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Background and objective: Accurately predicting the extent of lung tumor 
infiltration is crucial for improving patient survival and cure rates. This study 
aims to evaluate the application value of an improved CT index combined with 
serum biomarkers, obtained through an artificial intelligence recognition system 
analyzing CT features of pulmonary nodules, in early prediction of lung cancer 
infiltration using machine learning models.

Patients and methods: A retrospective analysis was conducted on clinical data 
of 803 patients hospitalized for lung cancer treatment from January 2020 to 
December 2023 at two hospitals: Hospital 1 (Affiliated Changshu Hospital of 
Soochow University) and Hospital 2 (Nantong Eighth People’s Hospital). Data 
from Hospital 1 were used for internal training, while data from Hospital 2 
were used for external validation. Five algorithms, including traditional logistic 
regression (LR) and machine learning techniques (generalized linear models 
[GLM], random forest [RF], gradient boosting machine [GBM], deep neural 
network [DL], and naive Bayes [NB]), were employed to construct models 
predicting early lung cancer infiltration and were analyzed. The models were 
comprehensively evaluated through receiver operating characteristic curve 
(AUC) analysis based on LR, calibration curves, decision curve analysis (DCA), 
as well as global and individual interpretative analyses using variable feature 
importance and SHapley additive explanations (SHAP) plots.

Results: A total of 560 patients were used for model development in the training 
dataset, while a dataset comprising 243 patients was used for external validation. 
The GBM model exhibited the best performance among the five algorithms, 
with AUCs of 0.931 and 0.99  in the validation and test sets, respectively, and 
accuracies of 0.857 and 0.955  in the validation and test groups, respectively, 
outperforming other models. Additionally, the study found that nodule diameter 
and average CT value were the most significant features for predicting lung 
cancer infiltration using machine learning models.

Conclusion: The GBM model established in this study can effectively predict 
the risk of infiltration in early-stage lung cancer patients, thereby improving 
the accuracy of lung cancer screening and facilitating timely intervention for 
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infiltrative lung cancer patients by clinicians, leading to early diagnosis and 
treatment of lung cancer, and ultimately reducing lung cancer-related mortality.

KEYWORDS

automated machine learning, predictive models, infiltrative lung cancer,  
medical image artificial intelligence recognition system (MIARS), 7-TAABs

1 Introduction

Lung cancer is globally recognized as one of the malignancies 
with the highest incidence and mortality rates. According to the 
2022 global cancer statistics survey, an average of approximately 350 
individuals die from lung cancer every day, surpassing the 
combined total of breast, prostate, and pancreatic cancers. In China, 
lung cancer deaths account for 23.8% of the total cancer-related 
deaths, with the incidence and mortality rates ranking highest 
globally (1). Due to factors such as existing medical conditions and 
awareness of check-ups, many patients are diagnosed with late-
stage lung cancer during their initial medical visits. Effective 
treatment options for late-stage lung cancer are limited, with a 
5-year cumulative survival rate of only 19% (2). Early screening 
significantly improves the prognosis and survival of lung cancer 
patients (3), so early screening and diagnosis is the key to reduce 
lung cancer mortality and improve survival rate.

Currently, there is a lack of effective early screening methods, 
with emphasis placed on low-dose spiral computed tomography 
(LDCT) scans, biological tumor markers, and tumor autoantibody 
screening (4). However, these methods suffer from drawbacks such 
as high false positive rates, inadequate sensitivity, and suboptimal 
accuracy. Therefore, we  attempt to accurately predict tumor 
malignancy and infiltration depth using an improved CT index 
obtained through artificial intelligence recognition technology 
combined with serum biomarkers consisting of lung cancer 
autoantibodies and tumor markers. This approach aims to assist 
clinicians in making more informed treatment decisions and 
improving patient survival benefits.

Machine learning, as a subset of artificial intelligence, has shown 
remarkable prospects in various fields such as economics, finance, 
business management, and bioinformatics. In the healthcare sector, it 
demonstrates outstanding applications in analyzing disease-related 
factors, predicting risks, and computer-aided diagnosis (5–7). 
Automated machine learning (AutoML) automates the application of 
machine learning to data by iteratively transforming data, selecting 
machine learning algorithms, and optimizing hyperparameters to 
choose the best model.

