classification accuracy of each group. An AUC > 0.9 has high accuracy, 
whereas AUCs of 0.7–0.9 and 0.5–0.7 indicate moderate and low 
accuracies, respectively (36). All statistical analyses were performed 
using the SPSS 21.0 (IBM Corp., Armonk, NY). Statistical significance 
was set at p < 0.05.

To solve the group classification problems, the study investigated 
seven traditional ML techniques: Logistic Regression (LR) (37), K Nearest 
Neighbors (KNN) (38), Naїve Bayes (NB) (39), Linear Discriminant 
Analysis (LDA) (40), Quadratic Discriminant Analysis (QDA) (40), 
SVM (41), and RF (42). The model parameters of the classifiers were 
estimated using a grid search. The estimated model parameters for the 
six cases are presented in Tables 3, 4. In the analysis, we evaluated the 
accuracy, recall, precision, and F1 score using 5-fold cross-validation. 

FIGURE 3

Gait parameters-based machine-learning analysis for identifying groups. GA, gait asymmetry; PCI, phase coordination index; Cog, cognitive function; 
PF, physical function; MS, muscle strength; LR, logistic regression; KNN, k  −  nearest neighbors; NB, naїve bayes; LDA, linear discriminant analysis; QDA, 
quadratic discriminant analysis; SVM, support vector machine; RF, random forest.

TABLE 3 Model parameters of the 7 classifiers estimated by the grid search based on Cog and PF declines group classification.

ML 
techniques

Cog  +  PF+ vs. 
Cog  −  PF+ 

(w/96 
Features)

Cog  +  PF+ vs. 
Cog  −  PF+ 

(w/3 Features)

Cog  +  PF+ vs. 
Cog  −  PF− 

(w/96 
Features)

Cog  +  PF+ vs. 
Cog  −  PF− 

(w/3 Features)

Cog  −  PF+ vs. 
Cog  −  PF− 

(w/96 
Features)

Cog  −  PF+ vs. 
Cog  −  PF− 

(w/1 Feature)

LR C = 0.01 C = 0.001 C = 1.0 C = 0.01 C = 0.01 C = 0.001

KNN k = 2 k = 9 k = 3 k = 7 k = 2 k = 8

NB − − − − − −

LDA n_components = 1 n_components = 1 n_components = 1 n_components = 1 n_components = 1 n_components = 1

QDA reg_param = 0.001 reg_param = 0.5 reg_param = 0.5 reg_param = 0.2 reg_param = 0.001 reg_param = 0.001

SVM

C = 0.508, 

gamma = 10.0, 

kernel = rbf

C = 0.508, 

gamma = 1000.0, 

kernel = rbf

C = 1.968, 

gamma = 0.01, 

kernel = rbf

C = 1719.072 

gamma = 0.001, 

kernel = rbf

C = 1.968, 

gamma = 0.001, 

kernel = rbf

C = 114.505, 

gamma = 1.0, 

kernel = rbf

RF
max_depth = 20, n_

estimators = 1,000

max_depth = 15, n_

estimators = 750

max_depth = 10, n_

estimators = 1,000

max_depth = 10, n_

estimators = 1,000

max_depth = 20, 

n_estimators = 500

max_depth = 30, n_

estimators = 1,250

ML, Machine learning; Cog, cognitive function; PF, physical function; LR, logistic regression, ‘C’ is the inverse of regularization strength; KNN, k − nearest neighbors, ‘k’ is the number of 
neighbors; NB, naїve bayes; LDA, linear discriminant analysis, ‘n_components’ is the number of components; QDA, quadratic discriminant analysis, ‘reg_param’ is the regularization of the 
per − class covariance; SVM, support vector machine, ‘C’ is the regularization parameter and ‘gamma’ is the kernel coefficient; RF, random forest, ‘n_estimators’ is the number of trees in the 
forest and ‘max_depth’ is the maximum depth of the tree.
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However, the collected participants’ datasets in the group classification 
problem were imbalanced. To address this imbalance, we employed a 
random oversampling approach (43) (Figure 3).

3 Results

3.1 Reliability of estimation and 
measurement speeds

As shown in Table 5 and Figure 4, the degrees of agreement at SWS 
and FWS for participants in the Cog and PF groups were 89.5 and 
91.2%, respectively. For participants in the Cog and MS groups, the 
degree of agreement at SWS and FWS were 90.2 and 91.8%, respectively.

3.2 Classification by Cog and PF declines 
using feature selection through stepwise 
regression

Table 6 presents the results of the stepwise regression procedure 
for the classification of Cog+PF+ and Cog−PF+, Cog+PF+ and 

Cog−PF−, and Cog−PF+ and Cog−PF−. In the classification of 
Cog+PF+ and Cog−PF+, the selected gait features included the CV of 
the left double support phase at SWS (Cut off value: 11.90%; AUC: 
0.345, p = 0.006; sensitivity: 0.446; specificity: 0.452), the CV of the left 
double support phase at FWS (Cut off value: 10.44%; AUC: 0.382, 
p = 0.035; sensitivity: 0.405; specificity: 0.429), and the right double 
support phase at SWS (Cut off value: 19.26%; AUC: 0.593, p = 0.097; 
sensitivity: 0.595; specificity: 0.571). In the classification of Cog+PF+ 
and Cog−PF−, the selected gait features included the walking speed 
(Cut off value: 1.38 m/s; AUC: 0.813, p < 0.001; sensitivity: 0.784; 
specificity: 0.737), CV of the left double support phase at FWS (Cut off 
value: 2.09%; AUC: 0.293, p < 0.001; sensitivity: 0.378; specificity: 
0.368), and the right double support phase at SWS (Cut off value: 
19.69%; AUC: 0.479, p = 0.715; sensitivity: 0.527; specificity: 0.526). In 
the classification of Cog−PF+ and Cog−PF−, the selected gait feature 
was the walking speed at PWS (Cut off value: 1.01 m/s; AUC: 0.742, 
p < 0.001; sensitivity: 0.786; specificity: 0.632).

