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Background: Sudden death accounts for approximately 10% of deaths among 
working-age adults and is associated with poor air quality. Objectives: To identify 
high-risk groups and potential modifiers and mediators of risk, we  explored 
previously established associations between fine particulate matter (PM2.5) and 
sudden death stratified by potential risk factors.

Methods: Sudden death victims in Wake County, NC, from 1 March 2013 to 28 
February 2015 were identified by screening Emergency Medical Systems reports 
and adjudicated (n  =  399). Daily PM2.5 concentrations for Wake County from 
the Air Quality Data Mart were linked to event and control periods. Potential 
modifiers included greenspace metrics, clinical conditions, left ventricular 
hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-
crossover design, conditional logistic regression estimated the OR (95%CI) 
for sudden death for a 5  μg/m3 increase in PM2.5 with a 1-day lag, adjusted for 
temperature and humidity, across risk factor strata.

Results: Individuals having LVH or an NLR above 2.5 had PM2.5 associations of 
greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR  >  2.5: 
1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas 
with higher levels of greenspace.

Conclusion: LVH and inflammation may be the final step in the causal pathway 
whereby poor air quality and traditional risk factors trigger arrhythmia or 
myocardial ischemia and sudden death. The combination of statistical evidence 
with clinical knowledge can inform medical providers of underlying risks for 
their patients generally, while our findings here may help guide interventions to 
mitigate the incidence of sudden death.
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1 Introduction

Among adults aged 18–64 in the United States, non-accidental 
sudden deaths unrelated to previous or obvious causes account for as 
much as 10% of deaths and 2 million years of productive life lost (1). 
Estimates of sudden death vary vastly across the scientific literature, 
depending on the definition of sudden death used. Most definitions 
include timing and situational restrictions that result in the under-
reporting of many cases (e.g., within 1 h of witnessed or 24 h of 
unwitnessed events) (2). In order to increase the likelihood of 
identifying missed deaths, avoid assumptions of coronary artery 
disease causality, and include unwitnessed deaths (3), population-level 
assessments seem necessary to develop more effective interventions 
to reduce sudden deaths.

There is an extensive body of literature causally linking ambient 
exposure to particulate matter less than 2.5 micrometers in aerodynamic 
diameter (PM2.5), which acts through inflammatory and oxidative 
mechanisms, to overall mortality, respiratory morbidity and mortality, 
and cardiovascular and cardiometabolic morbidity and mortality 
(4–19). However, there remain many uncertainties surrounding air 
pollution exposures and health outcomes, including the potential for 
different underlying etiologies for cause-specific subtypes of deaths 
(20–22) and the impacts of existing social and health conditions or 
concurrent exposures on air pollution-health associations (23–25).

We previously observed increased odds of sudden death with 
higher acute exposure to particulate matter less than 2.5 micrometers 
in aerodynamic diameter (PM2.5). In other analyses of this population, 
inflammation, left ventricular hypertrophy (LVH), stroke, chronic 
respiratory disease, coronary artery disease, metabolic syndrome, and 
lower values for greenspace metrics were associated with increased 
risk for sudden death (1, 26–29). Beyond our data, LVH and 
neutrophil-to-lymphocyte ratio (NLR) are of particular interest as 
they are important contributors to cardiovascular-related morbidity 
and mortality (30–34). Building on this information, we adapted a 
theoretical framework for air pollution associations with sudden death 
described by Cascio (35), p.  35 to highlight how the underlying 
conditions of individuals and their external surroundings might alter 
responses to ambient air pollutant exposures (Figure 1).

The goal of this analysis is to investigate potential modifiers of the 
PM2.5-sudden death association (i.e., where the response to PM varies 
across levels of other factors). To identify high-risk groups, we explored 
previously established associations between PM2.5 and sudden death 
stratified by individual and area-level factors that may modify the 
association between PM2.5 and sudden death. Defining clinical and 
environmental factors that either increase risk or decrease risk for 
sudden death might better serve to identify characteristics of an 
individual or a population that increase vulnerability to exposure 
susceptibility to a sudden death outcome. Knowledge of such clinical 
and environmental risks and salutary factors might improve 
interventional strategies to reduce sudden death in the face of an 

increasing likelihood of detrimental environmental exposures such as 
wildland fire smoke.

