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Introduction: Amidst an emerging infectious disease outbreak, the rational 
allocation of vaccines and medical resources is crucial for controlling the 
epidemic’s progression.

Method: Analysing COVID-19 data in Taiyuan City from December 2022 to 
January 2023, this study constructed a SVV V EIQHR1 2 3  dynamics model to assess 
the impact of COVID-19 vaccination and resource allocation on epidemic trends.

Results: Vaccination significantly reduces infection rates, hospitalisations, and severe 
cases, while also curtailing strain on medical resources by reducing congestion 
periods. An early and sufficient reserve of medical resources can delay the onset of 
medical congestion, and with increased maximum capacity of medical resources, 
the congestion’s end can be accelerated. Stronger resource allocation capabilities 
lead to earlier congestion resolution within a fixed total resource pool.

Discussion: Integrating vaccination and medical resource allocation can 
effectively reduce medical congestion duration and alleviate the epidemic’s 
strain on medical resource capacity (CCMR).
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1 Introduction

“Emerging infectious diseases” typically denote highly contagious and lethal outbreaks that 
occur within a short timeframe in specific regions (1, 2). The widespread transmission of such 
diseases poses significant challenges to epidemic control, strains healthcare systems, and triggers 
public panic, leading to social unrest and crises that threaten national and regional stability and 
security (3). The COVID-19 outbreak that emerged at the end of 2019 led to numerous infections 
and hospitalisations (4, 5), severely impacting healthcare systems worldwide. For instance, 
Bhaskaran et al. (4) discovered that COVID-19 hospital admissions carried significantly higher 
risks of rehospitalization and death compared to the general population. Additionally, Timothy 
et al. (5) predicted a peak in COVID-19 hospitalizations from November to April of the following 
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year, which poses challenges for the healthcare system. Therefore, 
identifying effective prevention and control measures and enhancing 
the carrying capacity of medical resources (CCMR) during an outbreak 
are crucial for controlling the spread of COVID-19 (6).

The CCMR is a key indicator for preventive implementation and 
epidemic response readiness, encompassing two main aspects (7): 
First, the production and allocation capacity of medical resources, 
which includes the ability to produce and distribute beds, medications, 
medical equipment, and related supplies required for patient 
treatment, reflecting a region’s ability to promptly supplement medical 
resources and its efficiency during an outbreak. Second, the maximum 
number of available medical resources, which is based on the 
production and allocation capacity of medical resources and their 
limited nature indicates the maximum amount of resources that 
medical institutions can provide promptly. For instance, following the 
COVID-19 outbreak in Taiyuan City, hospital admissions surged, and 
departments other than respiratory medicine were repurposed to 
accommodate COVID-19 patients, maxing out bed capacity across all 
departments. During the pandemic, as the number of COVID-19 
patients increased, the shortage of medical resources and resulting 
congestion posed significant public health issues in various locations. 
In a study from Germany, early in the epidemic, to increase the 
capacity for COVID-19 patients, a reduction of bed and operating 
room occupancy of 50.8 ± 19.3% and 54.2 ± 19.1% was reported (8). 
The World Health Organization also highlighted that the severe 
shortage of nursing staff globally could threaten the safety of 
COVID-19 patients (9). Therefore, during an outbreak, assessing the 
carrying capacity of the medical resources, preventing the occurrence 
of medical congestion, shortening the duration of congestion, and 
developing corresponding prevention strategies are essential.

Vaccination is a pivotal strategy in controlling the spread of 
infectious diseases. Amidst the COVID-19 pandemic, nations 
worldwide have prioritised vaccine development and administration 
(10, 11). In China, governmental and professional institutions such as 
the Centres for Disease Control and Prevention, have recommended 
that the public expedite their vaccination process, particularly the 
administration of the booster doses (12). Studies indicate that 
completing a three-dose regimen, significantly reduces infection rates 
(13–17), thereby decreasing the demand for medical resources. 
Although the efficacy of vaccines in reducing infections has been 
widely confirmed (18), research on the relationship between 
vaccination and the CCMR remains insufficient. During the pandemic, 
quantifying the impact of vaccination on CCMR is paramount for 
improving local epidemic prevention and control measures.