We investigated the accuracy and confusion matrix to estimate 
the binary classification problems (Cog and PF classification 
problems); the recall, precision, and F1 score results are listed in 
Supplementary Table S1. This study addresses three classification 
problems involving two different feature sets (using all the features 

TABLE 4 Model parameters of the 7 classifiers estimated by the grid search based on Cog and MS declines group classification.

ML techniques Cog  +  MS+ vs. 
Cog  −  MS+ 

(w/96 
Features)

Cog  +  MS+ vs. 
Cog  −  MS+ (w/1 

Feature)

Cog  +  MS+ vs. 
Cog  −  MS− 

(w/96 
Features)

Cog  +  MS+ vs. 
Cog  −  MS− (w/2 

Features)

Cog  −  MS+ vs. 
Cog  −  MS− 

(w/96 
Features)

Cog  −  MS+ vs. 
Cog  −  MS− 

(w/1 Feature)

LR C = 1000.0 C = 0.1 C = 1000.0 C = 0.01 C = 0.001 C = 1.0

KNN k = 3 k = 2 k = 3 k = 2 k = 2 k = 9

NB − − − − − −

LDA n_components = 1 n_components = 1 n_components = 1 n_components = 1 n_components = 1 n_components = 1

QDA reg_param = 0.001 reg_param = 0.4 reg_param = 0.001 reg_param = 0.4 reg_param = 0.001 reg_param = 0.4

SVM

C = 1e−05, 

gamma = 1.0, 

kernel = rbf

C = 1e−05, 

gamma = 100000.0, 

kernel = rbf

C = 1.968, 

gamma = 1.0, 

kernel = rbf

C = 1.968, 

gamma = 100000.0, 

kernel = rbf

C = 1e−05, 

gamma = 10.0, 

kernel = rbf

C = 6660.846, 

gamma = 0.001, 

kernel = rbf

RF
max_depth = 10, 

n_estimators = 500

max_depth = 10, n_

estimators = 500

max_depth = 10, 

n_estimators = 750

max_depth = 25, n_

estimators = 500

max_depth = 25, 

n_estimators = 500

max_depth = 10, 

n_estimators = 500

ML, Machine learning; Cog, cognitive function; MS, muscle strength; LR, logistic regression, ‘C’ is the inverse of regularization strength; KNN, k − nearest neighbors, ‘k’ is the number of 
neighbors; NB, naїve bayes; LDA, linear discriminant analysis, ‘n_components’ is the number of components; QDA, quadratic discriminant analysis, ‘reg_param’ is the regularization of the 
per − class covariance; SVM, support vector machine, ‘C’ is the regularization parameter and ‘gamma’ is the kernel coefficient; RF, random forest, ‘n_estimators’ is the number of trees in the 
forest and ‘max_depth’ is the maximum depth of the tree.

TABLE 5 Reliability of the results for slower and faster walking speeds.

Cog and PF groups (n =  154) Cog and MS groups (n =  158)

SWS

  Estimated/measured (m/s) 0.88/0.90 0.88/0.89

  ICC (2,1) 0.895 0.902

  p-value <0.001 <0.001

FWS

  Estimated/measured (m/s) 1.39/1.35 1.37/1.34

  ICC (2,1) 0.912 0.918

  p-value <0.001 <0.001

All data represent the mean ± standard deviation; Cog, cognitive function; PF, physical function; MS, muscle strength; SWS, slower walking speed; FWS, faster walking speed; ICC, intraclass 
correlation coefficient; significant difference, p < 0.05.
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and those selected through stepwise regression). We organized the 
results for the following six cases: (1) Cog+PF+ vs. Cog−PF+ with 
96 features (Cog+PF+ vs. Cog−PF + _96), (2) Cog+PF+ vs. Cog−
PF+ with 3 features selected through stepwise regression (Cog+PF+ 
vs. Cog−PF + _3), (3) Cog+PF+ vs. Cog−PF− with 96 features 
(Cog+PF+ vs. Cog−PF − _96), (4) Cog+PF+ vs. Cog−PF− with 3 
features selected through stepwise regression (Cog+PF+ vs. Cog−
PF −_3), (5) Cog−PF+ vs. Cog−PF− with 96 features (Cog−PF+ 
vs. Cog−PF − _96), and (6) Cog−PF+ vs. Cog−PF− with 1 feature 
selected through stepwise regression (Cog−PF+ vs. Cog−PF − _1). 
Table 7 shows the average accuracy and standard deviation (SD), 
calculated through 5 fold cross-validation, and the accuracy box 
plots of the Cog and PF classification problems in the six cases are 
shown in Figure 5A.

In the Cog+PF+ and Cog−PF+ classification problem, LDA 
showed the lowest accuracy (64.9% ± 4.8% SD) and QDA showed 
the highest accuracy (81.8% ± 2.9% SD) for Cog+PF+ vs. Cog−
PF + _96. Stepwise regression was applied to the results of 
Cog+PF+ vs. Cog−PF + _3 to reduce the feature size; LR showed 
the lowest accuracy (64.8% ± 11.2% SD) and RF showed the 
highest accuracy (85.2% ± 6.4% SD). In the Cog+PF+ and Cog−
PF+ classification problem, RF showed that the reduction of 
feature sets by stepwise regression exhibited no significant 
differences among cases with all 96 features, and the ML analysis 
results of cases with three features outperformed those of cases 
with 96 features.