2 Methods

2.1 Study population and base 
exposure-outcome analysis

For this analysis, the study population, primary exposure, 
outcome, covariates, and base analysis are the same as in Rappazzo 
et al. (36). Briefly, data on sudden deaths in Wake County, NC, in 
the United States from 1 March 2013 to 28 February 2015 (n = 399) 
(1, 37, 38) was linked to PM2.5 concentrations, temperature, and 
relative humidity data acquired from the Environmental 
Protection Agency’s Air Quality System (39, 40). Hourly 
measurements of PM2.5, humidity, and temperature were 
downloaded from the single central site monitor in Wake County 
and averaged to daily 24-h periods (midnight to midnight) for 
linkage. All individuals included in this analysis experienced an 
out-of-hospital death that was defined as a sudden pulseless 
condition in the absence of terminal disease or overdose at the 
time of death. Emergency medical service (EMS) records were 
screened; following this, EMS and medical records, death 
certificates, medical examiner, and toxicology reports were 
obtained, and a panel of cardiologists adjudicated the cases to 
identify 399 victims of sudden death living in Wake County during 
this time period (26).

This study was conducted with a base population from Wake 
County, North Carolina. Wake County is a highly populated 
(approximately 1,000,000 people during the study period) and fast-
growing area, with a highly educated population (53% with a 
bachelor’s degree compared to 32% for the United States), higher 
proportion of Black and African-American population (21% 
compared to 13% nationally), and lower poverty and disability than 
the United States average (7.4% vs. 11.4% poverty and 6% vs. 9% 
disability) (41, 42).

We used a case-crossover design with a time-stratified referent 
selection approach (43–47). In case-crossover designs, each individual 
serves as their own control, with the analytic focus on the question of 
when the event of interest occurs rather than whether it occurs. 
Control periods are in time-stratified design and are selected 
bi-directionally in the same calendar month-year to maximize 
exchangeability between event and referent periods.

Referent (control) days were selected within the same month and 
calendar year of the recorded death and on all the same days of the 
week (e.g., all Mondays within the event month/year if death occurred 
on a Monday). Odds ratios (ORs) and 95% confidence intervals 
(95%CIs) for mortality with a 5 μg/m3 increase in PM2.5 were estimated 
using conditional logistic regression models adjusted for temperature 
and relative humidity on the day of death/referent day (lag 0) and 
preceding lag days (lags 1 to 3) (natural cubic splines). Temperature 
and humidity are adjusted for as they are time-varying factors that 
may be related to the outcome; other factors are not adjusted for as the 
case-crossover approach accounts for non-time-varying factors by 
design. In the previous analysis, associations were elevated with 
exposure at a single day lag (lag 1); therefore, the analyses in this study 
use that as the base, unstratified, association.

Abbreviations: μg/m3, Micrograms per cubic meter; BMI, Body mass index; CI, 

Confidence interval; EMS, Emergency medical services; km/km2, Kilometer per 

square kilometer; LVH, Left ventricular hypertrophy; NC, North Carolina; NLR, 

Neutrophil-to-lymphocyte ratio; OR, Odds ratio; PM, particulate matter; PM2.5, 

particulate matter under 2.5 microns in aerodynamic diameter/fine 

particulate matter.
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2.2 Pathophysiologic framework and 
individual-level modifiers and mediators

As shown in Figure 1, the a priori concept driving the hypothesis 
tested in the study is based on a theoretical framework for air pollution 
associated with sudden death described by Cascio (35) in which the 
exposure to PM2.5 affects changes in inflammatory mediators and 
autonomic balance affecting electrophysiological properties that can 
be  augmented in the presence of structural changes in the heart 
muscle (e.g., LVH) as a consequence of age and chronic hypertension 
increasing the risk of arrhythmia and sudden death (35). Greenspace 
metrics are incorporated into the framework as possible salutary 
factors that have the potential to reduce PM2.5 exposure and also 
modify the autonomic response to stresses.