The aim of this study is to evaluate the predictive value of an 
improved CT index combined with serum biomarkers using a GBM 
model for early diagnosis of lung cancer. Clinical data from lung 
cancer patients from two hospitals were collected, and training, 
validation, and testing were conducted using the H2OAutoML 
platform. The performance of the GBM model was compared with 
traditional logistic regression (LR) to assess its efficacy.

2 Materials and methods

2.1 Inclusion and exclusion criteria

We retrospectively collected and analyzed data from patients who 
underwent lung cancer surgery at the Affiliated Changshu Hospital of 
Soochow University and Nantong Eighth People’s Hospital from 
January 2020 to December 2023. Patients collected from January 2020 
to December 2023 at the Affiliated Changshu Hospital of Soochow 
University were used as the training set, while patients collected from 
October 2022 to December 2023 at Nantong Eighth People’s Hospital 
were used as the testing set.

The diagnostic criteria for lung cancer were referenced from the 
2021 Fifth Edition of the WHO Classification of Thoracic Tumors (8). 
Diagnosis of lung cancer required meeting the following criteria: (1) 
Confirmation of lung nodules by chest CT without any clinical or drug 
intervention; (2) Definitive pathological results confirming benign or 
malignant nodules after chest CT; (3) Age ≥ 18 years; (4) Preoperative 
testing for 7 lung cancer autoantibodies and tumor markers; (5) 
Absence of significant dysfunction in other major organs; (6) Absence 
of other primary malignant tumors; and (7) Lung nodule 
diameter ≤ 3 cm. Exclusion criteria included: absence of pathological 
examination despite confirmed lung nodules on chest CT; failure to 
undergo testing for the 7 lung cancer autoantibodies and tumor 
markers; clinical or drug intervention prior to blood sampling; 
presence of rheumatic immunological diseases; lung metastasis from 
other tumors; lung nodule diameter > 3 cm. This study was approved 
by the hospital ethics committee.

2.2 Data collection

Demographic features, clinical information, and comorbidities 
were extracted from electronic medical records. Chest plain scans 
were performed using a 64-slice spiral CT scanner to obtain 
conventional CT imaging features, including air bronchogram sign, 
spiculated sign, lobulation sign, vascular penetration, pleural 
retraction, bronchial inflation sign, nodule diameter, and solid 
proportion. And the patient’s CT data were imported into the 
DeepRay medical image AI recognition system, which extracted 
quantitative features from medical images in high throughput and 
combined with convolutional neural networks to train deep learning 
on the data of the nodule’s size, density, and the proportion of 
solidity to get the improved CT indexes: the pulmonary nodule’s 
malignancy probability value and average CT value. Serum 
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biomarkers primarily included 7 tumor-associated autoantibodies 
(TAABs) and commonly used tumor markers recommended by the 
American Clinical Biochemistry Committee and the European 
Tumor Marker Expert Group. TAABs detection involved extracting 
fasting peripheral venous blood (9–12) from patients preoperatively 
or before surgery. After centrifugation to separate serum, the levels 
of 7 lung cancer autoantibodies were measured using enzyme-
linked immunosorbent assay (ELISA) (13), including tumor 
suppressor gene P53 (normal reference range: P53 < 13.09 U/mL), 
protein gene product PGP  9.5 (normal reference range: 
PGP9.5 < 11.1 U/mL), SRY-box containing gene 2 (normal reference 
range: SOX2 < 10.26 U/mL), G antigen 7 (GAGE7) (normal 
reference range: GAGE7 < 14.36 U/mL), RNA helicase autoantibody 
4–5 (GBU4-5) (normal reference range: GBU4-5 < 6.99 U/mL), 
melanoma antigen A1 (MAGEA1) (normal reference range: 
MAGEA1 < 11.92 U/mL), and tumor-associated gene CAGE 
(normal reference range: CAGE <7.23 U/mL). TAABs detection 
results were considered positive if any of the indicators exceeded the 
normal reference range. Tumor markers were collected from blood 
tests and included primary lung cancer markers such as vascular 
endothelial growth factor (VEGF), carcinoembryonic antigen 
(CEA), neuron-specific enolase (NSE), cytokeratin fragment 19 
(CYFRA21-1), pro-gastrin-releasing peptide (ProGRP), and 
squamous cell carcinoma antigen (SCC) (14).