In the Cog+PF+ and Cog−PF− classification problem, LDA 
had the lowest accuracy for Cog+PF+ vs. Cog−PF − _96 

(80.4% ± 8.1% SD), whereas QDA, SVM, and RF had the highest 
accuracy (QDA: 91.2% ± 5.3%, SVM: 91.2% ± 5.2%, RF: 
91.2% ± 5.2%). QDA had the lowest accuracy for Cog+PF+ vs. 
Cog−PF − _3 (84.4% ± 4.0% SD), whereas RF had the highest 
accuracy (91.9% ± 1.7% SD). Overall, the difference in accuracy 
between Cog+PF+ vs. Cog−PF − _96 and between Cog+PF+ vs. 
Cog−PF − _3 was not large, which means that most of the classifiers 
effectively distinguish between Cog+PF+ and Cog−PF−. In 
addition, most classifiers showed similarly high accuracy 
performance after reducing the number of features, except for KNN 
and QDA. In the Cog−PF+ and Cog−PF− classification problem, 
QDA had the lowest accuracy for Cog−PF+ vs. Cog−PF − _96 
(45.4% ± 9.8% SD), whereas NB had the highest accuracy 
(71.6% ± 10.2%). LR had the lowest accuracy for Cog−PF+ vs. Cog−
PF − _1 (53.8% ± 8.9% SD), whereas KNN had the highest accuracy 
(72.6% ± 6.5% SD). The confusion matrices for the six cases are 
shown in Figure 5B. In the Cog+PF+ and Cog−PF− classification 
problems, RF exhibited high accuracy performance, which was also 
confirmed using the confusion matrix.

3.3 Classification by Cog and MS declines 
using feature selection through stepwise 
regression

The results of the stepwise regression procedure for the 
classification of Cog+MS+ and Cog−MS+, Cog+MS+ and Cog−MS−, 
and Cog-MS+ and Cog−MS− are shown in Table  8. In the 

FIGURE 4

Bland–Altman plots for data agreement between the estimated and measured over-ground walking speeds. (A,B) are the slower and faster walking 
speed results for Cog and PF groups; (C,D) are the slower and faster walking speed results for Cog and MS groups. Cog, cognitive function; PF, physical 
function; MS, muscle strength; LoA, limits of agreement.
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classification of Cog+MS+ and Cog−MS+, the selected gait feature 
was the CV of the left double support phase at SWS (Cut off value: 
12.08%; AUC: 0.341, p = 0.003; sensitivity: 0.385; specificity: 0.375). In 
the classification of Cog+MS+ and Cog−MS−, the selected gait 
features were the left step time at PWS (Cut off value: 51.50 cm; AUC: 
0.413, p = 0.151; sensitivity: 0.359; specificity: 0.500) and GA at SWS 
(Cutoff value: 2.18; AUC: 0.498, p = 0.057; sensitivity: 0.513; specificity: 
0.500). In the classification of Cog−MS+ and Cog−MS−, the selected 
gait feature was the CV of the right single-support phase at PWS 
(Cut off value: 3.02; AUC: 0.268, p < 0.001; sensitivity: 0.292; 
specificity: 0.281).

We investigated the accuracy and confusion matrix to 
estimate the binary classification problems (Cog and MS 
classification problems); the recall, precision, and F1 score results 
are listed in Supplementary Table S2. This study addresses three 
classification problems involving two different feature sets (using 
all the features and those selected through stepwise regression). 
We organized the results for the following six cases: (1) Cog+MS+ 
vs. Cog−MS+ with 96 features (Cog+MS+ vs. Cog−MS + _96), 
(2) Cog+MS+ vs. Cog−MS+ with 1 feature selected through 
stepwise regression (Cog+MS+ vs. Cog−MS + _1), (3) Cog+MS+ 
vs. Cog−MS− with 96 features (Cog+MS+ vs. Cog−MS − _96), 

(4) Cog+MS+ vs. Cog−MS− with 2 features selected through 
stepwise regression (Cog+MS+ vs. Cog−MS − _2), (5) Cog−MS+ 
vs. Cog−MS− with 96 features (Cog−MS+ vs. Cog−MS − _96), 
and (6) Cog−MS+ vs. Cog−MS− with 1 feature (Cog−MS+ vs. 
Cog−MS − _1) selected through stepwise regression. Table  9 
indicates the average accuracy and standard deviation (SD) 
calculated through 5-fold cross-validation, and Figure 6A shows 
the accuracy box plots of the Cog and MS classification problems 
for the six cases.

In the Cog+MS+ and Cog−MS+ classification problem, SVM 
showed the lowest accuracy (56.2% ± 17.5% SD) and QDA showed the 
highest accuracy (77.5% ± 7.7% SD) for Cog+MS+ vs. Cog−MS+ _96. 
Stepwise regression was applied to the results of Cog+MS+ vs. Cog−
MS + _1 to reduce the feature size; SVM showed the lowest accuracy 
(55.6% ± 16.1% SD) and RF showed the highest accuracy 
(64.0% ± 10.0% SD).

In the Cog+MS+ and Cog−MS− classification problem, NB had 
the lowest accuracy for Cog+MS+ vs. Cog−MS − _96 (71.7% ± 6.0% 
SD), whereas QDA and SVM had the highest accuracy 
(93.6% ± 5.1%). LR had the lowest accuracy for Cog+MS+ vs. Cog−
MS − _2 (55.2% ± 5.4% SD), whereas SVM had the highest accuracy 
(93.6% ± 5.1% SD). In addition, the reduction of feature sets by 

TABLE 6 Feature selection of three speed-based gait characteristics using stepwise regression procedure by Cog and PF classification problems.

