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Objective: To investigate the relationships between perfluoroalkyl and 
polyfluoroalkyl substances (PFASs) exposure and glucose metabolism indices.

Methods: Data from the National Health and Nutrition Examination Survey 
(NHANES) 2017–2018 waves were used. A total of 611 participants with 
information on serum PFASs (perfluorononanoic acid (PFNA); perfluorooctanoic 
acid (PFOA); perfluoroundecanoic acid (PFUA); perfluorohexane sulfonic acid 
(PFHxS); perfluorooctane sulfonates acid (PFOS); perfluorodecanoic acid 
(PFDeA)), glucose metabolism indices (fasting plasma glucose (FPG), homeostasis 
model assessment for insulin resistance (HOMA-IR) and insulin) as well as 
selected covariates were included. We used cluster analysis to categorize the 
participants into three exposure subgroups and compared glucose metabolism 
index levels between the subgroups. Least absolute shrinkage and selection 
operator (LASSO), multiple linear regression analysis and Bayesian kernel 
machine regression (BKMR) were used to assess the effects of single and mixed 
PFASs exposures and glucose metabolism.

Results: The cluster analysis results revealed overlapping exposure types among 
people with higher PFASs exposure. As the level of PFAS exposure increased, 
FPG level showed an upward linear trend (p  <  0.001), whereas insulin levels 
demonstrated a downward linear trend (p  =  0.012). LASSO and multiple linear 
regression analysis showed that PFNA and FPG had a positive relationship 
(>50  years-old group: β  =  0.059, p  <  0.001). PFOA, PFUA, and PFHxS (≤50  years-
old group: insulin β  =  −0.194, p  <  0.001, HOMA-IR β  =  −0.132, p  =  0.020) showed 
negative correlation with HOMA-IR/insulin. PFNA (>50  years-old group: insulin 
β  =  0.191, p  =  0.018, HOMA-IR β  =  0.220, p  =  0.013) showed positive correlation 
with HOMA-IR/insulin, which was essentially the same as results that obtained 
for the univariate exposure-response map in the BKMR model. Association of 
exposure to PFASs on glucose metabolism indices showed positive interactions 
between PFOS and PFHxS and negative interactions between PFOA and PFNA/
PFOS/PFHxS.

OPEN ACCESS

EDITED BY

Azubuike Chukwuka,  
National Environmental Standards and 
Regulations Enforcement Agency (NESREA),  
Nigeria

REVIEWED BY

Pramita Sharma,  
University of Burdwan, India
Tope Atere,  
Osun State University, Nigeria

*CORRESPONDENCE

Lijian Lei  
 wwdlijian@sxmu.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 15 January 2024
ACCEPTED 13 March 2024
PUBLISHED 03 April 2024

CITATION

Tian Q, Yang Y, An Q, Li Y, Wang Q, Zhang P, 
Zhang Y, Zhang Y, Mu L and Lei L (2024) 
Association of exposure to multiple 
perfluoroalkyl and polyfluoroalkyl substances 
and glucose metabolism in National Health 
and Nutrition Examination Survey 2017–2018.
Front. Public Health 12:1370971.
doi: 10.3389/fpubh.2024.1370971

COPYRIGHT

© 2024 Tian, Yang, An, Li, Wang, Zhang, 
Zhang, Zhang, Mu and Lei. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 03 April 2024
DOI 10.3389/fpubh.2024.1370971

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1370971&domain=pdf&date_stamp=2024-04-03
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1370971/full
mailto:wwdlijian@sxmu.edu.cn
https://doi.org/10.3389/fpubh.2024.1370971
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1370971


Tian et al. 10.3389/fpubh.2024.1370971

Frontiers in Public Health 02 frontiersin.org

Conclusion: Our study provides evidence that positive and negative correlations 
between PFASs and FPG and HOMA-IR/insulin levels are observed, respectively. 
Combined effects and interactions between PFASs. Given the higher risk of 
glucose metabolism associated with elevated levels of PFAS, future studies are 
needed to explore the potential underlying mechanisms.

KEYWORDS

perfluoroalkyl and polyfluoroalkyl substances, National Health and Nutrition 
Examination Survey, glucose metabolism, least absolute shrinkage and selection 
operator, Bayesian kernel machine regression

1 Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class 
of synthetic chemical that is widely used in various human production 
and daily life applications, such as paper, textiles, furniture, and foam 
fire extinguishers because of their thermal stability, hydrophobicity, 
and oil repellency (1–3). PFASs have high migration and contaminated 
ability and can be detected in environmental samples (such as water 
and soil), sera from various animal tissues, and human bodies (4–6). 
Additionally, PFASs have a significant bioaccumulation effect and a 
long half-life in the human body, making their degradation difficult (7). 
Animal experiments and epidemiological studies have demonstrated 
that PFASs have genotoxicity, reproductive toxicity, neurotoxicity, and 
developmental and endocrine-disrupting effects (8, 9).

There is growing evidence that PFASs are associated with a variety 
of health problems, with glucose metabolism disorder among them (10). 
Glucose metabolism disorder can cause many diseases, with diabetes 
being the most common, and has become a major public health issue 
(11). FPG, Insulin and homeostasis model assessment for insulin 
resistance (HOMA-IR) are important detection indices of glucose 
metabolism. FPG level was highly correlated with the presence of 
diabetic complications (12). Insulin is secreted by pancreatic β-cells, and 
human blood insulin levels can assess pancreatic β-cell function (13). 
Insulin resistance refers to the target organs of insulin action, such as 
liver, muscle and other reduced sensitivity to insulin action, and the 
normal physiological response of insulin cannot be performed (14). The 
most widely used assessment of insulin resistance is HOMA-IR (15). 
Early identification and control of these indices can reduce the harm of 
glucose metabolism disorder to the body and improve the prognosis.