2.3 Automated machine learning

Through the AI platform1, the H2O package is installed in the 
R language to implement AutoML analysis. Autonomy and 
automation are achieved through three aspects: feature selection, 
model construction, and hyperparameter optimization. The 
integrated algorithms include Generalized Linear Models (GLM), 
Random Forests (RF), Gradient Boosting Machines (GBM), Deep 
Neural Networks (DL), and Naive Bayes (NB), among others. The 
training set is split into development and validation sets in a 6:4 
ratio, and blind verification is conducted with the testing set to 
evaluate the average accuracy and stability of the models. A 
confusion matrix consisting of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) is established 
(15). Performance metrics including sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), positive 
likelihood ratio (LR+), negative likelihood ratio (LR-), accuracy, 
area under the receiver operating characteristic curve (AUC), and 
the F1-Measure are calculated. Formulas for calculation are as 
follows: Accuracy = (TP + TN)/(TP + FP + FN + TN); PPV = TP/
(TP + NP); NPV = TN/(TN + FN); LR + =Sensitivity/(1−Specificity); 
LR− = (1−Sensitivity)/Specificity; F1-Measure = (2*precisionrecall)/
(precision+recall). Through SHAP analysis (Shapley Additive 
Explanations), an additive explanatory model is constructed to 
determine significant factors influencing model predictions and 
their contributions to model performance.

1 www.h2o.ai

2.4 Statistical analysis

For continuous data, the Shapiro–Wilk test and homogeneity of 
variance test (Homogeneity of variance test) were first performed. For 
normally distributed and homoscedastic continuous data, 
independent samples t-tests were employed, and results were 
presented as mean ± standard deviation. For non-normally distributed 
and heteroscedastic continuous data, the Wilcoxon rank-sum test was 
used, and results were presented as median (M25, M75). Categorical 
data were expressed as frequencies and percentages, and inter-group 
differences were assessed using the chi-square test or Fisher’s exact 
test. To prevent multicollinearity among variables, feature selection 
was conducted using the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model. Based on the selected variables, 
a binary logistic regression model was fitted. The predictive 
performance of the obtained model was evaluated using the area 
under the receiver operating characteristic curve (AUC), calibration 
curve, and decision curve analysis (DCA), and a Nomogram was 
constructed. The statistical significance level was set at p < 0.05. All 
statistical analyses were performed using R 4.3.3 software.

3 Results

3.1 Baseline characteristics

A total of 803 lung cancer patients were included in this study, 
with 376 cases (47.0%) exhibiting infiltrative lesions. The study 
protocol is detailed in Figure 1. Among them, 560 patients from the 
Affiliated Changshu Hospital of Soochow University (Hospital 1) were 
included in the training set. Nantong Eighth People’s Hospital 
(Hospital 2) contributed 243 patients as the testing set. In the training 
set, 64.3% (360/560) were male and 35.7% (200/560) were female, with 
a median age of 55 years. In the testing set, females were more 
common in the infiltrative group, and the age range of 40–60 years was 
the peak incidence, consistent with previous reports (16). There were 
no statistically significant differences between the two groups in terms 
of age, CY211, NSE, and Leafing (p > 0.05). Details are shown in 
Table 1.

3.2 Model construction and predictive 
performance comparison

3.2.1 LASSO regression feature screening and LR 
model construction

Considering the potential issue of multicollinearity among 
variables, we  employed the LASSO regression model with the 
introduction of the L1 regularization coefficient. Through 10-fold 
cross-validation, we obtained the minimum standard lambda and 
selected 8 variables as independent risk factors from 19 variables. 
These variables included VEGF, TAABs, malignancy probability, 
average CT value, nodule diameter, solid proportion, gender, and 
pleural retraction, as shown in Figure 2.

The selected features were fitted to construct a serum-modified 
CT index model, and a Nomogram plot was generated to score the 
features (see Figure 3). The total score obtained by summing the scores 
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of each feature allows estimation of the probability of developing 
infiltrative lesions in lung cancer. The study showed that when the 
total score of the Nomogram for lung cancer infiltrative lesions 
exceeds 180, the risk of lesions is over 90%.

To further analyze the stability and clinical utility of the serum-
modified CT index model, we compared the serum-modified CT 
index model with conventional imaging omics models and serum-
imaging omics models in both the training and testing sets using ROC 

TABLE 1 Baseline characteristics of patients in training and test groups.