Infectious disease dynamics modelling is an essential tool for 
analysing the mechanisms of disease transmission, predicting trends, 
and identifying influencing factors. Existing research encompasses 
three main areas. First, the use of infectious dynamic models to 
analyse the spread of COVID-19 within populations. For instance, 
Mandal et al. (19) established the SPFEIDR model to predict short-
term trends in several severely affected regions in India, identifying 
that reducing interpersonal contact is key to controlling disease 
spread. Zhao et al. (20) developed a SUQC model to characterise the 
COVID-19 dynamics. By fitting it with actual daily incidence data, 
analysed the outbreak in Wuhan and four first-tier cities in China, 
predicting the pandemic’s end time and the final scale of infection 
numbers. Second, the assessment of vaccination effects, such as Ali 
et al.’s (21) SEIIAVR model which mathematically demonstrated that 

increasing the vaccination rate to over 50% can effectively reduce the 
infection rate. Paulo and colleagues (22) suggest that to maximise 
the number of individuals with partial COVID-19 protection, an 
optimisation model based on SEIR dynamics recommends the 
optimal delay for the second vaccine dose, considering crucial 
factors such as the efficacy of a single dose, the anticipated vaccine 
supply pipeline, and the potential emergence of more virulent 
COVID-19 variants, which could significantly reduce ICU 
admissions. Third, the evaluation of the CCMR in different regions. 
Wang et  al. (7) assessed the CCMR of multiple countries post-
outbreak using the SEIARSqTH1H2 model, finding that enhancing 
medical capabilities and testing in tandem can alleviate the epidemic 
and prevent excessive pressure on CCMR. Overall, current studies 
focus on the dynamics of transmission, vaccination rates, and the 
factors affecting CCMR, while there is a lack of discussion on the 
impact of different vaccination strategies on epidemic trends 
and CCMR.

As the capital city of Shanxi Province, Taiyuan boasts convenient 
transportation and abundant medical resources. Data from sentinel 
hospitals between December 6, 2022, and January 13, 2023, revealed a 
COVID-19 mortality rate in Taiyuan below 1/10,000, signifying 
notable success in pandemic control efforts. This study, taking Taiyuan 
as a case example, collected vaccination status and incidence data from 
residents through surveys. Utilising medical resources and patient 
information provided by sentinel hospitals, an SVV V EIQHDR1 2 3  
model simulated vaccination scenarios and epidemic trends during the 
COVID-19 period. The model assessed changes in hospital bed 
occupancy, reflecting the impact of different vaccination levels on 
infection rates, hospitalisations, severe cases, and trends, along with 
CCMR. This provides a scientific basis for optimising vaccination 
strategies and medical resource allocation in Taiyuan.

This study categorised the vaccinated population into four groups: 
those susceptible without vaccination (S), those who have received 
one dose (V1), those who have received two doses (V2), and those who 
have received three doses (V3). We use the number of available hospital 
beds as a quantitative indicator of CCMR. When the number of beds 
hits zero, the CCMR is deemed to have reached its limit, leading to a 
medical congestion. The onset, duration, and end time of this 
congestion serve as metrics for assessing the CCMR. The primary 
assumptions of the study include:

(H1) Excludes transmission from asymptomatic infections and 
those in the incubation period in the model. It is because following 
the easing of control measures and the discontinuation of nucleic acid 
testing, it is widely accepted that the propagation of the novel 
coronavirus is primarily due to individuals exhibiting symptoms of 
the virus.

(H2) Individuals exhibiting symptoms of COVID-19 will either 
be quarantined at home or receive treatment in a hospital.

(H3) Individuals who have been infected will not contract the 
infection again within a short span of time.

(H4) No contagiousness during home quarantine period: Patients 
are considered not to be  infectious during the period of home 
isolation, given that they are unlikely to trigger community 
transmission while in home isolation.

(H5) Provided that there are enough beds, there will also be ample 
healthcare staff and medical equipment. Even in times of healthcare 
stress, although there may be difficulties in housing all patients, those 
admitted to the hospital receive appropriate care.
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(H6) The capacity, contact rate, and severity conversion rate of 
medical resources will change with the development of the epidemic. 
Following the initial stage of an epidemic in a region, the rate of infection 
gradually peaks. A rapid increase in demand for hospital care 
corresponds to an increase in the demand for medical resources. This 
signifies the point at which the epidemic reaches its highest level. During 
this time, social interactions typically decrease as individuals minimise 
their contact with others. Simultaneously, hospitals see a marked 
increase in the number of severe and critical cases brought on by the 
novel coronavirus, compared with earlier levels. Therefore, we propose 
that the methods used to calculate medical resource capacity, contact 
rates, and severity conversion rates all change simultaneously.

(H7) Given that most individuals did not undergo nucleic acid 
testing following the lifting of restrictions, we consider individuals 
presenting symptoms similar to those of COVID-19, such as fever or 
cough, as new cases.