Currently, epidemiological studies on the effects of PFASs on 
glucose metabolism have yielded conflicting and inconclusive results. 
The Diabetes Prevention Project analyzed the relationship between 
serum PFASs concentrations and blood glucose indices and found 
that perfluorooctane sulfonates acid (PFOS) and perfluorooctanoic 
acid (PFOA) concentrations were positively associated with the 
function of HOMA-IR, fasting blood glucose and β cells function (1). 
The level of serum PFASs 1871 adults was measured in the 2013–2014 
National Health and Nutrition Examination Survey (NHANES) in 
the United  States revealed that branched-chain PFOA level was 
positively correlated with increased FPG (10). However, a study on 
obese children in Ohio found no statistical significance between 
PFASs and blood glucose levels (16). Nelson et al. analyzed data from 
NHANES (2003–04) and found no significant association between 
the PFASs (PFOA, perfluorononanoic acid (PFNA), PFOS, and 
perfluorohexane sulfonic acid (PFHxS)) and HOMA-IR (2). 
Although several studies demonstrated a positive association between 
serum PFASs levels and glucose metabolism indices, various studies 
have also determined there to be  a non-significant or inverse 
association. Therefore, further investigation into the relationships 
between PFASs exposure and glucose metabolism is warranted.

At present, the mechanism of PFASs affecting glucose metabolism 
is also not clear, and some researchers believe that it may be related to 
the activation of Peroxisome proliferator activated receptors (PPAR) 
(17, 18). PPAR belongs to the nuclear hormone receptor superfamily 
that regulates lipid, hormonal, and glucose metabolism and is 
considered possibly the major target of PFASs (19). PFASs can activate 
signaling pathways mediated by all PPAR isoforms (PPARα, PPARβ, 
PPARγ) (20). Moreover, PPARα may be a preferential target for PFAS 
above the other PPAR isoform (21). Toxicological studies have found 
that PFOA can also increase insulin sensitivity and glucose tolerance 
in mice by affecting the PI3K-AKT signaling pathway in the liver, 
causing an increase in fasting blood glucose level and a decrease in 
liver glycogen content in mice (22).

Additionally, most of the previous studies have focused on the 
biological toxicity of individual PFASs; however, in real-life settings, 
multiple PFASs often co-exist and interact during exposure, uptake, 
and metabolism processes, and this interaction can result in complex 
effects on body glucose metabolism. Currently, the specific effects of 
combined exposure to multiple PFASs on glucose metabolism remain 
unknown. Therefore, to provide new evidence on the relationships of 
PFASs exposure and glucose metabolism, we aimed to examine the 
relationships between exposure to multiple PFASs and glucose 
metabolism indices in this study by analyzing the NHANES data from 

Abbreviations: PFASs, perfluoroalkyl and polyfluoroalkyl substances; NHANES, 

National Health and Nutrition Examination Survey; FPG, fasting plasma glucose; 

HOMA-IR, homeostasis model assessment for insulin resistance; LASSO, least 

absolute shrinkage and selection operator; BKMR, Bayesian kernel machine 

regression; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFUA, 

perfluoroundecanoic acid; PFHxS, perfluorohexane sulfonic acid; PFOS, 

perfluorooctane sulfonates acid; PFDeA, perfluorodecanoic acid; PPAR, peroxisome 

proliferator activated receptors; IQR, interquartile range; VIF, variance inflation 

factor; PIP, posterior inclusion probability; GPR40, human G protein-coupled 

receptor 40; PPAR-α, peroxisome proliferator-activated receptor alpha; n-PFOA, 

n-perfluorooctanoic acid; Sb-PFOA, branch perfluorooctanoic acid isomers; n-

PFOS, n-perfluorooctane sulfonic acid; Sm-PFOS, perfluoromethylheptane sulfonic 

acid isomers.

https://doi.org/10.3389/fpubh.2024.1370971
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tian et al. 10.3389/fpubh.2024.1370971

Frontiers in Public Health 03 frontiersin.org

2017 to 2018, using the Least absolute shrinkage and selection 
operator (LASSO) and multiple linear regression analysis and 
Bayesian kernel machine regression (BKMR) models.

2 Materials and methods

2.1 Study population

Data on the study participants were obtained from the NHANES 
databases. NHANES is a unique 2 years cross-sectional survey of the 
health and nutrition status of the U.S. population that collects data on 
demographic, socioeconomic, and health-related issues through 
interviews, standardized exams, and biometric specimen collection. The 
health screening was conducted at a mobile Screening Center (MEC) 
after the participants had already participated in a household interview. 
The methods and processes used by NHANES for data collection are 
available on NHANES website1. In the current study, we used data from 
2017–2018 wave which is the latest test data on PFASs in NHANES.

The total sample size in 2017–2018 was 9,254, of which 1929 were 
tested for serum PFASs. Considering that type 1 diabetes mellitus 
accounts for about 90% of total diabetes in children and adolescents 
and is the most common form of childhood diabetes in most parts of 
the world (23); at the same time, pregnant women are at risk of 
gestational diabetes mellitus. 14% of pregnant women worldwide are 
affected by gestational diabetes mellitus which is a global health 
problem, affecting a considerable number of pregnant women (24). 
Therefore, 313 individuals <20 years old, 1,005 individuals who were 
pregnant, taking anti-hyperglycemic drugs or missed main research 
indices were excluded. Finally, a total of 611 individuals were included 
in this study. The National Center for Health Statistics Research Ethics 
Review Board approved NHANES, and all participants provided 
written informed consent. The selection process of research 
participants is summarized in Figure 1.