Hypothesized individual-level modifiers and mediators 
investigated include those related to clinical markers of inflammation 
and arrhythmia risk and clinical conditions. Overweight/obesity (48) 
and NLR (31, 32) were chosen as markers of stress and inflammation 
LVH as a marker for a substrate for ventricular arrhythmia and 
sudden death (34). These markers were chosen due to their availability 
in the sudden death case registry data and their assumed place on the 
direct causal pathway to sudden death due to myocardial ischemia and 
infarction and spontaneous ventricular tachycardia and fibrillation, 
respectively. Specific variables were body mass index (BMI), which 
may be a flag for high levels of metabolic stress and inflammation 
related to diabetes and sleep apnea and may indicate a higher 
susceptibility to the impacts of air pollutants dichotomized at a BMI 
of less than or equal to 25 or above 25; LVH identified through review 
of existing echocardiograms, electrocardiographs, and autopsy 
reports, and classified as present in any of the three sources or absent 
in all, or as unknown if the subject lacked source records or if the 

subject had only electrocardiographs available that were negative for 
LVH (due to low sensitivity); and NLR dichotomized at greater than 
or equal to 2.15—a level that has previously been shown to 
be associated with increased mortality (30).

The following chronic conditions and risk factors associated with 
higher mortality were included in the analysis coronary artery disease, 
chronic respiratory disease, chronic kidney disease, diabetes, 
dyslipidemia, hypertension, and stroke. For analysis purposes, these 
conditions are stratified by the presence or absence of the condition. 
In addition to stratification by individual condition diagnoses, 
individuals were stratified by those having no clinical conditions, one 
clinical condition, or more than one clinical condition.

2.3 Area-level modifiers

We also considered greenspace and income metrics as potential 
area-level modifiers, as we  had previously observed associations 
between greenspace metrics and sudden death across census tracts 
(28). These greenspace metrics were examined because they may 
promote physical activity and reduce stress, potentially act as a filter 
for air pollution, or act as a general buffer for environmental hazards. 
In this analysis, we linked the census tract greenspace metrics of 
greenway density, forest cover, urban land, and average tree canopy 
to individuals and stratified by median value across Wake County, 
NC. Greenspace metric details are described fully elsewhere (28, 49). 
Briefly, greenway density is the total length of greenways, trails, and 
multi-use trails in a census tract divided by the total area of that 
census tract. Information on greenways and trails was obtained from 
the GIS division of Wake County Government, North Carolina (28). 
Forest cover and urban land were both estimated using the National 

FIGURE 1

Theoretical framework connecting air pollution exposures and mortality, including electrophysiological properties (35).
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Land Cover Dataset 2011 with a 30 m spatial resolution (50). Area 
of forest cover (land use codes 41, 42, and 43) and urban land (land 
use codes 22, 23, and 24) were calculated for each census tract and 
divided by the total area of that census tract for a percentage metric 
(49). Finally, the average tree canopy was estimated using the 
National Land Cover Dataset 2011 Cartographic Canopy dataset 
(51), summing the percentage of tree canopy in each pixel across 
census tracts divided by the total number of pixels in the census 
tract. Median values across Wake County census tracts were 
calculated for each greenspace metric and stratified as above or 
below the median to signify “high” or “low” area greenspace. Area-
level income has also been previously associated with sudden death 
(52) and was investigated here with an annual median household 
income at the census tract level from the 2010 Census, stratified at 
above or below the median for Wake County.

2.4 Statistical analysis

A case-crossover design cannot test non-temporal interaction 
effects in models. Therefore, we investigated stratified effects, in which 
the population is a subset to those only having or not having a 
particular condition, to identify potential modifiers of the base PM2.5-
mortality association. Strata effects cannot be directly compared, so 
we use descriptive methods to determine differences, i.e., if stratified 
effect estimates appear to separate from the unstratified/base effect 
estimate in opposite directions, such that the stratified effect estimates 
would be different. For example, a base effect of 1.25 with stratified 
effects of 1.05 and 1.50. In addition, we performed sensitivity analyses 
on a population excluding individuals with chronic kidney disease and 
stroke (n = 62), as these groups were extreme in their clinical 
characteristics. All analyses were performed in SAS 9.4 (Cary, NC). 
Figures were created using R 3.5.3–4.2.3 (53) and Rstudio (54), with 
the tidyverse package (55).

This research was approved by the University of North Carolina 
at Chapel Hill’s Office of Human Research Ethics and has been 
approved yearly by administrative review (#14–2036). The 
Environmental Protection Agency’s Human Subjects Research Officer 
also reviewed this study and declared it non-human subjects research 
as all individuals were deceased at the time of data collection.