2 Data and method

2.1 Data sources

Taiyuan, the capital city of Shanxi Province, encompasses 10 
administrative districts. Each district contains multiple streets, further 
divided into several communities, typically comprising 1,000 to 3,000 
households (23). This study employed a multi-stage random sampling 
method, selecting two streets randomly from each district and two 
communities from each street. Finally, 1,200 residents were randomly 
chosen from each community for a questionnaire survey. The 
questionnaires were distributed electronically, and the selected residents 
completed them online. In total, 48,000 questionnaires were distributed, 
yielding 39,899 valid responses. The analysis provided daily new case 
numbers and infection rates from December 6, 2022, to January 13, 
2023. According to Zhang et al. (24), Taiyuan had a total population of 
5,420,957 at the end of 2022. The infection rates obtained from the 
survey were extrapolated to the entire population of Taiyuan to estimate 
the daily number of infections citywide. Data on hospitalisations and 
severe cases were provided by the Shanxi Provincial Health Commission 
through the sentinel hospital monitoring system.

2.2 Model

To highlight important differences in the separate or combined 
use of various control strategies within the constraints of limited 
healthcare resources, we constructed an SVV V EIQHR1 2 3  model, as 
shown in Figure  1. We  categorised the initial population into 
susceptible populations (S), populations who had received one dose 
of the vaccine (V1), populations who had received two doses of the 
vaccine (V2), and populations who had received three or more doses 
of the vaccine (V3).In the model, E and I  represent exposed and 
infected individuals, respectively, Q represents individuals who are 
under home quarantine, H  represents individuals who are 
hospitalised and confirmed, Z  and D represent the number of 
patients with severe and critical conditions caused by COVID-19, 
and the number of deaths among hospitalised patients, respectively, 
and R represents individuals who have recovered. The detailed 
definitions of other parameters are given in Table  1. 

N S V V V E I Q H Z D R� � � � � � � � � � �1 2 3  represents the 
whole population.
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In Model 1, individuals in compartments S, V1, V2, and V3 are 
infected by I  at rates of c t� �� , c t� ��1, c t� ��2, and c t� ��3, respectively, 
and then enter the incubation period E. E transitions to I  after 1

ω
 

days. I  may recover at a rate of r2, choose home isolation Q at a rate of 
m2, or be hospitalised H  at a rate of min maxm I d H t Hc1 0, ,� � �� �� �. 
Here, m I1  represents the number of people who need to be hospitalised, 
and d H t Hcmax � � �� �,0  is the number of hospital beds that can 
be  allocated to them. For Q, a proportion of rQ recovers, and a 
proportion of min maxbQ d H t Hc, ,1 0�� � � � �� �� �  is hospitalised, 
where bQ represents hospitalisation demand, and 
1 0�� � � � �� �d H t Hcmax ,  is the number of hospital beds that can 

be allocated to them. For H , some of � t rH� �  become severely ill Z , 
and a proportion of 1� � �� �� t rH  recovers. For Z , a proportion of 
ηrCD  dies, and a proportion of 1�� �� rC  recovers. The parameters are 
defined in Table 1.

Government policies may change in response to the progression 
of the epidemic, leading to dynamic fluctuations in hospital medical 
resources, particularly the number of beds. Following (7), we have 
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developed a model to analyse these changes in bed numbers using the 
logistic growth model:
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where δ  presents the production and allocation capacity of 
medical resources, and Hm indicates the maximum number of beds 
available during the epidemic. Hence, these two factors indicate how 
well equipped the city is to respond to an outbreak of an epidemic. 
Reference (7) used this formula to simulate the dynamic changes in 
the number of beds in the study area. In the early stages of an 
outbreak, the count of hospital beds tends to remain relatively stable. 
This could be because of a lower demand for hospitalisation or a lack 
of clear comprehension of the need for hospital beds. Therefore, by 
solving the previously mentioned logistic equation, we can calculate 
the daily bed count using the following piecewise function (7).
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where H0 represents the initial bed capacity available for 
COVID-19 patients at the onset of the outbreak, and T1 represents the 
pivotal moment at which the city begins to escalate its medical 
resources, including hospital beds. Therefore, based on actual data, 
we set T1 17=  for Taiyuan city. Thus, the daily potential number of 
empty beds was calculated as H tj � �=max H t m I b Qc � � � �� �1 1 0, .