2.2 Covariates

The demographic database provided information on the gender 
(male, female), age, race (mexican-American, other Hispanic, 
non-Hispanic white, non-Hispanic blacks, other races), marital status 
(married, bereaved spouse, divorce, separation, unmarried, cohabitation), 
poverty, and education level (less than high school education, high 
School Degree, university and above). Information on weight and body 
mass index (BMI) were obtained from obtained from Examination 
database. Information on smoking, alcohol and leisure-time physical 
activity were obtained from Questionnaire database. Smoking status was 
classified as never smoking (fewer than 100 cigarettes or other tobacco 
products in their life), previously smoking (over 100 cigarettes or other 
cigarettes in their life but now quit smoking), and currently smoking 
(100 cigarettes or other cigarettes in their life and still smoking). Drinking 
status was classified as never drinking (no kind of alcohol in their life), 
previously smoking (drinking previously, but not in the past 12 months), 
and now smoking (drinking in the past 12 months). Leisure-time 

1 https://www.cdc.gov/nchs/nhanes/

physical activity for each participant was categorized based on the 
recommended weekly amount of moderate-intensity to vigorous-
intensity activity as follows: (1) below, indicating less than 150 min per 
week; (2) meet, indicating 150 to 300 min per week; (3) exceed, indicating 
more than 300 min per week.

2.3 Laboratory measurement methods

2.3.1 Blood specimen collection
Each study participants need to meet the 8 to less than 24 h fasting 

criteria and draw venous blood in a fasting state. The phlebotomist 
collected study participant’s peripheral venous blood into 2 mL gray 
tubes for FPG and into 15 mL red top tubes for PFASs and insulin. 
Centrifuge the 2 mL gray tube to yield plasma and transfer at least 
0.5 mL plasma from this tube into 2 mL vessels. Centrifuge the red top 
tubes to yield serum and remove serum into 5 mL sterile cryovials for 
PFASs and 2 mL vessels for insulin. Store under appropriate frozen 
(−30°C) conditions until they are tested.

2.3.2 Measurement of serum PFASs concentration
Online solid phase extraction coupled to high-performance liquid 

chromatography-turbo ion spray ionization-tandem mass 
spectrometry was used for the quantitative detection of the PFASs. A 
total of six perfluorinated compounds, including PFOA, PFOS, 
perfluorodecanoic acid (PFDeA), PFHxS, PFNA, and 
perfluoroundecanoic acid (PFUA), were analysed in this study. Notably, 
the PFOA and PFOS used in this manuscript refer to the sum of linear 
and branched. (The description of measurements of PFASs for 
NHANES 2017–2018 presents n-perfluorooctanoic acid (n-PFOA), 
Branch perfluorooctanoic acid isomers (Sb-PFOA), n-perfluorooctane 
sulfonic acid (n-PFOS), Perfluoromethylheptane sulfonic acid isomers 
(Sm-PFOS)). The limits of detection (LOD) of the six PFASs were all 
0.1 ng/mL. Following NHANES analysis guidelines, PFASs below the 
LOD were expressed using LOD/ 2 . Details on the analytical 
methodology can be found on the NHANES website2.

2.3.3 Measurement of glucose metabolism 
indices

FPG were determined by hexokinase initiation using the Roche/
Hitachi cobas c system (c311). Insulin was measured using the Tosoh 
AIA system analyzer. Homeostasis model assessment for insulin 
resistance (HOMA-IR) was calculated as follows: HOMA-IR = FPG 
(mmol/L) × insulin (mIU/L)/22.5.

2.4 Statistical analysis

We calculated weighted means (±standard deviation [SD]) using the 
NHANES primary sampling unit, strata, and weights of environmental 
samples for continuous variables and frequencies (proportions) for 
categorical variables. Means and standard deviations (SDs) for continuous 
variables with normally distributed distribution, medians and 
interquartile ranges (IQRs) for continuous variables with non-normally 

2 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/PFAS_J.htm

https://doi.org/10.3389/fpubh.2024.1370971
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.cdc.gov/nchs/nhanes/
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/PFAS_J.htm


Tian et al. 10.3389/fpubh.2024.1370971

Frontiers in Public Health 04 frontiersin.org

distributed distribution, and proportions for binary or categorical 
variables were displayed. The distributions of serum PFAS were generally 
right-skewed, therefore, were ln-transformed was conducted. Spearman 
correlation analysis were presented using correlation heat maps.

Cluster analysis was performed based on the concentration of 
PFASs. K-means algorithm is the most used clustering method, which is 
simple to operate, computationally efficient, so K-means algorithm was 
used in this study (25). First, the logarithmic transformation of PFASs 
concentration was performed to achieve an approximate normal 
distribution. After the data was standardized, the index of sum of squared 
error provided by Factoextra package in R 4.2.2 was used to determine 
the optimal number of clusters. The overall population was divided into 
separate subgroups using the k-means algorithm. The ratio of the average 
concentration in each subgroup to the average concentration in the total 
participants of each PFASs was calculated to further assess the exposure 
level. The Kruskal–Wallis H and Chi-square tests were used to compare 
differences in baseline information and the levels of glucose metabolism 
indices between subgroups. Variables showing significant differences 
(p < 0.05) were used as covariates for multiple liner regression analysis to 
control for potential confounding factors.

Since diabetes is often diagnosed before the age of 50 (26); people 
under the age of 50 are the most active workforce, the working group 
affected by diabetes imposes a high economic burden on the country, 
so the study of glucose metabolism in people under 50 is significant 
(27); considering that glucose metabolism indices are easily influenced 
by age and the age range of the study population was large, the study 
participants were categorized into two groups: ≤50 years old and 
>50 years old for correlation and regression analyses. Next, The 
Kruskal–Wallis H test was used to compare differences in PFASs levels 
between different age groups. Then, the mixed effects of PFASs were 
analyzed using LASSO and BKMR models.