Variable Group Training data set (n =  560) Z/χ2 p Test data set (n =  243) Z/χ2 p

Non-
infiltration 
(n =  297)

Infiltrate 
(n =  263)

Non-
infiltration 
(n =  130)

Infiltrate 
(n =  113)

Age – 53.8 (46.4, 64.57)
54.4 (46.32, 

62.45)
−0.593 0.553

54.75 (43.25, 

64.24)

55.09 (47.86, 

62.49)
−0.478 0.633

Gender 男 174 (58.6%) 186 (70.7%) 8.949 0.003 55 (42.3%) 38 (33.6%) 1.928 0.165

女 123 (41.4%) 77 (29.3%) 75 (57.7%) 75 (66.4%)

VEGF –
128.53 (82.68, 

172.74)

152.29 (92.31, 

214.55)
−3.583 <0.001

117.47 (70.11, 

159.96)

153.05 (106.53, 

210.52)
−3.833 <0.001

CEA – 2.15 (1.62, 2.73) 2.56 (1.79, 3.54) −4.926 <0.001 2.79 (1.98, 3.61) 2.00 (1.46, 2.70) −4.979 <0.001

CY211 – 2.02 (1.48, 2.67) 1.90 (1.48, 2.34) −1.896 0.058 1.86 (1.53, 2.46) 2.09 (1.51, 2.56) −1.447 0.148

NSE –
13.12 (11.56, 

14.61)

13.37 (11.39, 

15.49)
−1.029 0.303

13.21 (11.03, 

15.55)

13.44 (12.05, 

14.98)
−0.540 0.589

SCC – 0.71 (0.53, 0.87) 0.87 (0.56, 1.20) −5.389 <0.001 0.90 (0.61, 1.25)
13.44 (12.05, 

14.98)
−4.263 <0.000

proGRP –
41.91 (30.01, 

53.17)

37.06 (29.09, 

44.52)
−3.686 <0.001

38.22 (30.20, 

46.68)

43.94 (29.60, 

55.10)
−2.362 0.018

Malignant.

probability
–

50.36 (34.13, 

68.29)

57.73 (41.70, 

72.57)
−5.325 <0.001 45.5 (30.75, 70.0) 61.0 (44.5, 74.5) −3.165 0.002

Mean.CT.value –
−255.48 (−395.77, 

−99.97)

−462.50 

(−571.97, 

−361.17)

−12.247 <0.001
−255.09 (−392.49, 

−72.21)

−460.62 

(−579.04, 

−345.02)

−7.952 <0.001

Nodule.

diameter
– 9.0 (6.0, 12.0) 21.0 (13.0, 25.0) −13.443 <0.001 9.0 (6.0, 12.0) 20.0 (14.0, 23.0) −9.887 <0.001

Proportion.

of.solidity
– 0.5 (0.3, 0.7) 0.6 (0.4, 0.8) −4.649 <0.001 0.495 (0.29, 0.68) 0.61 (0.41, 0.77) −2.839 0.005

TAABs NO 266 (89.6%) 193 (73.4%) 24.696 <0.001 111 (85.4%) 88 (77.9%) 2.298 0.130

YES 31 (10.4%) 70 (26.6%) 19 (14.6%) 25 (22.1%)

Vacuolar NO 246 (82.8%) 218 (82.9%) 0.000 0.985 105 (80.8%) 74 (65.5%) 7.278 0.007

YES 51 (17.2%) 45 (17.1%) 25 (19.2%) 39 (34.5%)

Burr NO 180 (60.6%) 173 (65.8%) 1.602 0.206 77 (59.2%) 82 (72.6%) 4.753 0.029

YES 117 (39.4%) 90 (34.2%) 53 (40.8%) 31 (27.4%)

Leafing NO 264 (88.9%) 238 (90.5%) 0.387 0.534 123 (94.6%) 109 (96.5%) 0.476 0.490

YES 33 (11.1%) 25 (9.5%) 7 (5.4%) 4 (3.5%)

BV NO 108 (36.4%) 98 (37.3%) 0.048 0.826 53 (40.8%) 30 (26.5%) 5.436 0.020

YES 189 (63.6%) 165 (62.7%) 77 (59.2%) 83 (73.5%)

PI NO 189 (63.6%) 140 (53.2%) 6.231 0.013 79 (60.8%) 77 (68.1%) 1.430 0.232

YES 108 (36.4%) 123 (46.8%) 51 (39.2%) 36 (31.9%)

AB NO 271 (91.2%) 242 (92.0%) 0.107 0.743 116 (89.2%) 110 (97.3%) 6.118 0.013

YES 26 (8.8%) 21 (8.0%) 14 (10.8%) 3 (2.7%)