When the new policies related to the COVID-19 pandemic were 
first put into effect on 6 December, restrictions on people’s activities 
were lifted, leading to a marked rise in the rate of contact between 
individuals. This, in turn, facilitated the swift spread of the COVID-19 
pandemic. Subsequently, most individuals started to isolate at home 
or receive treatment in hospitals, which gradually lowered the contact 
rates. Hence, we  propose that the contact rate is a function that 
diminishes over time t, as suggested by Wang et al. (7).
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where c0 represents the contact rate at the initial time. Hence, c0
=c 0� �. cb represents the lowest contact rate given the current control 
strategies, and lim

t
bc t c

��
� � �  with c cb0 > . δ1 represents how to achieve 

a reduction in the rate of contact through exponential decline. Wang 
et al. (7) used this formula to simulate and predict the dynamic 
changes in the number of infected individuals in the study area.

Considering the progression of the epidemic, it is expected that 
the number of severe patients will rise in the later stages of the 
outbreak. Consequently, we use an exponential growth function to 
represent the conversion rate of hospitalised patients into severe cases:
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where ω0 is the initial conversion rate of hospitalisation with 
� �0 0� � �, ω2 denotes how an exponential increase in the conversion 
rate of hospitalisation is achieved, and ωm is the maximum conversion 
rate of hospitalisation under the current situation with lim

t
mt

��
� � �� � .

2.3 Analysis method

This study employs the Latin hypercube sampling and Markov chain 
Monte Carlo (MCMC) simulations to estimate the unknown parameters 
and fit the reported daily new cases, hospitalisations, and severe patient 
numbers in Taiyuan from December 6, 2022, to January 13, 2023, with 
Equation 1. This approach is similar to the methods used in previous 
studies, such as those by Ma et al; Gamerman and Lopes; Haario et al 
(25–27). Utilising the ode45 function in MATLAB software, Equations 1, 
2 are used to calculate the daily number of available hospital beds and 
conduct the sensitivity analysis.

3 Result

3.1 Parameter estimation

3.1.1 Estimation of initial value
By the end of 2022, Taiyuan’s resident population stood at 

5,420,957 (24). The data gathered from the questionnaire survey 
suggest that the rate of individuals who received one, two, and three 
doses of vaccines in Taiyuan City are 1.8, 38.39, and 56.02%, 

FIGURE 1

Transmission diagram of Omicron.

https://doi.org/10.3389/fpubh.2024.1368876
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Guo et al. 10.3389/fpubh.2024.1368876

Frontiers in Public Health 05 frontiersin.org

TABLE 1 Parameter definitions.

Parameters Descriptions

c t� � c0 Initial contact rate

cb Minimum contact rate after the outbreak of the epidemic

δ1 Potential decline rate of contact rate

β Probability of an infected individual transmitting the infection per contact

β1 Transmission rate of infected individual to vaccinated susceptible population with one dose per contact

β2 Transmission rate of infected individual to vaccinated susceptible population with two doses per contact

β3 Transmission rate of infected individual to vaccinated susceptible population with three or more doses per contact

1
1ω

Average duration of latent period

m1 Rate at which the non-home isolated individual with symptoms of COVID-19 was required to be hospitalised

d Rate of the number of hospital beds available for non-home isolated individuals who require medical care

m2 Transmission rate of infected individuals who choose to quarantine at home

b Rate at which home-isolated individuals with symptoms of COVID-19 needed to be hospitalised

� t� � Conversion rate from hospitalisation to severe and critical illness

η Conversion rate from severe and critical illness to death

1
rI

Recovery time for the non-home-isolated individual with symptoms of COVID-19

1
rH

Recovery time for hospitalised individuals

1
rQ

Recovery time for the home-isolated individual with symptoms of COVID-19

1
rZ

Treatment time of critically ill patients in the intensive care unit before rehabilitation

1
rCD

Average time from severe and critical illness to death

1
rC

Recovery time for severe and critical illness

Initial values Description

S 0� � Initial susceptible population

V1 0� � Initial vaccinated susceptible population with one dose

V2 0� � Initial vaccinated susceptible population with two doses

V3 0� � Initial vaccinated susceptible population with three doses

E 0� � Initial exposed population

I 0� � Initial infected population

Q 0� � Initial home-isolated population

H 0� � Initial hospitalised population

Z 0� � Initial population with severe and critical illness

D 0� � Initial dead population

R 0� � Initial recovered population
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respectively. Therefore, we assume V1 0 97722� � � , V2 0 2081151� � � , 
and V3 0 3036854� � � , respectively. Because there were 16,250 new 
cases on 6 December, we assume I 0 16250� � � .

The incubation period of COVID-19 is 1.52 days, about one and a 
half days. Therefore, we assume E 0 16422 17712 2 25278� � � � �/ , and 
thus,S V V V E I0 5420957 0 0 0 0 0 1637021 2 3� � � � � � � � � � � � � � � � � � �
. Due to the relatively low number of hospitalisations, and severe and 
critically ill patients, as well as recoveries on 6 December, 
we assume H Z D R0 0 0 0 0 0 0 0� � � � � � � � � � � �, , , .