3 Results

3.1 Descriptive results

Characteristics of the study population and study area are 
presented in Tables 1, 2, with maps of area-level characteristics 
presented in Supplementary material 
(Supplementary Figures S1–S5). The study population is 
approximately two-thirds male, and one-third of Black or African-
American, with a median age of 55 years. The prevalence of clinical 
conditions ranged from 7% (stroke) to 56% (hypertension). For the 
census tracts in the study area, median household income ranged 
from $17,000 to $169,000, with a median of $56,000 and a mean of 
$62,000. Greenspace metrics ranged broadly, with some census 
tracts having limited to no tree canopy or forest cover, whereas in 

other census tracks the majority of the land was classified as tree 
canopy or forest cover. Over the study period, PM2.5 ranged from 
1.82 to 31.14, with a median of 10.25 and an IQR of 5.20. Seasonal 
distributions of PM2.5, relative humidity, and temperature are 
shown in Supplementary Table S1.

The unstratified estimate for a 5 μg/m3 increase in PM2.5 is 1.18 
(0.98, 1.41). Stratified ORs are compared to this estimate. Results are 
presented for the main analysis in Figure 2; Supplementary Table S2, 
and for the population subset sensitivity analysis in 
Supplementary Table S2; Supplementary Figure S6.

3.2 Main analysis

Individuals with LVH had ORs elevated from the unstratified 
effect estimate (1.90 (1.04, 3.50)), while those without LVH had effects 
below the unstratified effect estimate (1.07 (0.85, 1.36)). Individuals 
with NLR followed a similar pattern as those with LVH, though ORs 
were less divergent for those with NLR. Individuals with higher BMI 
also had ORs elevated from the unstratified OR.

For greenspace metrics, effect estimates for those living in areas 
with lower greenway density, forest land cover, or average tree canopy 
were higher in magnitude than the overall population association. In 
particular, greenway density exhibited distinct separation (OR with 
more greenways: 1.00 (0.76, 1.31); OR with fewer greenways: 1.38 
[1.07, 1.79)]. Results for census tract median income followed a 
similar pattern, with greater odds of sudden death for those living in 
below-median income areas and no evidence of effect for those living 
in above-median income areas.

ORs were typically higher for those without clinical conditions, 
with the exception of chronic respiratory disease and diabetes. When 
examining the number of conditions, those with no clinical conditions 
were similar to the unstratified effect estimate [1.24 (0.85, 1.81)], while 
those with a single clinical condition had an OR elevated from that 
effect [1.73 (1.15, 2.61)], and those with more than one clinical 
condition had a lower OR [0.91 (0.67, 1.24)].

3.3 Sensitivity analysis

Removal of individuals with stroke or kidney disease shifted 
stratified ORs away from the null compared to the full population, but 
overall patterns remained similar (Supplementary Table S2; 
Supplementary Figure S6). The difference between no clinical 
conditions and at least one clinical condition became similar to one 
another, suggesting that the reduction in OR observed in the main 
analysis was largely due to individuals with past stroke or 
kidney disease.

4 Discussion

Individuals with LVH or an abnormal NLR had a 
disproportionately higher likelihood of PM2.5-related death than 
those without these conditions, suggesting that they may 
be particularly susceptible to the impacts of air pollution exposures. 
Similarly, individuals with one clinical condition had higher PM2.5 
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ORs than the full population, though this did not hold for individuals 
with multiple conditions. PM2.5 was generally less impactful for 
individuals living in areas with higher levels of greenspace.

Our findings suggest that LVH and NLR may serve as clinical 
markers in a causal pathway whereby PM2.5 exposures increase 
the risk of sudden death. Both abnormalities may lead to cardiac 

TABLE 2 Distributions of continuous variables across study population (age), study period (PM2.5), or study area (income and greenspace).

Variable Mean SD Min 25th 50th 75th Max IQR

Age (years) 52.74 9.39 19 48 55 60 64 12

Daily average PM2.5 (μg/m3) 10.93 4.33 1.82 8.03 10.25 13.22 31.14 5.20

Area-level income ($) 61,689 24,560 17,441 46,277 56,030 72,694 169,028 26,418

Greenway density (km/km2) 0.91 0.67 0 0.49 0.72 1.16 4.05 0.67

Forest land cover (%) 22.00 16.30 0 7.97 19.05 35.37 69.49 27.41

Urban land cover (%) 29.48 19.40 1.24 12.32 28.55 41.96 95.21 29.65

Average tree canopy (%) 47.57 12.23 5.85 39.26 50.56 55.86 82.08 16.6

TABLE 1 Study population distributions for categorical and binary variables.