VEGF indicates vascular endothelial growth factor; CEA, carcinoembrionic antigen; CY211, cytokeratin fragment 19; NSE, neuron specific enolase; SCC, squamous cell carcinoma antigen; 
ProGRP, progastrin releasing peptide; 7-TAAB, seven tumor-associated autoantibodies; Vacuolar, vacuole sign; Burr, spicule sign; Leafing, lobulation; BV, pulmonary nodular vascular passage; 
PI, pleural indentation; AB, air bronchogram.
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curve analysis, clinical calibration curve, and clinical decision curve 
analysis (DCA). The conventional imaging omics model consisted of 
nodule diameter, solid proportion, gender, and pleural retraction. The 
serum-imaging omics model included VEGF, TAABs, nodule 
diameter, solid proportion, gender, and pleural retraction. The 

serum-modified CT index model comprised VEGF, TAABs, 
malignancy probability, average CT value, nodule diameter, solid 
proportion, gender, and pleural retraction. In the training set, the 
ROC curve analysis revealed that the areas under the curve (AUC) for 
the conventional imaging omics model, serum-imaging omics model, 
and serum-modified CT index model were 0.861, 0.87, and 0.930, 
respectively (see Figure 4A). In the testing set, the AUC values were 
0.901, 0.91, and 0.942 for the conventional imaging omics model, 
serum-imaging omics model, and serum-modified CT index model, 
respectively (see Figure 4B). The calibration curves for the training 
and testing sets (see Figures 5A,B) demonstrated that the estimated 
risks of the serum-modified CT index model were very close to the 
actual risks, indicating high reliability. The clinical decision curve 
analysis (DCA) showed that, across most threshold ranges, the net 
benefit of the serum-imaging omics model was greater than that of the 
conventional imaging omics model and serum-imaging omics model 
in both the training and testing sets, with the serum-imaging omics 
model outperforming the conventional imaging omics model (see 
Figures 6A,B).

3.2.2 Machine learning model construction and 
performance comparison

Using the H2OAutoML platform, automatic training and 
adjustment of models were conducted within a 5 min time limit, 
resulting in the construction of 75 models. However, due to limited 
interpretability and the presence of stacked ensemble models, these 
models were simplified, and the main algorithms involved were 
extracted, including Generalized Linear Model (GLM), Random 
Forest (RF), Gradient Boosting Machine (GBM), Deep Neural 
Network (DL), and Naive Bayes (NB). Among these models, the GBM 
model outperformed others, achieving the highest values for AUC, 
accuracy, and F1-Measure on both validation and testing sets, and 
hence was considered the optimal model. As shown in Table 2, on the 
validation and testing sets, the AUC values obtained by the GBM 
algorithm were higher than those obtained by GLM, RF, DL, and NB 
algorithms, with values of (0.931, 0.99) compared to (0.917, 0.942), 
(0.918, 0.986), (0.901, 0.948), and (0.908, 0.944), respectively. 
Furthermore, compared to GLM, RF, DL, and NB algorithms, the 

FIGURE 2

Lasso regression variable screening.

FIGURE 1

Roadmap for the research program.
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GBM algorithm also achieved the highest accuracy, with values of 
(0.857, 0.955), (0.854, 0.864), (0.838, 0.947), (0.819, 0.877, 0.844, 
0.889), respectively. Among these models, the RF model exhibited the 
highest sensitivity in both the validation and testing sets, with values 
of 0.914 and 0.991, respectively. Both RF and GLM models 
demonstrated good performance in terms of AUC, sensitivity, 
specificity, and accuracy.

3.3 Overall feature interpretability analysis

Figure 7 shows that nodule diameter size is the most important 
feature, followed by average CT value, solid proportion, NSE, VEGF, 
CYFRA21-1, SCC, malignancy probability, CEA, and 
proGRP. Additionally, nodule diameter size, average CT value, 
malignancy probability, solid proportion, and VEGF were identified 

FIGURE 3

Nomogram (column line graph).

A B

FIGURE 4

Three model ROCs; (A) Training set; (B) Testing set.
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as important feature variables shared by both the GBM and logistic 
regression models.