The current research indicates that hospitalisations primarily occur 
in secondary and tertiary hospitals. Statistical data reveal that Taiyuan 
City has a total of 64 secondary and tertiary hospitals (24). As per the 
China Health Statistics Yearbook (2022), Taiyuan City’s medical 
institutions collectively have 81,400 beds spread across 164 hospitals. 
Therefore, we estimate that the total number of beds in 64 hospitals in 
Taiyuan City is 64 164 81400 31610/

� � . According to the Introduction 
to the First Hospital of Shanxi Medical University (28, 29), the number 
of respiratory beds is no more than 64 123 7872

� � .

3.1.2 Data fitting
Using the parameters and initial conditions provided above and 

combing with Equations 1, 4, 5, we apply Latin hypercube sampling 
and Markov chain Monte Carlo (MCMC) simulations to estimate the 

unknown parameters and fit the data. This approach is similar to the 
methods used in previous studies, such as those by Ma et al; 
Gamerman and Lopes; Haario et al (25–27). The results of our analysis 
are shown in Figures 2, 3 and Table 2.

Figure 2 presents the fitting results for the number of new cases, 
with Figures 2A–C representing the number of new patients, the 
number of new hospital admissions, and the number of new severe 
and critical patients, respectively. Similarly, Figure 3 displays the 
fitting results for the cumulative number of new cases, with 
Figures 3A–C representing the cumulative number of new patients, 
the cumulative number of new hospital admissions, and the 
cumulative number of new severe and critical patients, respectively. 
According to the fitting results, illustrated in Figures 2A, 3A, the 
number of new cases in Taiyuan City began to rise on December 6th, 
peaked around December 20th, and then gradually declined until 
January 13th. Figures 2B, 3B show that the number of hospitalised 
patients started to increase from December 6th, reached a small 
peak on December 23rd followed by a slight decline, but rose again 
from December 24th and continued until a decrease began on 
January 9th, lasting until January 13th. The data in Figures 2C, 3C 
indicate that the number of severe and critically ill patients remained 
at zero from December 6th to December 23rd, but began to increase 
from December 23rd and had not peaked by January 13th.

FIGURE 2

Fitting results of new cases, inpatients and sever and critical cases from 6 December 2022 to 13 January 2023 in Taiyuan City. (A) The red circles are 
the number of new cases. (B) The red triangle are the number of new inpatients. (C) The red triangles are the number of new sever and critical cases. 
The blue curve in (A-C) represents the corresponding estimated new cases, inpatients and sever and critical cases with the shadow areas as the 
corresponding 95% confidence band.

FIGURE 3

Fitting results of cumulative newly cases, inpatients and sever and critical cases from 6 December 2022 to 13 January 2023 in Taiyuan City. (A) The red circles 
are the number of cumulative newly cases. (B) The red triangles are the number of cumulative newly inpatients. (C) The red triangle are the number of 
cumulative newly sever and critical cases. The blue curve in (A-C) represents the corresponding estimated cumulative newly cases, inpatients and sever and 
critical cases with the shadow areas as the corresponding 95% confidence band.
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The decrease in the number of hospitalised patients after the small 
peak on December 23rd, as shown in Figure 2B, was due to the start 
of resource allocation on that day, as the hypothesis H6 and parameter 
T1, where the daily number of new patients requiring hospitalisation 
exceeded the number of beds available in hospitals. On December 
24th, due to limited resource allocation capabilities, the number of 
available beds was less than the previous day, resulting in a temporary 
decline. Subsequently, as the number of newly allocated beds increased 
daily, more patients had the opportunity to be hospitalised, leading to 
a rise in the number of hospitalised patients until January 9th. The 

decline starting from January 9th was because, by that time, Taiyuan 
City had reached the maximum number of beds that could be allocated 
in the short term. Although a large number of patients still required 
hospitalisation, no further increase in bed numbers was possible, and 
new hospital admissions were mainly due to beds vacated by 
discharged patients.

However, as their condition deteriorates, patients may decide to 
seek medical help. This situation could trigger a rise in hospital 
admissions, compelling the government to modify its epidemic 
prevention strategies, such as augmenting the number of hospital beds 
and other medical resources to ensure that more patients receive 
prompt hospital care. It is important to highlight that the peak in 
hospital admissions did not coincide with the peak in infections but 
was delayed until early January. This could be because patients might 
only exhibit severe symptoms that necessitate hospital care some time 
after being infected. Therefore, there is a certain time gap between the 
peak of infections and the peak of hospital admissions. Moreover, the 
transition from hospitalised patients to severe or critical cases also 
takes a certain amount of time, represented by the parameter ω in the 
model. This could cause the peak of severe or critical cases to lag 
behind the peak of hospital admissions.