To explore the association of single PFASs with glucose 
metabolism indices in the mixture of PFASs exposure, and to avoid 

the potential collinearity among the variables included in the 
regression model, the multi-PFASs exposure model was established 
using LASSO regression for the six PFASs based on adjusting the 
confounding factors of sex, age, alcohol consumption, race, leisure-
time physical activity, BMI, weight and poverty ratio. The coefficient 
distribution of these six PFASs was used as the penalty parameter for 
LASSO regression path selection, and the PFASs related to glucose 
metabolism indices were screened using five cross-validations. 
Subsequently, the selected elements of PFASs were included in the 
multiple linear regression model and analyzed the regression 
coeffcients and 95% confidence intervals (95% CI). The variance 
inflation factor (VIF) was calculated to evaluate the multicollinearity 
of PFASs in the model. It is generally believed that if the VIF of an 
independent variable is >10, there is a multicollinearity problem 
between the independent variable and other independent variables.

Furthermore, we used the BKMR model as part of the sensitivity 
analysis and further explored the mixed effects of multiple PFASs 
exposure on glucose metabolism indices. BKMR utilizes a flexible 
non-parametric approach to assess dose–response relationships, 
overcoming the disadvantage that conventional methods may 
be limited by multicollinearity and model selection error, to more 
reliably assess the health effects of environmental chemical mixtures 
(28). This study used the BKMR model to present the cumulative 
effect of the mixture of the six PFASs, the univariate expose-response 
relationships between PFASs and glucose metabolism indices and the 
interactions among individual PFASs. The BKMR analysis included 
the same covariates as the LASSO regression and calculated the 
posterior inclusion probability (PIP) to quantify the relative 
importance of each element to glucose metabolism, with values 
ranging from 0 to 1. The “BKMR” and “ggplot2” packages of R4.2.2 
were used to build the BKMR model and present the results. The data 
were combined and analyzed using R4.2.2 software, and p < 0.05 was 
presented at the significance level.

FIGURE 1

NHANES database research participants screening flow chart. (Data screening from top to bottom as indicated by the arrow).
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3 Results

3.1 General condition of the study 
participants and distribution of blood 
PFASs

As shown in Table 1, 611 participants were included in this study 
comprising 308 males and 303 females, which accounted for 50.4 and 
49.6% participants, respectively. Never smokers and individuals with 

a history of alcohol consumption accounted for 56.3 and 91.3%, 
respectively, and the median age was 53 years.

Except for PFUA, the blood detection rate of the other five PFASs 
exceeded 85%. The detection rate and concentration of PFASs in the 
blood of the study participants are presented in Table  2. Figure  2 
illustrates that the correlation coefficients between PFDeA and PFUA, 
PFNA and PFUA, and PFNA and PFDeA were 0.85, 0.71, and 0.72, 
respectively. This suggests a strong correlation between some PFASs 
(rs > 0.7).

TABLE 1 Basic characteristics of study participants, grouped by gender (N (%)/M (P25, P75)).

Total (N  =  611) Male (N  =  308) Female (N  =  303) p

Age (median [IQR]) 53.00 [36.00, 64.00] 54.00 [39.00, 65.00] 52.00 [34.00, 64.00] 0.200

Smoking (%) <0.001

Now 111 (18.2) 65 (21.1) 46 (15.2)

Previously 156 (25.5) 95 (30.8) 61 (20.1)

Never 344 (56.3) 148 (48.1) 196 (64.7)

Drinking (%) 0.012

Now 451 (73.8) 240 (77.9) 211 (69.6)

Previously 107 (17.5) 51 (16.6) 56 (18.5)

Never 53 (8.7) 17 (5.5) 36 (11.9)

Race (%) 0.646

Mexican-American 77 (12.6) 38 (12.3) 39 (12.9)

Other Hispanic 48 (7.9) 20 (6.5) 28 (9.2)

Non-Hispanic White 238 (39.0) 125 (40.6) 113 (37.3)

Non-Hispanic Blacks 143 (23.4) 75 (24.4) 68 (22.4)

Other races 105 (17.2) 50 (16.2) 55 (18.2)

Marriage (%) 0.113

Married 306 (50.1) 168 (54.5) 138 (45.5)

bereaved spouse 41 (6.7) 16 (5.2) 25 (8.3)

Divorce 81 (13.3) 38 (12.3) 43 (14.2)

Separation 24 (3.9) 8 (2.6) 16 (5.3)

Unmarried 104 (17.0) 54 (17.5) 50 (16.5)

Cohabitation 55 (9.0) 24 (7.8) 31 (10.2)

Education (%) 0.806

Less than high school education 108 (17.7) 57 (18.5) 51 (16.8)

High school degree 140 (22.9) 68 (22.1) 72 (23.8)

University and above 363 (59.4) 183 (59.4) 180 (59.4)

Leisure-Time Physical Activity <0.001

Below 365 (59.7) 159 (51.6) 206 (68.0)

Meet 44 (7.2) 30 (9.7) 14 (4.6)

Exceed 202 (33.1) 119 (38.6) 83 (27.4)

BMI(median [IQR]) 28.40 [24.50, 33.80] 27.80 [24.98, 31.80] 29.00 [23.95, 35.85] 0.062

Weight(median [IQR]) 80.60 [67.00, 95.90] 84.50 [73.35, 98.62] 2.43 [60.10, 91.45] <0.001

Poverty ratio (median [IQR]) 2.20 [1.24, 4.25] 2.43 [1.31, 4.56] 2.03 [1.22, 4.06] 0.165

SBP (median [IQR]) 125.00 [113.00, 137.00] 125.50 [116.00, 137.00] 123.00 [109.00, 136.50] 0.009

DBP (median [IQR]) 73.00 [65.00, 79.00] 74.50 [67.00, 82.00] 71.00 [64.00, 77.00] <0.001

Data are presented as the median (IQR) or frequency (percentage).
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3.2 Subgroup analysis of the relationship 
between PFASs and glucose metabolism 
indices