Variables Estimate (SE) OR (95% CI) p value RN
2

Cog + PF+ and Cog–PF+

  CV of left double support phase (slower) (11.90%) 0.795 (0.273) 2.213 (1.295–3.783) 0.004

0.481  CV of left double support phase (faster) (10.44%) 0.668 (0.316) 1.950 (1.049–3.624) 0.035

  Right double support phase (slower) (19.26%) 0.776 (0.299) 2.173 (1.208–3.907) 0.010

Cog + PF+ and Cog–PF–

  Walking speed (faster) (1.38 m/s) −1.575 (0.547) 0.207 (0.071–0.605) 0.004

0.810  CV of left double support phase (faster) (2.09%) 2.965 (0.797) 19.390 (4.067–92.445) <0.001

  Right double support phase (slower) (19.69%) 0.984 (0.433) 2.674 (1.143–6.253) 0.023

Cog–PF+ and Cog–PF–

  Walking speed (preferred) (1.01 m/s) −0.827 (0.323) 0.437 (0.232–0.825) 0.011 0.296

Model was adjusted for age, height, body mass index, and education. Cog, cognitive function; PF, physical function; SE, standard error; OR, odds ratio: 95% CI, 95% confidence interval; RN
2 is 

the fit statistic for the Nagelkerke Model; CV, coefficient of variance; Boldface indicates significant differences, p < 0.05.

TABLE 7 Accuracies of 7 classifiers from 5-fold cross validation by Cog and PF classification problems.

ML 
techniques

Cog  +  PF+ 
vs. Cog–PF+ 

(w/96 
Features)

Cog  +  PF+ 
vs. Cog–PF+ 

(w/3 
Features)

Cog  +  PF+ 
vs. Cog–PF– 

(w/96 
Features)

Cog  +  PF+ 
vs. Cog–PF– 

(w/3 
Features)

Cog–PF+ 
vs. Cog–

PF– (w/96 
Features)

Cog–PF+ 
vs. Cog–
PF– (w/1 
Feature)

Accuracy

LR 71.7 ± 6.7 64.8 ± 11.2 85.1 ± 5.9 87.2 ± 2.7 67.9 ± 7.5* 53.8 ± 8.9*

KNN 71.0 ± 9.5 64.9 ± 2.1 80.5 ± 7.4* 88.6 ± 5.1* 67.9 ± 8.8 72.6 ± 6.5

NB 68.8 ± 7.9 67.6 ± 10.1 83.0 ± 5.6 84.4 ± 2.0 71.6 ± 10.2 66.6 ± 12.3

LDA 64.9 ± 4.8 65.5 ± 14.7 80.4 ± 8.1 87.2 ± 4.4 53.7 ± 21.5 63.2 ± 13.8

QDA 81.8 ± 2.9* 68.3 ± 9.0* 91.2 ± 5.3* 84.4 ± 4.0* 45.4 ± 9.8 66.6 ± 12.3

SVM 69.0 ± 13.0 69.0 ± 13.0 91.2 ± 5.2 87.9 ± 5.7 69.1 ± 6.1 69.1 ± 4.4

RF 79.7 ± 4.7 85.2 ± 6.4 91.2 ± 5.2 91.9 ± 1.7 69.1 ± 7.4 65.4 ± 5.1

Precision, recall, and F1 score are represented as mean (%) ± standard deviation (%). ML, machine learning; Cog, cognitive function; PF, physical function; LR, logistic regression; KNN, 
k nearest neighbors; NB, naїve bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM, support vector machine; RF, random forest. * Denotes a significant 
difference. Boldface indicates the highest accuracy.

https://doi.org/10.3389/fpubh.2024.1376736
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2024.1376736

Frontiers in Public Health 10 frontiersin.org

stepwise regression resulted in a significant difference between the 
cases where all 96 features were used and those where only selected 
features were used, except for SVM and RF. The results of the ML 
analysis of 96 features outperformed those of the ML analysis of 
2 features.

In the Cog−MS+ and Cog−MS− classification problem, SVM had 
the lowest accuracy for Cog−MS+ vs. Cog−MS − _96 (55.9% ± 19.1% 
SD), whereas QDA had the highest accuracy (80.1% ± 7.0%). NB had 
the lowest accuracy for Cog−MS+ vs. Cog−MS − _1 (60.4% ± 2.6% 
SD), whereas LR had the highest accuracy (70.8% ± 9.5% SD). 
Figure  6B shows the confusion matrices for the six cases. In the 
Cog+MS+ and Cog−MS− classification problem, SVM showed high 
accuracy performance, which was confirmed using the 
confusion matrix.

4 Discussion

4.1 Classification by Cog and PF declines 
using feature selection through stepwise 
regression

In this study’s main findings for classification by Cog and PF 
declines, the three selected features that were most relevant for the 
classification of Cog+PF+ and Cog–PF+ were the CV of the left 
double support phase at SWS and at FWS and the right double support 
phase at SWS. The ML approach showed that QDA had 81.8% 
accuracy for Cog+PF+ vs. Cog–PF+ _96, and RF had 85.2% accuracy 
for Cog+PF+ vs. Cog–PF+ _3. In the classification between Cog+PF+ 
and Cog–PF–, the three selected features that were most relevant were 

FIGURE 5

Results of Cog and PF classification problems (A) Accuracy of the seven classifiers. The orange line in the box plot shows the mean values. 
(B) Confusion matrices of the six cases. Cog, cognitive function; PF, physical function; LR, Logistic Regression; KNN, K-Nearest Neighbors; NB, Naїve 
Bayes; LDA, Linear Discriminant Analysis; QDA, Quadratic Discriminant Analysis; SVM, Support Vector Machine; RF, Random Forest.

TABLE 8 Feature selection of three speed-based gait characteristics using stepwise regression procedure by Cog and MS classification problems.