3.1.3 Calculation of the daily number of available 
hospital beds

Upon inserting the parameter values from Table 2 into Equation 3 
and utilising the plot function in MATLAB software, we generated 
Figure  4. This figure illustrates a continuous decline in the daily 
potential number of vacant hospital beds in Taiyuan City from 
December 6th to December 20th. From December 20th, 2022, to 
January 24th, 2023, the daily potential number of vacant beds 
dropped to zero, indicating a possible shortage or overcrowding of 
medical resources. However, starting from January 24th, 2023, the 
number of available beds began to increase, suggesting that medical 
resources are gradually becoming sufficient to meet the demands of 
epidemic prevention and control. Figure 4 allows us to conclude that 
the need for hospital beds remained high until 16 January 2023. To 
manage the surge in hospitalisations, most hospitals in Taiyuan City 
reassigned beds from other departments to accommodate patients 
with COVID-19. While this action somewhat mitigated the bed 
shortage issue, the number of available beds remained at zero, owing 
to the high demand for hospitalisation from a large number of 
patients with COVID-19.

3.2 Sensitivity analysis

3.2.1 The impact of different vaccine strategies 
on the final scale of infections, hospitalisations, 
and severe cases

First, we analyse the daily cumulative changes in new infections, 
hospitalised patients, severe cases, and critically ill patients in various 
scenarios. To highlight the effect of different vaccine doses on the final 
extent of disease prevalence, we constructed the following three scenarios:

(S1) The first dose of the vaccine is given to individuals who have 
not yet been vaccinated with the aim of ensuring that all populations 
have received at least one dose of the vaccine.

(S2) Individuals who are vulnerable or have only been 
administered one dose of the vaccine are provided with two doses of 

TABLE 2 Values of parameters.

Parameter Value of 
first 

stage

Value 
of 

second 
stage

Unit Source

c0 25 25.2 year−1 MCMC/Actual 

epidemic

cb 0 5.84 year−1 Actual epidemic/

MCMC

δ1 0 1 year−1 Actual epidemic

β 0.089 0.089 year−1 Actual epidemic

β1 0.046 0.046 year−1 Actual epidemic

β2 0.04 0.04 year−1 Actual epidemic

β3 0.01 0.01 year−1 Actual epidemic

ω1 1.52 1.52 year−1 (30, 31)

m1 1 5 10
8

. � � 0.65 year−1 Actual epidemic

m2 0.12 0.12 year−1 MCMC/Actual 

epidemic

d
2 24 10

5
. � �

3 56 10
7

. � � year−1 Actual epidemic

H0 4,975 4,975 year−1 (26)

Hm 31,610 31,610 year−1 Actual epidemic

δ 0 0.22 year−1 Actual epidemic/

MCMC

rI 0.0685 0.07 year−1 Actual epidemic

b 0.00275 0.0093 year−1 Actual epidemic

rQ
0.06667 0.07 year−1 Actual epidemic

ω0 1 87 10
6

. � �
1 87 10

6
. � � year−1 Actual epidemic

rH 0.5 0.183 year−1 Actual epidemic

η 0.017 0.322 year−1 Actual epidemic

rCD 0.77 0.36 year−1 Actual epidemic

rC 0.03 0.035 year−1 Actual epidemic

T1 17 17 year−1 Actual epidemic

ω2 0 0. 0026 year−1 Actual epidemic

ωm 0 0.18 year−1 Actual epidemic
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the vaccine, ensuring that all populations have received a minimum 
of two doses of the vaccine.

(S3) Individuals who are vulnerable or have only been 
administered one or two doses of the vaccine are considered fully 
vaccinated after receiving three doses of the vaccine. This ensures that 
all populations have received a minimum of three doses of the vaccine.

Based on Model 1, and incorporating the parameter values from 
Tables 2, 3, as well as the scenarios described previously, we utilised 
the ode45 function within Matlab software to generate (Figure 5). The 
simulation results are outlined in Figure 5 and Table 3. Increasing the 
count of individuals receiving one or two vaccine doses can marginally 
decrease the ultimate scope of infections, hospitalisations, and severe 
cases. However, only in S3 can the ultimate scope be  effectively 
diminished, thus restraining the epidemic’s spread. Consequently, for 
Taiyuan City’s inhabitants, merely augmenting the first and second 
vaccine doses is insufficient to effectively mitigate the epidemic, and 
the coverage of the third vaccine dose must be expanded.