3.2.1 Cluster analysis based on PFASs exposure
By observing the the cluster heatmap (Figure 3), we found that 

individuals highly exposed to one type of PFASs were also likely to 
be exposed to other PFASs simultaneously. As can be seen in the 
Figure 4, the exposure levels of the six PFASs in subgroup 3 were 
significantly higher than those in subgroups 2 and 1, while 
subgroup 2 was significantly higher than subgroup 1. From this, 

we  identified subgroups 1, 2, and 3 as low, medium, and high 
exposure subgroups, respectively. Figure 5 shows the comparison 
results of glucose metabolism indices among the three subgroups, 
with statistically significant differences in FPG among all subgroups 
and insulin between the high-exposure and low-exposure groups. 
The trend of FPG and insulin levels showed statistical significance 
(p < 0.05, Table 3), indicating a linear trend between exposure and 
these two glucose metabolism indices. Combined with the box plots 
(Figure 5), it was found that FPG levels showed an elevated trend 
with increasing exposure to PFASs. However, insulin demonstrated 
a decreasing trend with increasing exposure to PFASs, indicating an 
association between PFASs exposure and changes in glucose 
metabolism levels. The weighted basic characteristics of the three 
subgroups determined based on cluster analysis are presented in 
Table 4. Statistically significant differences were observed between 
the groups in terms of gender, age, alcohol consumption, race, and 
poverty ratio.

3.2.2 Comparison of PFASs levels between the 
two age groups

As shown in Table 5, the differences in serum levels of six PFASs 
were statistically significant between the two groups with all 
p < 0.001. Except for PFUA and PFDeA, the remaining four PFASs 
levels were significantly higher in ≤50 year old group than in 
>50 year old group.

TABLE 2 Detection rate and concentration of PFASs (ng/mL) in the 
population (median [IQR]).

PFASs (median 
[IQR])

%>LOD Median [IQR]

PFOA 100.0% 1.47 [0.97, 2.17]

PFOS 99.7% 5.00 [2.90,8.30]

PFDeA 88.5% 0.20 [0.10, 0.30]

PFHxS 99.2% 1.20 [0.70, 2.00]

PFNA 92.5% 0.50 [0.30, 0.80]

PFUA 68.4% 0.10 [0.07, 0.20]

Data are presented as the median (IQR) or frequency (percentage).

FIGURE 2

Heat map of PFAS correlation in blood. (The values in the box are the correlation coefficient, with values ranging from −1 to 1).
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3.3 The relationships of single PFASs and 
glucose metabolism indices

As shown in Table  6, among aged ≤50 years group, PFHxS 
(Insuliu:β = −0.194, p < 0.001; HOMA-IR: β = −0.132, p = 0.020) was 
found to be correlated with insulin and HOMA-IR. In the >50 years 

old population, PFNA exhibited a positive correlation with FPG 
(β = 0.059, p < 0.001); insulin and HOMA-IR were negatively correlated 
with PFUA (Insulin: β = −0.133, p = 0.037; HOMA-IR: β = −0.141, 
p = 0.041), and PFOA (Insulin: β = −0.159, p = 0.047; HOMA-IR: 
β = −0.163, p = 0.042) but positively associated with PFNA (Insulin: 
β = 0.191, p = 0.018; HOMA-IR: β = 0.220, p = 0.013). Additionally, the 

FIGURE 3

Heat map of clustering based on the concentration of PFASs in blood. (The vertical axis represents different PFASs. The horizontal axis represents the 
sample).

FIGURE 4

Comparison of PFASs concentrations among three exposure subgroups. (Data are expressed as the ratio of the mean concentration of PFASs in 
subgroups to the population mean; all groups (n  =  6). The horizontal coordinates indicate the relative levels of the mean concentrations of the 
subgroup PFASs to the overall mean, and the vertical coordinates are the six PFASs).
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multiple linear regression models indicated that the VIF of all PFASs 
was less than 10, indicating no multicollinearity among the PFASs 
variables in the regression process.

3.4 The effects of multiple PFASs on 
glucose metabolism indices

As shown in Figure 6, in the ≤50 years-old group, the level of 
FPG showed an increasing trend with the increase of the total level 
of PFASs mixture. PFOS showed a positive expose-response 
relationship with FPG. Negative interaction between PFOS and 
PFHxS may exist. Insulin and HOMA-IR decreased with the 
increase of the total level of PFASs mixture. Further, PFHxS 
demonstrated a clear negative linear relationships with these two 
indices in the expose-response relationship plot, which was 

consistent with the LASSO regression screening results. As PFNA 
concentration percentiles changed from low to high, the negative 
effect of PFOA on insulin/HOMA-IR decreased, indicating the 
possibility of negative interactions between PFNA and PFOA. The 
results presented in Table 7 highlight the significant role of PFHxS 
in the relationships of PFASs on both insulin and HOMA-IR, with 
the highest PIPs (0.990 and 0.796, respectively).

As shown in Figure 7, in the >50 years-old group, the level of FPG 
also showed an increasing trend, corresponding to the total PFASs 
mixture levels. The univariate expose-response diagram showed a 
linear relationships between the six PFASs and the level of FPG. No 
interactions were observed between the PFASs. The insulin and 
HOMA-IR results were similar-both levels demonstrated a downward 
trend with the increase in the overall level of the PFASs mixture. 
Furthermore, the univariate expose-response relationships showed 
that all PFASs had linear relationship with these two indices. PFOA, 
PFUA and PFHxS showed a negative expose-response relationship 
with these two indices while PFOS and PFNA demonstrated a positive 
relationship, which was consistent with the LASSO regression 
screening results. In the bivariate exposed-response relationship plots 
of insulin or HOMA-IR, negative interactions were found between 
PFOA and PFNA/PFOS, and positive interaction was observed 
between PFOA and PFHxS in the bivariate exposed-response 
relationship plots of HONA-IR. The results presented in Table  5 
highlight the significant role of PFNA in the relationships of PFASs on 
FPG, with the highest PIPs (0.356).

As shown in Figure 8, all possible interactions between PFASs 
were summarized, and it was found that PFOA could interact with 
multiple PFASs, and PFOA played an important role in the combined 
influence of multiple PFASs on glucose metabolism.