Variables Estimate (SE) OR (95% CI) p value RN
2

Cog + MS+ and Cog–MS+

  CV of left double support phase (slower) (12.08%) 0.481 (0.242) 1.618 (1.008–2.599) 0.046 0.184

Cog + MS+ and Cog–MS–

  Left step time (preferred) (51.50 cm) 0.731 (0.317) 2.078 (1.115–3.872) 0.025
0.558

  GA (slower) (2.18) −0.930 (0.415) 0.395 (0.175–0.890) 0.025

Cog–MS+ and Cog–MS–

  CV of right single support phase (preferred) (3.02%) 1.234 (0.524) 3.433 (1.229–9.589) 0.019 0.442

Model was adjusted for age, height, body mass index, and education. Cog, cognitive function; MS, muscle strength; SE, standard error; OR, odds ratio: 95% CI, 95% confidence interval; RN
2 is 

the fit statistic for the Nagelkerke Model; CV, coefficient of variance; Boldface indicates significant differences, p < 0.05.
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gait walking speed, CV of the left double support phase at FWS, and 
the right double support phase at SWS. The ML approach showed that 
RF solved the Cog+PF+ and Cog–PF– classification problems with 
91.2 and 91.9% accuracies for Cog+PF+ vs. Cog–PF–_96 and 
Cog+PF+ vs. Cog–PF–_3, respectively. In the classification between 
Cog–PF+ and Cog–PF–, the selected feature that was most relevant 
was walking speed at PWS. The ML approach showed that NB had 
71.6% accuracy for Cog–PF+ vs. Cog–PF– _96 and KNN had 72.6% 
accuracy for Cog–PF+ vs. Cog–PF– _1. The findings are discussed in 
detail below.

Regarding the classification of Cog+PF+ and Cog–PF+, the CV of 
the left double support phase at SWS and at FWS and the right double 
support phase at SWS were selected through stepwise regression to 
obtain the sensitive cut off values in the ROC analysis. The double-
support phase of gait is the only period in which both feet are in 
contact with the ground, and this phase is more variable with poor 
balance (44–46). In previous studies, double support time variability 
was associated with a greater number of sensorimotor (46) and 
cognitive domains than other variability measures (47), and these 
variations indicated an increased risk of falls (48). Jayakody et al. (44) 

TABLE 9 Accuracies of 7 classifiers from 5-fold cross validation by Cog and MS classification problems.

ML 
techniques

Cog  +  MS+ 
vs. Cog–MS+ 

(w/96 
Features)

Cog  +  MS+ 
vs. Cog–MS+ 
(w/1 Feature)

Cog  +  MS+ 
vs. Cog–MS– 

(w/96 
Features)

Cog  +  MS+ 
vs. Cog–MS– 

(w/2 
Features)

Cog–MS+ 
vs. Cog–

MS– (w/96 
Features)

Cog–MS+ 
vs. Cog–
MS– (w/1 
Feature)

Accuracy

LR 65.4 ± 9.2 62.2 ± 11.6 82.0 ± 6.3* 55.2 ± 5.4* 62.5 ± 15.1 70.8 ± 9.5

KNN 69.9 ± 6.2 58.3 ± 9.9 77.6 ± 3.6* 66.0 ± 5.8* 63.6 ± 9.3 68.7 ± 6.7

NB 62.8 ± 8.0 55.8 ± 10.4 71.7 ± 6.0* 55.8 ± 5.1* 64.6 ± 13.6 60.4 ± 2.6

LDA 64.7 ± 8.4 61.0 ± 12.2 80.8 ± 6.0* 58.4 ± 8.5* 72.9 ± 9.5* 63.6 ± 8.0*

QDA 77.5 ± 7.7 58.4 ± 11.2 93.6 ± 5.1* 57.7 ± 5.2* 80.1 ± 7.0* 60.5 ± 3.8*

SVM 56.2 ± 17.5 55.6 ± 16.1 93.6 ± 5.1 93.6 ± 5.1 55.9 ± 19.1 68.8 ± 8.1

RF 68.5 ± 6.0 64.0 ± 10.0 84.0 ± 6.7 77.6 ± 6.0 71.9 ± 10.6 66.6 ± 5.2

Precision, recall, and F1 score are represented as mean (%) ± standard deviation (%). Cog, cognitive function; MS, muscle strength; LR, logistic regression; KNN, k nearest neighbors; NB, naїve 
bayes; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM, support vector machine; RF, random forest. *Denotes a significant difference. Boldface indicates the 
highest accuracy.

FIGURE 6

Results of Cog and MS classification problems (A) Accuracy of the seven classifiers. The orange line in the box plot shows the mean values. 
(B) Confusion matrices of the six cases. Cog, cognitive function; MS, muscle strength; LR, Logistic Regression; KNN, K-Nearest Neighbors; NB, Naїve 
Bayes; LDA, Linear Discriminant Analysis; QDA, Quadratic Discriminant Analysis; SVM, Support Vector Machine; RF, Random Forest.
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reported that higher double-support time variability is associated with 
memory decline. The hippocampus and parahippocampal gyrus are 
the primary areas of memory and spatial navigation (49), and these 
appear to be  involved in human balance control (50). Therefore, 
age-related changes in the hippocampus are likely to lead to a greater 
double-support phase, CV of the double-support phase, and memory 
impairment (44).