Figure  8, the SHAP summary plot, displays the impact of all 
features on the predictive performance of the GBM model in the 
testing set. The x-axis represents the SHAP values, indicating the 
contribution of features to the overall prediction. A SHAP value greater 
than 0 indicates a positive contribution, meaning that as the variable’s 
value approaches 1, the likelihood of infiltration in patients increases. 
For example, on the SHAP plot corresponding to nodule diameter, red 
points are mainly located to the right of the zero axis, while blue points 
are more on the left, suggesting that as the nodule diameter increases, 
the likelihood of infiltrative lesions in lung nodules also increases.

3.4 Individual feature interpretability analysis

As shown in Figure 9, partial dependence plots illustrate the impact 
of individual features on the final discrimination of the GBM model and 

A B

FIGURE 5

Three model calibration curves; (A) Training set; (B) Test set.

A B

FIGURE 6

DCA curves for the three models; (A) Training set; (B) Test set.

FIGURE 7

Plot of the importance ranking of the GBM model variables in the 
test set.
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FIGURE 8

Summary plot of GBM model SHAP in the test set.

their distribution in the dataset. Nodule diameter size, malignancy 
probability, and VEGF are positively correlated with the likelihood of 
infiltrative lesions. Nodule diameter is mainly distributed below 15 mm, 
but for lung cancer patients falling between 15 and 18 mm, there is a 
higher likelihood of infiltrative lesions, necessitating regular follow-up. 
As the average CT value gradually increases, it tends to indicate 
non-invasive lung cancer, particularly in patients with values above 
−200, essentially ruling out the possibility of infiltrative lung cancer.

The SHAP explanation illustrates the feature contributions for 
specific instances. As depicted in Figure 10, for instance 72, with a 
nodule diameter of 22 mm, average CT value of -525HU, and 
malignancy probability of 86%, these factors significantly contribute to 
the model’s final determination of infiltrative lung cancer. Conversely, 

in instance 98, although the nodule diameter is below 15 mm, 
predictions of infiltrative lung cancer are made based on factors such 
as average CT value, NSE value, and malignancy probability.

4 Discussion

Lung cancer ranks among the most prevalent and fatal 
malignancies globally, with adenocarcinoma being the most 
common histological subtype. Accurate differentiation between 
non-invasive and invasive lung cancer significantly impacts patient 
prognosis and survival. Therefore, constructing early lung cancer 

TABLE 2 Comparison of AutoML model performance in predicting lung cancer infiltration in the test cohort.

Targets GLM RF GBM DL NB

Validation Test 
set

Validation Test 
set

Validation Test 
set

Validation Test 
set

Validation Test 
set

Accuracy 0.854 0.864 0.838 0.947 0.857 0.955 0.819 0.877 0.844 0.889

AUC 0.917 0.942 0.918 0.986 0.931 0.99 0.901 0.948 0.908 0.944

Sensitivity 0.771 0.903 0.914 0.991 0.893 0.982 0.800 0.885 0.843 0.885

Specificity 0.917 0.831 0.779 0.908 0.829 0.931 0.834 0.869 0.845 0.892

PPV 0.878 0.823 0.762 0.903 0.801 0.925 0.789 0.855 0.808 0.877

NPV 0.838 0.908 0.922 0.992 0.909 0.984 0.844 0.897 0.874 0.899

LR+ 9.309 5.334 4.137 10.737 5.213 14.189 4.827 6.767 5.448 8.217

LR− 0.249 0.117 0.110 0.010 0.129 0.019 0.240 0.132 0.186 0.129

F1-Measure 0.821 0.861 0.831 0.945 0.845 0.953 0.794 0.870 0.825 0.881

AUC indicates area under the curve; PPV, positive predictive value; NP, negative predictive value; LR−, negative likelihood ratio; LR+, positive likelihood ratio; GLM, Generalized linear 
model; RF, Random forest; GBM, gradient boosting machine; DL, deep neural net; NB, Naive Bayes.
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infiltration risk prediction models is crucial. In recent years, many 
researchers have built clinical risk prediction models for early lung 
cancer patients using multivariable logistic regression and selected 
feature variables such as low-dose CT (LDCT), seven 
autoantibodies, and other biomarkers (17–21). Unlike many 
previous studies, this research incorporates AI-improved 
malignancy probability and average CT value into the category of 
risk factors and compares models constructed by traditional LR 

regression with those built by AutoML algorithms to assess their 
efficacy and accuracy.

Feature interpretability analysis results show that the most crucial 
feature of the GBM model is nodule diameter size, consistent with the 
results of the logistic regression model in this study and the risk factors 
for lung nodule benignity/malignancy reported in related studies (22, 
23). Other researchers have pointed out that as nodule diameter 
increases, the likelihood of malignancy also increases. For instance, 

FIGURE 9

Partial dependence plots.