3.2.2 The impact of different vaccination 
scenarios on the duration of medical crowding

The data from Figure 5 and Table 3 indicate that ensuring that 
individuals in Taiyuan City who have received one vaccine dose as 
well as those who have not been vaccinated update their vaccination 
status to two doses results in a decrease in the final count of infections, 
hospitalisations, and severe cases. However, this reduction is relatively 
minor, and the difference is not significant. In contrast, ensuring that 

all residents of Taiyuan City receive three doses of the vaccine will 
significantly lower the number of infections, hospitalisations, and 
severe cases. Consequently, we  further analyse the availability of 
empty beds in Taiyuan City under various three-dose vaccination 
strategies, taking into account the actual conditions in Taiyuan City. 
The specific strategies are as follows:

(SS1) Prior to 6 December, both the unvaccinated individuals and 
those who have only received one dose of the vaccine have now 
completed two doses of vaccination. (All subsequent scenarios are 
based on this situation).

(SS2) Prior to 6 December, an extra 500,000 individuals who had 
previously received only two doses of the vaccine have now completed 
a course of three doses.

(SS3) Prior to 6 December, an extra 1 million individuals who had 
previously received only two doses of the vaccine had completed a 
third dose of vaccination.

(SS4) Prior to 6 December, an extra 1.5 million individuals, who 
had previously only received two doses of the vaccine, had completed 
a course of three doses.

(SS5) Prior to 6 December, all individuals who had previously 
received only two doses of the vaccine had completed a third dose.

Based on Model 1, and incorporating the parameter values from 
Tables 2, 3, as well as the scenarios described previously, we utilised 
the ode45 function within Matlab software to generate (Figure 6). The 
findings presented in Figure 6 indicate that augmenting the third dose 
of vaccination can effectively postpone the onset of medical resource 
strain and reduce its duration. This strategy is beneficial in promptly 
resolving the scarcity of medical resources.

3.2.3 The impact of medical resource related 
factors on the time of medical crowding

Based on Model 1 and the parameter values listed in Tables 2, 3, 
we utilise the ode45 function in Matlab software to explore how the 
maximum number of available beds, the initial number of beds, and 
the capacity for medical resource allocation affect the timing of 
medical congestion. The results are presented in 
Figures  7A–C. Figure  7A demonstrates that by increasing the 
maximum number of available beds (Hm), the duration of medical 
crowding can be reduced. However, this does not postpone the onset 
of medical resource shortages. Furthermore, after the epidemic has 
passed, there may be  some wastage associated with the increased 
resources. Figure 7B shows that increasing the number of beds at the 
initial moment can delay the onset of medical resource shortages 
when the epidemic begins. However, once medical resource shortages 
occur, it may not bring an earlier end to the shortages. Figure 7C 
reveals that if the medical resource allocation capacity of Taiyuan City 
decreases, medical resource shortages will persist for a longer 
duration. Therefore, the current allocation capacity may be the most 
cost-effective state.

4 Discussion and conclusion

During widespread outbreaks of acute infectious disease, the 
strain on medical resources is a common phenomenon and has 
garnered extensive attention and research from numerous scholars 
(3, 7, 19, 20, 32–36, 39). Taking COVID-19 as a case study, 
we investigate the impact of vaccination and resource allocation on 

FIGURE 4

Theoretically, the number of daily potential empty beds.

TABLE 3 Final cumulative numbers of new, hospitalised, and critical cases 
under different scenarios.

Final cumulative number of scale

New cases Hospitalised 
cases

ICU/CCU 
Cases

CasesC1 3,368,646 146,660 1,619

CasesC2 3,255,316 145,397 1,612

CasesC3 3,214,118 144,750 1,606

CasesC4 331,967 17,819 167
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the epidemic trends and CCMR during such outbreaks. Based on 
survey data on COVID-19 transmission in Taiyuan, we constructed 
a dynamic model to fit the daily reported new cases, hospitalised 
patients, and severe cases (as shown in Figures 2, 3), and estimated 
parameters (as shown in Table 2), predicting the ultimate scale of 
the epidemic (indicated by the solid green line in Figure  5). By 
calculating the trend of remaining bed numbers, we can determine 
the occurrence and duration of medical congestion. As shown in 
Figure 2, the peak times for new cases, hospitalizations, and severe 
cases typically lag in succession. Some existing research (37, 38) can 
fully support our conclusion. For instance, research by Wang et al. 
(37) reported that during the COVID-19 outbreak in Wuhan, the 
median time from the onset of initial symptoms to hospital 
admission for 260 patients was approximately 8 days; C Dananché 
and colleagues (38) noted that younger COVID-19 patients tended 
to have a longer interval between the onset of symptoms and 
hospitalization. Figure 4 indicates that until January 16, 2023, the 
demand for hospital beds remained high. To address the sharp 
increase in hospital admissions, most hospitals in Taiyuan City 

reallocated beds from other departments to accommodate 
COVID-19 patients, alleviating the bed shortage, but the continuous 
high demand for hospitalisation by COVID-19 patients temporarily 
reduced the number of available beds to zero.