FIGURE 5

Comparison of glucose metabolism indices between the three exposure subgroups. (Blue, yellow, and gray represent the high, medium, and low 
exposure groups, respectively. (Data are expressed as mean  ±  SD; all groups (n  =  3)). The ordinate represents the logarithmic concentration of glucose 
metabolism indices, and the horizontal coordinate is the exposure subgroup).

TABLE 3 Trend test of glucose metabolism indices in three exposure 
subgroups.

Linear 
term

Sum of 
squares

F p

FPG
Unweight 0.153 17.408 <0.001

Weighted (E) 0.147 16.682 <0.001

HOMA-IR
Unweight 0.385 3.243 0.072

Weighted (E) 0.410 3.453 0.064

Insulin
Unweight 0.634 6.125 0.014

Weighted (E) 0.654 6.320 0.012

Data are presented as equality of variances or equality of variances.
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4 Discussion

In this study, 611 participants from the 2017–2018 NHANES 
cohort were selected. Cluster analysis, LASSO regression, and BKMR 
regression models were used to explore the relationships between the 

six PFASs and glucose metabolism indices. The results showed that 
with the increase of PFASs exposure, the FPG level showed an upward 
trend, while HOMA-IR/insulin demonstrated a downward trend. 
PFNA and FPG had a positive relationship. PFOA, PFUA, and PFHxS 
showed negative correlations with HOMA-IR/insulin, whereas PFNA 

TABLE 4 Characteristics of the high-, medium-, and low-exposure groups (N (%)/M (P25, P75)).

Low exposure group 
(N  =  160)

Medium exposure 
group (N  =  320)

High exposure group 
(N  =  131)

p

Age (median [IQR]) 41.00 [29.75, 56.00] 54.00 [38.00, 65.00] 61.00 [49.00, 73.00] <0.001

Gender (%) <0.001

Male 41 (25.6) 193 (60.3) 74 (56.5)

Female 119 (74.4) 127 (39.7) 57 (43.5)

Smoking (%) 0.216

Now 30 (18.8) 65 (20.3) 16 (12.2)

Previously 35 (21.9) 85 (26.6) 36 (27.5)

Never 95 (59.4) 170 (53.1) 79 (60.3)

Drinking (%) 0.022

Now 113 (70.6) 242 (75.6) 95 (72.5)

Previously 23 (14.4) 59 (18.4) 24 (18.3)

Never 24 (15.0) 19 (6.0) 12 (9.1)

Race (%) <0.001

Mexican-American 31 (19.4) 40 (12.5) 6 (4.6)

Other Hispanic 11 (6.9) 30 (9.4) 7 (5.3)

Non-Hispanic White 61 (38.1) 139 (43.4) 38 (29.0)

Non-Hispanic Blacks 35 (21.9) 69 (21.6) 39 (29.8)

Other races 22 (13.8) 42 (13.1) 41 (31.3)

Marriage (%) 0.100

Married 69 (43.1) 162 (50.6) 75 (57.3)

Bereaved spouse 8 (5.0) 21 (6.6) 12 (9.2)

Divorce 19 (11.9) 46 (14.4) 16 (12.2)

Separation 9 (5.6) 10 (3.1) 5 (3.8)

Unmarried 34 (21.2) 53 (16.6) 17 (13.0)

Cohabitation 21 (13.1) 28 (8.8) 6 (4.6)

Education (%) 0.584

Less than high school education 25 (15.6) 62 (19.4) 21 (16.0)

High School Degree 43 (26.9) 68 (21.2) 29 (22.1)

University and above 92 (57.5) 190 (59.4) 81 (61.8)

Leisure-Time Physical Activity 0.031

below 94 (58.8) 177 (55.3) 94 (71.8)

meet 11 (6.9) 26 (8.1) 7 (5.3)

exceed 55 (34.4) 117 (36.6) 30 (22.9)

BMI(median [IQR]) 30.15 [25.30, 37.88] 28.50 [24.80, 33.50] 26.90 [23.40, 30.80] <0.001

Weight(median [IQR]) 83.35 [66.92, 102.95] 82.10 [68.97, 96.25] 73.20 [36.60, 90.50] 0.001

Poverty ratio (median [IQR]) 1.69 [0.98, 2.79] 2.44 [1.35, 4.29] 3.04 [1.46, 5.00] <0.001

SBP (median [IQR]) 120.00 [109.00, 134.25] 125.00 [114.00, 137.00] 126.00 [116.00, 135.00] 0.018

DBP (median [IQR]) 71.50 [65.00, 79.00] 73.00 [66.00, 79.00] 73.00 [67.00, 80.00] 0.679

Data are presented as the median (IQR) or frequency (percentage).
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mainly had positive correlation. Negative interactions were observed 
between PFOA and PFNA/PFOS, PFOS and PFHxS, while positive 
interactions were found between PFOA and PFHxS. Notably, PFOA 
can combine with various PFASs (PFOS/PFNA/PFHxS) to affect 
glucose metabolism indices.

PFASs exposure was closely associated with the level of 
FPG. The results of this study revealed that higher exposure to 
PFASs corresponded to a higher level of FPG, with PFNA having 
the greatest influence. A cross-sectional studies for adolescents and 
adults demonstrated that elevated serum PFNA concentration was 
associated with hyperglycemia (95% CI: 1.39–7.16) (29, 30). A 
nested case-control study also found that mixed PFASs homologs 
could affect glucose homeostasis by increasing 1 h glucose levels, 
with PFNA being the main contributor (31). The reason may be that 
PFNA is a kind of long-chain PFASs that is difficult to degrade and 

can lead to higher PPARα activation (32), which also explains the 
prominent position of PFNA in the relationship between PFASs 
and FPG.