For classification between Cog+PF+ and Cog−PF−, walking 
speed, CV of the left double support phase at FWS, and the right 
double support phase at SWS were selected via stepwise regression to 
obtain the sensitive cut-off values in the ROC analysis. In particular, 
CV of the left double support phase at FWS was shown 19.39 times 
and walking speed at FWS was shown to be slower by 80% in the 
Cog−PF− compared to that in the Cog+PF+, indicating that FWS was 
more challenging for Cog−PF−. The FWS test is essential in 
identifying muscle weakness, decreased functional independence (51), 
and cognitive decline (52). FWS likely requires a relatively rapid 
generation of high peak power from the lower extremities’ joints (53) 
and improvements in lower limbs’ muscle function to enhance joint 
range of motion, propulsive force, and dynamic stability and thus 
increase step length (54). Furthermore, modifications in walking 
speed, such as FWS and SWS, require attention because of the reduced 
automaticity of gait and increased cortical control due to changes in 
muscle activity patterns (55, 56). Therefore, SWS and FWS are more 
challenging gait tasks than PWS (8). It is likely that compared with 
PWS, these challenging tasks place a greater demand on motor control 
and, hence, may be more sensitive to age-associated decline (53, 57). 
Therefore, SWS and FWS may be more challenging gait tasks than 
PWS for older women with decreasing Cog and PF (8, 58).

For classification between Cog−PF+ and Cog−PF−, walking 
speed at PWS was selected via stepwise regression to obtain the 
sensitive cut-off values in the ROC analysis. Cog−PF− significantly 
decreased walking speed at PWS, compared with Cog+PF+ and Cog−
PF+ [Cog+PF+ vs. Cog−PF+: 1.18 ± 0.15 vs. 1.14 ± 0.17 (p = 0.467), 
Cog+PF+ vs. Cog−PF−: 1.18 ± 0.15 vs. 0.97 ± 0.20 (p < 0.001), Cog−
PF+ vs. Cog−PF−: 1.14 ± 0.17 vs. 0.97 ± 0.20 (p < 0.001)]. The 
optimization of walking observed in the self-preferred speed condition 
may stem from the interplay between neural and biomechanical 
mechanisms, aiming to minimize the necessity for active control 
based on high-level sensory feedback (59). The decline in walking 
speed among older individuals showed the most robust association 
with white matter atrophy (6, 60), which has been associated with a 
decline in executive function among cognitive domains (61). In 
addition, Yee et al. (13) reported a relationship between decreased 
walking speed and PF of the lower extremities, assessed using the 
sit-to-stand test. The decreased strength of the hip flexors and ankle 
dorsiflexors are thought to influence these changes (52). Therefore, 
older women with reduced Cog and PF may have difficulty walking 
even at their preferred speed. We suggest that Cog−PF+ and Cog−
PF− may be distinguished using the walking speed at PWS.

4.2 Classification by Cog and PF declines 
using ML approach

Regarding ML approaches, RF demonstrated high accuracy in 
addressing Cog and PF classification tasks, achieving 85.2% 
accuracy for Cog+PF+ vs. Cog–PF+ _3 and 91.2 and 91.9% 

accuracies for Cog+PF+ vs. Cog–PF–_96 and Cog+PF+ vs. Cog–
PF–_3, respectively. Meanwhile, QDA had 81.8% accuracy for 
Cog+PF+ vs. Cog–PF+ _96. Based on these results, the possibility 
of distinguishing between people with Cog+PF+ and Cog–PF+ 
and those with Cog+PF+ and Cog–PF–, based on the three speed-
based gait characteristics, was somewhat confirmed. RF 
outperformed all the other classifiers on Cog+PF+ vs. Cog–PF+ 
and Cog+PF+ vs. Cog–PF– with reduced feature sets. Generally, 
the output of a model can be influenced by multiple features (62). 
Overfitting is a common challenge in supervised ML, stemming 
from constraints such as the limitations of training data—either 
because of restricted data size or the presence of considerable 
noise—and the complexity of algorithms, which may require an 
excessive number of features (63). Therefore, our results indicate 
that feature selection using stepwise regression eliminates 
irrelevant features (62).

In contrast, NB and KNN showed accuracies of 71.6 and 
72.6%, respectively, for Cog–PF+ vs. Cog–PF– classification tasks. 
From the results, the possibility of distinguishing between Cog–
PF+ and Cog–PF–based on the three speed-based gait 
characteristics was somewhat confirmed; however, the Cog–PF+ 
and Cog–PF– classification problem appeared more challenging 
than the Cog+PF+ and Cog–PF+ as well as Cog+PF+ and Cog–
PF– classification problems. No classifier achieved an accuracy 
above 80%, and the SDs of the accuracies for Cog–PF+ vs. Cog–
PF– _96 and Cog–PF+ vs. Cog–PF– _1 were higher for NB, LDA, 
and QDA compared to the Cog+PF+ vs. Cog+PF– and Cog+PF+ 
vs. Cog–PF– classifications. We  speculate that the observed 
limitations in classifier performance, with no accuracy exceeding 
80%, may be attributed to the study’s relatively small sample size.

The reduced number of samples could potentially lead to 
misinterpretations in the mathematical optimization process 
during classifier training, thereby affecting the performances of 
NB, LDA, and QDA, owing to the inherent characteristics of these 
classification algorithms. Therefore, to enhance the accuracy of 
the Cog–PF+ vs. Cog–PF– classification problem, future research 
should explore the application of advanced deep learning 
techniques, such as the n-dimensional convolutional neural 
network and recurrent neural network (62), on time series raw 
gait data obtained at three different walking speeds. Despite 
converting raw gait data into the selected 96 features, the risk of 
losing the crucial information necessary to solve the Cog–PF+ vs. 
Cog–PF– classification problem remains.