Characteristic N (%) Characteristic N (%)

Coronary artery disease Sex

Missing 28 (7) Missing 0 (0)

Absent 277 (69) Female 126 (32)

Present 94 (24) Male 273 (68)

Chronic kidney disease Race

Missing 28 (7) Asian or other 10 (2)

Absent 327 (82) Black or African-American 140 (35)

Present 44 (11) White 249 (62)

Diabetes BMI category

Missing 28 (7) Missing 0 (0)

Absent 262 (66) <=25 181 (45)

Present 109 (27) >25 218 (55)

Dyslipidemia Tree canopy percentage

Missing 28 (7) Missing 3 (1)

Absent 225 (56) Below census tract median 196 (49)

Present 146 (37) Above census tract median 200 (50)

Hypertension Greenway density

Missing 28 (7) Missing 3 (1)

Absent 147 (37) Below census tract median 192 (48)

Present 224 (56) Above census tract median 204 (51)

Left ventricular hypertrophy Forest land cover

Missing 96 (24) Missing 3 (1)

Absent 241 (60) Below census tract median 198 (50)

Present 62 (16) Above census tract median 198 (50)

Neutrophil lymphocyte ratio Urban land cover

Missing 221 (55) Missing 3 (1)

<= 2.15 55 (14) Below census tract median 198 (50)

> 2.15 123 (31) Above census tract median 198 (50)

Stroke Census tract income

Missing 28 (7) Missing 3 (1)

Absent 345 (86) Above median 131 (33)

Present 26 (7) Below median 265 (66)
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repolarization changes (56) potentiating PM2.5 exposures that 
may result in ventricular fibrillation and sudden death. For 
example, animal evidence suggests that PM exposure may result 
in left ventricular remodeling (57), human evidence suggest that 
living near traffic may alter left ventricular mass (58, 59); long-
term PM impacts these sub-clinical conditions, and that the 
presence of these conditions may lead to increased susceptibility 
to acute PM2.5 exposures. LVH and inflammation may be the final 
step in the mechanism whereby poor air quality and traditional 
risk factors trigger arrhythmia or myocardial ischemia and 
sudden death. Existing theoretical frameworks of the connection 
between PM2.5 exposure and mortality (Figure 1) may offer more 
insight into potential mechanisms and provide points of reference 
for future research and interventions (35).

4.1 Potential mechanisms/modes of action

Greenspace might affect PM2.5-mortality associations through 
a variety of pathways. Possibilities include exposure reduction, 
either due to lower air pollution emissions in those areas with 
higher levels of greenspace (56) or through the filtration and 
removal of air pollutants by vegetation (60–62). Higher levels of 
greenspace might also impact air pollution-related mortality by 
buffering through the salutary effects of stress reduction (63), 
improved social cohesion (64), or increased physical activity (65, 
66). Greenspace metrics may also signify individuals living in 
wealthier areas with more opportunity to access resources, that 
we posit would act as an additional buffer to the negative effects 
of air pollution exposures.

FIGURE 2

Mortality odds ratios and 95% CIs for 5  μg/m3 increase in PM2.5 1  day before recorded sudden death, stratified by individual and area-level 
characteristics, for the full population. Darker blue open circle OR: absent (clinical and specific clinical conditions), less than 25 BMI, above the median 
(greenspace metrics), or no clinical conditions. Medium blue closed circle OR: present (clinical and specific clinical conditions), greater than or equal to 
25 BMI, below the median (greenspace metrics), or one clinical condition. Light blue square OR: two or more conditions.
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Previous studies show that chronic conditions may increase the 
risk of the harmful health effects of air pollution, as they pose a more 
susceptible biological state; however, studies of the effects of short-term 
PM2.5 exposures on mortality in at-risk populations have produced 
mixed results (19). In an examination of the Nurses’ Health Study 
population, Puett et al. (67), observed potential differences in risk for 
those with and without hypertension, with all-cause mortality risks 
being somewhat lower in those with hypertension while fatal coronary 
heart disease risk was much higher in those with hypertension (67). 
Individuals with hypercholesteremia and higher BMIs evidenced 
higher risks for PM2.5-related all-cause mortality; but there were no 
differences across diabetes, median house value, or median household 
income strata (67). Wellenius et al. (68) found no differences in acute 
stroke risk with short-term PM2.5 exposures according to the presence 
of comorbid diabetes, hypertension, atrial fibrillation, or history of 
stroke (68). In our study, most chronic conditions appeared to confer 
a protective effect; this effect may have occurred due to the interaction 
of multiple chronic conditions or medical treatment. For example, 
those with cardiovascular disease and hypertension may be taking 
medications or behaving in ways that reduce the risk of heart attack 
and may counteract the detrimental effects of PM2.5 exposure (19, 
69–71). By definition, individuals included in this study have out-of-
hospital deaths, and it may be that those with these conditions are 
more likely to go to the hospital and experience within-hospital deaths, 
which would result in attenuated effects due to population selection. 
Alternatively, there may also be mechanistic pathways that are only 
observable, with specific causes of death not differentiated here.