Insulin is a protein hormone synthesized and secreted by islet 
β cells, which binds to target cell receptors and activates signaling 
pathways leading to various metabolic changes, most notably 
increasing glucose uptake and lowering blood glucose levels (33). 
Another marker of diabetes is insulin resistance that is measured 
using HOMA-IR. The results of this study demonstrated that 
exposure to mixed PFASs was associated with lower insulin and 
HOMA-IR levels, while PFOA, PFUA, and PFHxS were negatively 
correlated with both. Another study of the NHANES database also 
found PFASs mixture exposure were associated with decreased 
INS and HOMA-IR (34). Studies conducted in Cincinnati found 
a marginal negative correlation between PFOA levels and insulin/
HOMA-IR, and another study in the New York reported a negative 
correlation between PFHxS and both (35, 36), which were 
consistent with the present study. In addition, we also found that 
PFNA was positively associated with both insulin and HOMA-IR 
levels. Zeeshan et al. analyzed data from the “Isomers of C8 Health 
Project in China,” and also found that PFNA was significant 
positive associations with insulin and HOMA-IR (37). However, 
there were some studies with opposite results to the present study. 
For example, Zeeshan et al. found significant positive correlations 
between PFOA, PFUA, PFHxS, and both insulin and HOMA-IR 
(37); some researchers found no significant correlations between 
PFOA/PFNA/PFHxS and HOMA-IR (2, 38). The analysis of 
similar and contradictory epidemiological results with this study 
found that different overall exposure levels in the study population 

TABLE 5 Comparison of PFASs levels between the two age groups.

PFASs 
(median 
[IQR])

≤50  years old 
group 

(N  =  278)

>50  years old 
group 

(N  =  333)

p

PFOA 1.27 [0.77, 1.77] 1.67 [1.07, 2.47] <0.001

PFOS 3.40 [2.12, 5.70] 6.30 [3.80, 11.20] <0.001

PFUA 0.10 [0.07, 0.20] 0.10 [0.07, 0.20] <0.001

PFNA 0.30 [0.20, 0.60] 0.50 [0.40, 0.90] <0.001

PFHxS 0.95 [0.50, 1.60] 1.40 [0.90, 2.20] <0.001

PFDeA 0.20 [0.10, 0.30] 0.20 [0.10, 0.30] <0.001

Data are presented as the median (IQR).

TABLE 6 Regression coefficients of population glucose metabolism indices and blood PFASs concentrations (95% CI).

Age groups Glucose 
metabolism indices

PFASs β 95% CI p VIFa

≤50 years old

FPG PFOS 0.006 (−0.019, 0.033) 0.6149 1.301

Insulin

PFOA −0.013 (−0.171, 0.1145) 0.874 2.238

PFHxS −0.194 (−0.244, −0.143) <0.001 2.114

PFUA −0.028 (−0.143,0.101) 0.735 1.406

HOMA-IR

PFOA −0.027 (−1.934, 0.139) 0.749 2.238

PFHxS −0.132 (−0.243, −0.021) 0.020 2.114

PFUA −0.021 (−0.149, 0.108) 0.754 1.406

>50 years old

FPG PFNA 0.059 (0.026, 0.091) <0.001 1.112

Insulin

PFOA −0.159 (−0.219, −0.103) 0.047 2.613

PFOS 0.053 (−0.080, 0.186) 0.436 3.414

PFHxS −0.031 (−0.160, 0.099) 0.645 2.510

PFNA 0.191 (0.033, 0.349) 0.018 3.763

PFUA −0.133 (−0.258, −0.009) 0.037 2.442

HOMA-IR

PFOA −0.163 (−0.258, −0.092) 0.042 2.631

PFOS 0.554 (−0.090, 0.200) 0.455 3.414

PFHxS −0.029 (−0.170,0.112) 0.685 2.510

PFNA 0.220 (0.048, 0.391) 0.013 3.763

PFUA −0.141 (−0.277, −0.006) 0.041 2.442

aVIF refers to the variance inflation factor, which is generally accepted if the VIF of an independent variable is >10. It indicates that there is a covariance problem between that independent 
variable and other independent variables.
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may influence the association of PFASs with indicators of glucose 
metabolism. The results of studies analyzing populations or 
countries with lower concentrations of serum PFASs were more 
consistent with this study, concluding that there was a negative or 
nonsignificant correlation between PFASs exposure and insulin 

and HOMA-IR. For instance, the median serum concentration of 
PFOA was 3.8 ng/mL in NHANES (2003–2004) (2), 2.46 ng/mL in 
the Canadian Health Measures Survey (2007–2009) (38), and 
1.47 ng/mL in this study. In studies where there were significant 
positive correlations, participants had a higher median PFOA 

FIGURE 6

BKMR study the correlation of FPG, HOMA-IR and Insulin with PFASs in the ≤50  years-old group. (A–C): overall effect (95%CI) of PFASs. h(Z) can 
be interpreted as the correlations of FPG, HOMA-IR and insulin with blood PFASs. (D–F): exposure-response plots of FPG, HOMA-IR and Insulin against 
each PFAS, with other PFASs held at the median. h(Z) can be interpreted as the correlations of FPG, HOMA-IR and Insulin with blood PFASs. (G–I): 
bivariate expose-response relationship. Each cell represented the exposure-response curve for the column PFASs when the row PFASs was fixed at 
25th, 50th, or 75th percentile and the remaining PFASs were fixed at their medians.

TABLE 7 A posteriori inclusion probability (PIPs) of the effect of PFASs on glucose metabolism indices.