4.3 Classification by Cog and MS declines 
using feature selection through stepwise 
regression

In the main findings for classification by Cog and MS declines 
in this study, the selected feature most relevant for the 
classification of Cog+MS+ and Cog–MS+ was the CV of the left 
double-support phase at SWS. The ML approach showed that 
QDA had 77.5% accuracy for Cog+MS+ vs. Cog–MS+ _96 and RF 
had 64.0% accuracy for Cog+MS+ vs. Cog–MS+ _1. In the 
classification of Cog+MS+ and Cog–MS–, the two most relevant 
selected features were the left-step time at PWS and GA at 
SWS. The ML approach showed that SVM solved the Cog+MS+ 
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and Cog–MS– classification problems with 93.6% accuracy for 
Cog+MS+ vs. Cog–MS–_96 and Cog+MS+ vs. Cog–MS–_2. In 
the classification of Cog–MS+ and Cog–MS–, the most relevant 
selected feature was the CV of the right single-support phase at 
the PWS. The ML approach showed that QDA had 80.1% accuracy 
for Cog–MS+ vs. Cog–MS– _96 and LR had 70.8% accuracy for 
Cog–MS+ vs. Cog–MS– _1. These findings are discussed in 
detail below.

In our study on the classification of Cog+MS+ and Cog–MS+, 
the CV of the left double support phase at SWS was selected through 
stepwise regression to obtain the sensitive cut off values in the ROC 
analysis. Stride-to-stride variability, quantified by the coefficient of 
variation, serves as a metric for gauging the reproducibility of 
coordinated limb movements from one stride to the next (64). 
Previous studies have strongly associated gait variability with Cog 
(15, 17). Our study showed that a higher CV of the left double-
support phase was associated with a lower Cog at SWS in older 
women. These results may be linked to executive dysfunction in the 
cortical sensorimotor control (17, 65, 66), and this dysfunction could 
be  attributed to the reduced hippocampal volume and impaired 
function observed in older adults (67). Executive function is 
associated with the initiation and modulation of gait performance 
(68). Therefore, the observed high gait variability may be attributed 
to the stride-to-stride fluctuations when walking, which involve the 
generation of force using muscles with a partial summation of 
overlapping twitches (58). This high gait variability may result from 
executive dysfunction during modulation, which is particularly 
evident in SWS.

For Cog+MS+ and Cog−MS − classification, left step time at 
PWS and GA at SWS were selected via stepwise regression to 
obtain the sensitive cut-off values in the ROC analysis. Previous 
studies have associated longer step time with Cog decline (47), 
suggesting that this result may be influenced by the impact of the 
brainstem and spinal cord mechanisms, which activate and 
control lower limb muscles and gait movements (69). In addition, 
previous studies have reported an increase in the mean step time 
in older adults, indicating a preference for an extended step time 
as a compensatory strategy for muscle weakness (70, 71) and 
balance impairments (66, 72, 73). Meanwhile, the GA at SWS was 
significantly lower for the Cog−MS− group, compared to that for 
the Cog+MS+ group. The aging process is known to increase the 
demand for the prefrontal cortex during motor control (74). 
Individuals in the low Cog and MS groups exhibited lower gait 
abilities than those in the high-functioning group (19, 44). 
Specifically, older adults with reduced gait ability demonstrated 
increased prefrontal cortex activation during challenging tasks 
such as FWS and SWS (75). These findings suggest that greater 
prefrontal cortex activation is required during walking tasks that 
demand cognitive engagement with speed variations, which may 
be a compensatory mechanism to increase the level of motor task 
performance (76). In addition, SWS employs a strategy of 
increasing the medial displacement of the center of mass to 
enhance the base of support, aiming to maintain dynamic balance 
(77). Therefore, the results of GA at SWS in the Cog−MS− group 
compared with those in the Cog+MS+ group may be attributed to 
these compensatory strategies.

For the classification of the Cog−MS+ and Cog−MS− groups, 
the CV of the right single support phase at PWS was selected via 

stepwise regression to obtain the sensitive cut-off values in the 
ROC analysis. However, the association between muscle strength 
and gait variability has not been extensively studied. Previous 
studies have found that lower extremity strength is associated with 
the CV of step time (46) and CV of step width (78). In addition, 
Bogen et al. (18) reported an association between lower and upper 
extremity strength measurements between anterioposterior, 
mediolateral, and vertical gait variability. While these results 
cannot be directly compared with those of our study, it appears 
that, despite gait being an activity that does not require maximal 
strength, lower- and upper-extremity strength may contribute to 
gait variability (18). Therefore, the CV of the support phase at 
PWS may indicate decreased MS in older women with 
decreasing Cog.

4.4 Classification by Cog and MS declines 
using ML approach

Regarding ML approaches for classifying Cog and MS 
declines, analyzing all 96 features was found to yield higher 
accuracy than models based on selected features through stepwise 
regression. These results show that the 96 features influenced the 
group classifications more than the selected features. Including 
many gait features helps to mitigate the bias associated with 
selecting variables for input in ML analyses. This ML analysis is 
particularly beneficial when dealing with high dimensionality and 
non-linear associations among input variables within a relatively 
small sample size (1). Interestingly, SVM demonstrated high 
accuracy in addressing Cog+MS+ and Cog–MS– classifications, 
achieving 93.6% accuracy for Cog+MS+ vs. Cog–MS–_96 and 
Cog+MS+ vs. Cog–MS–_2. These results indicate the possibility 
of distinguishing between Cog+MS+ and Cog–MS– based on the 
three speed-based gait characteristics. Additionally, it was 
observed that group classification is possible not only with all 96 
features but also with selected features, specifically the left-step 
time for PWS and GA for SWS. Therefore, our results demonstrate 
that the feature selection process using stepwise regression 
eliminated irrelevant features in the classification of Cog+MS+ 
and Cog–MS–.