4.2 Study limitations

This analysis has several potential limitations. The population is 
likely underpowered for full identification of potential modifiers 
because of the small number of subjects within each stratum. However, 
our sample size represents one of the largest population samples of all 
causes of sudden death among working-age adults. In addition, we are 
cautious in our interpretations of observed stratified effects and use 
them to identifying factors of potential mediators of air pollution on 
sudden death. A single site monitor was used to assign exposure and 
small area differences in air pollution, as between areas with and 
without greenspace, are not captured; though given the self-controlled 
design, this should not strongly impact results unless the response to 
PM is highly non-linear. The case-crossover design, while reducing 
the likelihood of unmeasured confounding, means that we cannot 
directly examine interaction effect estimates that would more directly 
identify modifying factors. Some of the potential modifiers are at the 
area level rather than individual level, and we cannot determine how 
individuals would have interacted with these, only that they lived in a 
census tract with those characteristics. Relatedly, we can only examine 
acute exposures, and there is potential for chronic air pollution to 
contribute to underlying conditions and susceptibility to acute air 
pollution exposures.

4.3 Study strengths

The analysis also has numerous strengths. The detailed demographic, 
geographic, clinical, and mortality data allowed us to explore potential 

modifiers of the PM2.5-mortality association, particularly LVH and NLR, 
potential direct causes of sudden death. We were also able to examine a 
diverse set of greenspace metrics from the National Land Cover Dataset, 
as the metrics analyzed may reflect different aspects of greenspace and 
are unavailable in the commonly used normalized difference vegetation 
index (28). In addition to these, other strengths include the control for 
confounding through study design and corresponding low expectation 
of residual confounding, the thorough case ascertainment that reduces 
the likelihood of potential selection bias, and the case definition that is 
expanded from the traditional definition and leads to the study 
populations being more racially and economically diverse than in 
previous studies of sudden death (36).

4.4 Conclusion

Here, we highlight the value of merging complex, environmental, 
clinical information, and geocoded events with newer, more 
sophisticated stratified analysis techniques. Our research approach 
should be  generalizable to other complex clinical and research 
problems in cardiology, possibly to the study of the interaction of risk 
factors for atrial fibrillation, ischemic heart disease, heart failure, and 
common cardiovascular conditions with attendant morbidity, 
disability, and mortality. A better understanding of these complex 
interactions may support effective prevention efforts for targeted 
clinical syndromes.

Most importantly, our analysis supports the causal model of 
Cascio (35) that ventricular hypertrophy and inflammation are steps 
on a causal pathway leading from air pollution to sudden death (35). 
Further, our analysis supports the emerging mechanistic model that 
sudden death should be considered a syndrome, with causation from 
atherosclerosis, but, in addition, from primary arrhythmia related to 
structural abnormities in the myocardium, particularly ventricular 
hypertrophy (72). Further articulating the causal pathways leading to 
sudden death will help improve specificity in interventions and guide 
future research. We hope this research motivates more work in this 
field with larger cohorts. For the present, the causal pathway 
we outlined may serve as a guide for preliminary environmental and 
clinical intervention programs to mitigate sudden death. We believe 
our findings to be of import in light of the mounting evidence of PM 
as a driver of atherosclerosis progression, ischemic heart disease, heart 
failure, and arrhythmia. Understanding those who are most at-risk 
may aid in providing information on the means to limit exposures for 
those individuals.
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