FIGURE 10

SHAP interpretation diagram.
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nodules below 5 mm have a malignancy rate of only 1%, while those 
between 5 and 10 mm have a malignancy rate of 25% (24). In this 
study, we  found that nodules larger than 15 mm have a higher 
malignancy probability, particularly between 15 and 18 mm, where 
infiltration is more likely to occur. Therefore, patients should have 
shorter follow-up intervals, and clinicians should pay close attention to 
patients with nodules larger than 15 mm, increasing the frequency of 
follow-up visits. This finding is consistent with other research (25, 26).

With the development and application of artificial intelligence 
technology, AI-based medical imaging has been widely used in clinical 
diagnosis and treatment, particularly in lung cancer early screening, 
significantly improving lung nodule detection rates and reducing the 
rate of missed small lesions. This study demonstrates that AI-enhanced 
CT indices significantly contribute to the discrimination of infiltrative 
lung cancer, enhancing lesion identification accuracy. However, there 
are limitations. According to previous studies, although CT AI has 
higher positive predictive values and sensitivity, its specificity is not 
ideal, ranging from 70 to 80% (27–30). Therefore, relying solely on 
radiological imaging to differentiate between benign and malignant 
lung nodules is too one-sided. This study established a predictive 
model combining AI with other laboratory indicators to improve the 
specificity and accuracy of lung nodule detection.

In recent years, laboratory indicators for lung cancer have mainly 
focused on primary lung cancer biomarkers and seven lung cancer 
autoantibodies. In contrast to artificial intelligence CT, these indicators 
have high specificity but low sensitivity when used alone. Therefore, they 
are typically used in combination for early lung cancer screening. 
Vascular endothelial growth factor (VEGF) levels serve as an 
independent risk factor for lung cancer infiltration, as evidenced by 
significant expression in both LR and GBM models. Studies have shown 
that VEGF can increase vascular permeability (31–33), thereby 
promoting tumor metastasis, and its overexpression indicates poor 
prognosis in lung cancer. Therefore, patients with abnormal VEGF levels 
should be  closely monitored, and further diagnostic and clinical 
intervention measures should be implemented. Detection of serum lung 
cancer autoantibodies has a certain clinical decision-making value for 
lung cancer diagnosis (34–36), although in this study there was a 
statistically significant difference between the non-infiltrating group and 
the infiltrating group in the training set, but showed no statistically 
significant difference between the non-infiltrating group and the 
infiltrating group in the test set, which indicates that the 7-item serum 
lung cancer autoantibody test is not suitable to be  applied alone in 
discriminating non-infiltrating versus infiltrating early stage lung cancer, 
and that it needs to be combined with other indicators for prediction.

In addition, we used five different ML algorithms to construct a high-
precision prediction model. The GBM model showed optimal prediction 
efficacy on both the test and validation sets and achieved higher AUC and 
accuracy than the LDCT+7-TABBs model constructed by Zhong et al. 
(37), which fully demonstrated that the CT metrics modified by AI are 
more accurate, and can provide more comprehensive and high-quality 
information for clinically assisted diagnosis and treatment. By accurately 
predicting the invasiveness of early lung nodules, this study can help 
patients receive earlier treatment, thereby improving survival rates and 
prognosis. The blind validation using a validation set and external dataset 
with larger sample sizes and higher external validity mitigated potential 
biases arising from unique circumstances at a single research center. 
However, our study also has some limitations. Firstly, it only studied 
benign and infiltrative lung cancer categories, necessitating the expansion 
of case numbers to further classify lung cancer. Additionally, this study is 

retrospective, which introduces selection bias, highlighting the need for 
more prospective studies for external validation.

5 Conclusion

A predictive early-stage lung cancer infiltrative machine learning 
model was constructed and compared by combining improved CT 
indices with serological markers, using SHAP to elucidate the clinical 
significance of each risk factor in predicting infiltrative lesions in 
early-stage lung cancer patients. The CT indices improved by artificial 
intelligence are closely associated with lung cancer infiltrative features, 
holding significant application value in future clinical research. This 
combination can assist clinicians in implementing early clinical 
interventions, providing more comprehensive information for self-
screening and disease management of early-stage lung cancer patients, 
thereby preventing and reducing the risk of infiltration.
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