The findings of the present study have several important 
implications. First, the ML approach used to resolve this study’s 
Cog and PF classification problems showed similar results when 
using gait features selected through gait analysis based on three 
walking speeds. This result may help understand the gait 
characteristics and classify older women with Cog and PF declines 
based on certain main factors of the spatiotemporal and variability 
features at the three walking speeds. Second, the classification of 
Cog+PF+ and Cog–PF– showed the highest accuracy of 91.9% in 
the results of the ML approach using selected gait features. Third, 
the classification of Cog+MS+ and Cog–MS– groups showed the 
highest accuracy of 93.6% in the results of the ML approach using 
selected gait features. This ML analysis of the critical factors 
selected among the three speed-based gait characteristics can help 
provide information regarding the Cog, PF, and MS declines 
conditions of older women.

Our study has several limitations. First, our study used MMSE 
scores, which are known to have relatively lower sensitivity (79). 
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Nevertheless, the MMSE score is a widely utilized screening tool for 
dementia, assessing global cognitive function and aiding in clinical 
evaluations. Further research is required to address these issues. 
Second, this study included participants who were not diagnosed 
with dementia and had normal cognitive function. Despite assuming 
this status, we speculated that some participants might have had a 
diagnostic level of dementia. Third, we exclude direct comparisons 
with groups with no signs of Cog decline but PF and MS declines 
(Cog+PF– and Cog+MS–), as this was beyond the purpose of this 
study. Although 103 participants in the Cog+PF– and Cog+MS– were 
also recruited, these groups may be unreliable due to sample size 
imbalance and data bias problems in the analyses. Lastly, the sample 
sizes of Cog–PF+, Cog–PF–, Cog–MS+, and Cog–MS– were 
relatively small compared to those of Cog+PF+ and Cog+MS+. 
Despite using the random oversampling technique to address the 
imbalanced dataset, the insufficient sample size may have led to the 
instability in the classification performance for NB, LDA, and QDA, 
as mentioned earlier.

5 Conclusion

In conclusion, our findings highlight the potential methods for 
identifying using various speed-based gait characteristics in older 
women with the declines of PF and MS simultaneously with Cog 
decline. The ML approach showed that RF had 91.9% accuracy for 
the Cog+PF+ and Cog–PF– classification problems when using the 
three selected features (walking speed and CV of left double support 
phase at FWS and right double support phase at SWS). In addition, 
SVM showed the highest classification accuracy of 93.6% for the 
Cog+MS+ and Cog–MS– classification problems using two selected 
features (left step time at PWS and GA at SWS). Therefore, our results 
suggest a proof of concept that ML techniques using gait features 
based on the three walking speeds might represent a reliable surrogate 
biomarker for Cog, PF, and MS declines. Our findings are useful in 
assessing diminishing physical function in older adults and could 
potentially serve as valuable tools in clinical settings to evaluate the 
efficacy of interventions aimed at preventing or delaying cognitive 
decline. Future studies need to develop ML techniques that 
incorporate important factors when evaluating the declines in Cog, 
PF, and MS and include a larger sample size to enhance the predictive 
capability for categorizing older women showing declines in Cog, 
PF, and MS.
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Glossary

Cog Cognitive function

PF Physical function

MS Muscle strength

ML Machine-learning

Cog+PF+ Group without signs of declines in Cog and PF

Cog−PF+ Group with Cog decline but no signs of PF declines

Cog−PF− Group with signs of declines in Cog and PF

Cog+MS+ Group without signs of declines in Cog and MS

Cog−MS+ Group with Cog decline but no signs of MS declines

Cog−MS− Group with signs of declines in Cog and MS

IRB Institutional review board

MMSE Mini-mental status examination

FSTS Five times sit-to-stand

HGS Handgrip strength

PWS Preferred walking speed

SWS Slower walking speed

FWS Faster walking speed

IMU Inertial measurement unit

GV Gait variability

CV Coefficient of variance

GA Gait asymmetry

PCI Phase coordination index

ANOVA Analysis of variance

SD Standard deviation

ICC Intra-class correlation coefficient

LoA Limits of agreement

BMI Body mass index

OR Odds ratios

ROC Receiver operating characteristic

AUC Areas under the curve

LR Logistic regression

KNN K-nearest neighbors

NB Naїve Bayes

LDA Linear discriminant analysis

QDA Quadratic discriminant analysis

SVM Support vector machine

RF Random forest

Cog+PF+ vs. Cog−PF + _96 Cog+PF+ vs. Cog−PF+ with 96 features

Cog+PF+ vs. Cog−PF + _3 Cog+PF+ vs. Cog−PF+ with 3 features selected through stepwise regression, Cog+PF+ vs. Cog−PF − _96

Cog+PF+ vs. Cog−PF− with 96 features, Cog+PF+ vs. Cog−PF − _3 Cog+PF+ vs. Cog−PF− with 3 features selected through stepwise regression

Cog−PF+ vs. Cog−PF − _96 Cog−PF+ vs. Cog−PF− with 96 features

Cog−PF+ vs. Cog−PF − _1 Cog−PF+ vs. Cog−PF− with 1 feature selected through stepwise regression

Cog+MS+ vs. Cog−MS + _96 Cog+MS+ vs. Cog−MS+ with 96 features

Cog+MS+ vs. Cog−MS + _1 Cog+MS+ vs. Cog−MS+ with 1 feature selected through stepwise regression, Cog+MS+ vs. Cog−

MS − _96

Cog+MS+ vs. Cog−MS− with 96 features, Cog+MS+ vs. Cog−

MS − _2

Cog+MS+ vs. Cog−MS− with 2 features selected through stepwise regression

Cog−MS+ vs. Cog−MS − _96 Cog−MS+ vs. Cog−MS− with 96 features

Cog−MS+ vs. Cog−MS − _1 Cog−MS+ vs. Cog−MS− with 1 feature selected through stepwise regression.
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