Variable ≤50  years-old group >50  years-old group

FPG Insulin HOMA-IR FPG Insulin HOMA-IR

PFOA 0.016 0.130 0.376 0.012 0.856 0.866

PFOS 0.488 0.096 0.374 0.048 0.576 0.586

PFDeA 0.326 0.076 0.488 0.032 0.231 0.355

PFHxS 0.136 0.990 0.796 0.016 0.688 0.458

PFNA 0.012 0.042 0.312 0.356 0.832 0.832

PFUA 0.026 0.056 0.326 0.028 0.720 0.796

Data are presented as PIP. PIP value reflects the relative importance of PFASs influence on outcome indices of glucose metabolism, and the value range is (0, 1).
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concentration, such as the European Young Heart Study, which 
measured a median PFOA concentration of 9.7 ng/mL and 9.0 ng/
mL in men and women, respectively (39). The biological 
mechanisms associated with PFASs and insulin resistance are 
unclear. Animal studies have shown that in mice exposed to PFAS, 
PFAS negatively regulates the protein kinase B (PKB) pathway in 
white adipose tissue, resulting in increased glucose and decreased 
insulin and insulin resistance (40). PFASs also have affinity to 
PPAR-γ and exposure to PFASs may also trigger expression of 

store free fatty acids and regulate the transcription of various 
insulin-related genes through activation of PPAR-γ and ultimately 
enhance insulin sensitivity (17, 34, 41). Although the findings 
from toxicology studies provide valuable insights, population data 
are lacking, so further research is needed to clarify the 
underlying mechanisms.

The results of this study showed that PFASs had different 
interactions in different age groups, for example, in terms of the 
relationships of PFASs and FPG, a negative interaction was 
observed between PFOS and PFHxS in ≤50 years old groups, 
while no interaction was found in >50 years old groups. At the 
same time, the differences in the serum levels of the six PFASs 
were all statistically significant between the two age groups in this 
study. Some researchers found that the combined toxic effects 
between PFASs may vary with the concentration (42). A study 
found that the toxic effect of high dose PFASs exposure 
experiment is not the same as that of low dose PFASs exposure 
experiment, that is, no effect under high dose exposure does not 
mean that there is no effect under low dose exposure (43, 44). 
Therefore, different concentrations may explain the different 
interaction of PFASs in different age groups. Furthermore, the 
results of the BKMR model indicate that there is an interaction 
between PFASs, especially between PFOA and multiple PFASs 
(PFOS/PFUA/PFHxS). PFASs are a large family containing 
thousands of compounds, of which PFOA is the most typical and 

FIGURE 7

BKMR study the correlation of FPG, HOMA-IR and Insulin with PFASs in the >50  years-old group. (A–C): overall effect (95%CI) of PFASs. h(Z) can 
be interpreted as the correlations of FPG, HOMA-IR and Insulin with blood PFASs. (D–F): exposure-response plots of FPG, HOMA-IR and Insulin against 
each PFAS, with other PFASs held at the median. h(Z) can be interpreted as the correlations of FPG, HOMA-IR and insulin with blood PFASs. (G–I): 
bivariate expose-response relationship. Each cell represented the exposure-response curve for the column PFASs when the row PFASs was fixed at 
25th, 50th, or 75th percentile and the remaining PFASs were fixed at their medians.

FIGURE 8

Summary of PFASs interactions. (A line between PFASs indicates 
possible interaction, with a black line indicating negative interaction 
and a red line indicating a positive interaction).
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most widely used (45). Studies show that PFOA is the final 
metabolite of various PFASs in the environment (46). Activation 
of PPAR-α is thought to play a key role in the production of toxic 
effects by PFASs, and PFOA is a potent agonist of PPAR-α (47). 
The above may be the reason for the interaction of PFOA and 
multiple PFASs.

Previous studies have primarily focused on the effects of a single 
PFAS on glucose metabolism, with limited analysis of mixed 
exposures, and the toxic mechanism of mixed exposure of PFASs is 
currently unknown. A study found that the six PFASs (PFHxS, PFOA, 
PFNA, PFDA, PFUA, and PFDeA) can bind to human G protein-
coupled receptor 40 (GPR40), and the increase in intracellular 
calcium level mediated by GPR40 can promote the fusion of insulin-
containing vesicles with plasma, leading to insulin secretion, 
disrupting glucose homeostasis and ultimately aggravating insulin 
resistance (48, 49). An animal study found tha the PFAS mixture 
could cause mitochondrial dysfunction and further disrupt glucose 
and lipid metabolic pathways, ultimately causing metabolic disorders 
(50). Further studies are needed to clarify the combined mechanism 
of action of PFASs in the future.

The strengths of this study are as follows: this study first used the 
method of cluster analysis to automatically categorize the study 
participants into three groups based on PFASs exposure levels. By 
comparing the differences in glucose metabolism levels among these 
exposure groups, the distribution of PFASs among the participants 
and the influence of PFASs exposure levels on glucose metabolism 
indices were effectively presented. Further, unlike previous studies on 
the health effects of exposure to a single PFAS, this study explores the 
relationship between exposure to multiple PFASs and glucose 
metabolism indices. This study used LASSO regression to screen 
PFASs variables and used the BKMR model to evaluate the overall 
mixed effects and interactions of multiple PFASs. These two 
approaches complemented each other.

However, some limitations should be recognized. First, we cannot 
rule out residual and unmeasured confounders (for example, total fat 
or high fructose dietary intake), or consumption of foods packaged 
with food contact materials containing PFASs, which could lead to 
more PFAS exposure. Additionally, the cross-sectional design could 
not tell the causal relationship between PFAS exposure and glucose 
metabolism and biological mechanisms linking PFASs exposure to 
glucose metabolism have yet to be  established. Therefore, further 
experimental studies are required to explore the relevant mechanisms 
underlying the association of serum PFASs with glucose homeostasis 
and metabolic indices.

5 Conclusion

In this study, we analyzed 2017–2018 United States NHANES 
data to assess the relationships between serum concentrations of the 
six PFASs and glucose metabolism indices. It was found that PFOA, 
PFOS, PFUA, PFNA, and PFHxS could play a significant role in the 
relationships of PFASs and glucose metabolism. Moreover, 
interactions were observed between PFOS and PFHxS, and PFOA 
and PFOS/PFHxS/PFNA. Our study provides new evidence for the 
harmful effects of PFASs exposure; however, further longitudinal 
studies are needed to confirm these findings and clarify the 
underlying mechanisms.
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