In the sensitivity analysis, we  first examined the impact of 
different vaccination scenarios on the numbers of infections, 
hospitalisations, and severe cases, as well as the change in the 
number of availible beds in an ideal vaccination scenario, reflecting 
the influence of vaccination on medical congestion. We  further 
analysed the specific impact of vaccination on the CCMR. The data 
from Figures 5 and Table 3 suggests that vaccination can diminish 
the scope of infections and hospitalisations and reduce severe cases. 
Figure 6 further illustrates that a vaccination regimen of increasing 
three doses of vaccine can notably shorten the duration of medical 
congestion, and enhance the capacity of medical resources. 
Subsequently, we explored the influence of medical resource-related 
factors on the duration of medical congestion, as detailed in 
Figure 7. Figure 7A demonstrates that increasing the maximum 
number of available beds can end medical congestion earlier. 
Figure 7B reveals that increasing the number of maximum capacity 
of hospital beds at the onset of the epidemic can delay medical 
resource shortages but does not end the shortage earlier. Figure 7C 
indicates that under a fixed total amount of medical resources, 
higher efficiency in resource allocation can end medical congestion 
earlier. In other words, before the outbreak of an epidemic, 
preparation should begin in advance by increasing the number of 
beds, equipping medical professionals, and increasing medical 
supplies. During the outbreak, efforts should be made to accelerate 
the production and distribution of medical supplies and the 
deployment of medical professionals.

The capability, quantity, and timing of resource allocation 
significantly influence the occurrence, development, and closing 
time of CCMR overload. Thus, a thorough consideration of 
vaccination and medical resource allocation becomes imperative. 
In contrast to Wang et  al. (7), our research delineates diverse 
vaccination scenarios and analyses their impact on the CCMR. In 
contrast to Mandal (19) and Zhao (20), we not only predicted the 
trend of COVID-19 transmission in Taiyuan but also anticipated 
potential medical congestion and its duration. Compared to Ali 
et  al. (21), we  used the model to validate the effectiveness of 

FIGURE 5

The blue, red, and black solid lines represent the cumulative number of new cases under scenarios S1–S3. The green solid line represents the actual 
fitted situation, and the green dots represent reported case numbers. (A) The trend in the cumulative number of new cases. (B) The trend in the 
cumulative number of hospitalisations. (C) The trend in the cumulative number of severe cases.

FIGURE 6

Theoretically, the number of empty beds. Green, blue, black, red, and 
yellow solid lines represent SS1–SS5, respectively.
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vaccination and explore the impact of different dosing regimens 
on medical congestion. Our study used the number of beds as a 
quantitative indicator of medical resource capacity. However, the 
CCMR is affected by multiple factors such as medical staff, 
ventilators, and patient’s hospital preference, which will 
be  addressed in future research. Additionally, our study only 
considered symptomatic individuals as transmission sources. 
Future investigations should delve into transmission from 
asymptomatic and incubation period infections. Therefore, future 
research may need to consider these factors to improve the 
accuracy and applicability of the model. Current research focuses 
primarily on prevention and control strategies for COVID-19 (3, 
7, 32–36). Given the constraint of limited medical resources, 
future research should concentrate on how to combine vaccination 
and the enhancement of CCMR to alleviate medical congestion 
and improve local medical resource capacity.
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FIGURE 7

Sensitivity of the number of daily potential empty beds to the maximum bed capacity that can be provided, the initial number of respiratory department 
beds at the beginning and the production capability of medical resources. For (A), the purple, cyan, red, blue, black, and green colours, respectively, 
represent the number of available beds under the scenarios of 5*Hm, 4*Hm, 3*Hm, 2*Hm, 1.5*Hm, 0.5*Hm, and Hm. For (B), the magenta, cyan, blue, 
red, and green curves, respectively, represent the scenarios of 5*H0, 3*H0, 2*H0, 0.5*H0, and H0. For (C), the cyan, black, red, blue and green curves, 
respectively, represent the number of available beds under the scenarios of 0.5*δ, 0.4*δ, 0.3*δ, 0.2*δ, and δ.
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