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Background and objective: Heavy metals, ubiquitous in the environment, pose a 
global public health concern. The correlation between these and diabetic kidney 
disease (DKD) remains unclear. Our objective was to explore the correlation 
between heavy metal exposures and the incidence of DKD.

Methods: We analyzed data from the NHANES (2005–2020), using machine 
learning, and cross-sectional survey. Our study also involved a bidirectional 
two-sample Mendelian randomization (MR) analysis.

Results: Machine learning reveals correlation coefficients of −0.5059 
and  −  0.6510 for urinary Ba and urinary Tl with DKD, respectively. Multifactorial 
logistic regression implicates urinary Ba, urinary Pb, blood Cd, and blood Pb as 
potential associates of DKD. When adjusted for all covariates, the odds ratios 
and 95% confidence intervals are 0.87 (0.78, 0.98) (p  =  0.023), 0.70 (0.53, 0.92) 
(p  =  0.012), 0.53 (0.34, 0.82) (p  =  0.005), and 0.76 (0.64, 0.90) (p  =  0.002) in order. 
Furthermore, multiplicative interactions between urinary Ba and urinary Sb, 
urinary Cd and urinary Co, urinary Cd and urinary Pb, and blood Cd and blood 
Hg might be present. Among the diabetic population, the OR of urinary Tl with 
DKD is a mere 0.10, with a 95%CI of (0.01, 0.74), urinary Co 0.73 (0.54, 0.98) in 
Model 3, and urinary Pb 0.72 (0.55, 0.95) in Model 2. Restricted Cubic Splines 
(RCS) indicate a linear linkage between blood Cd in the general population and 
urinary Co, urinary Pb, and urinary Tl with DKD among diabetics. An observable 
trend effect is present between urinary Pb and urinary Tl with DKD. MR analysis 
reveals odds ratios and 95% confidence intervals of 1.16 (1.03, 1.32) (p  =  0.018) 
and 1.17 (1.00, 1.36) (p  =  0.044) for blood Cd and blood Mn, respectively.

Conclusion: In the general population, urinary Ba demonstrates a nonlinear 
inverse association with DKD, whereas in the diabetic population, urinary Tl 
displays a linear inverse relationship with DKD.
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1 Introduction

Diabetes, a global health concern, affected roughly 537 million 
adults, about 10% of the world’s population, in 2021. It’s projected that 
by 2030, this figure will rise to 643 million and by 2045, it will reach 
783 million (1). The kidneys are among the organs most impacted by 
diabetes, which is the leading cause of chronic kidney disease (CKD). 
Approximately 40% of people with diabetes develop diabetic kidney 
disease (DKD) (2, 3). Despite the effective therapeutic benefits of 
glucagon-like peptide-1 receptor agonist (GLP-1 RA) and sodium 
glucose cotransporter 2 (SGLT2) inhibitors in diabetes treatment, 
which also show substantial renal protective effects (4–6), CKD 
remains the primary cause of end-stage kidney disease (ESKD) in the 
United States (7).

Heavy metals, ubiquitously present in the environment, can 
permeate the human body via the skin, respiratory tract, and digestive 
system (8–10). This indicates a potential threat of heavy metal exposures 
to the general populace through sources such as potable water, food, and 
dermal contact. Environmental exposure to heavy metals has emerged 
as a global public health concern (11). Previous research has explored 
the correlation between heavy metal exposures and diabetes (12–17), 
and numerous studies have also examined the link between heavy metal 
exposures and renal functionality (18–22). A cross-sectional study 
revealed a correlation between Cd and Pb exposure and DKD (23). 
Furthermore, an animal experiment showed that after exposure to Cd, 
compared with normal rats, diabetic rats had a more obvious increase 
in urinary microalbumin/creatinine, and the expression of autophagy 
related proteins, apoptosis and fibrosis proteins were higher. Cd 
exposure may via inhibiting autophagy aggravates diabetic kidney 
damage (24). Nonetheless, a unified agreement remains elusive. Up to 
the present, a limited number of scholars have delved into the potential 

link between heavy metal exposure and DKD, leaving the existence of a 
correlation between heavy metal exposure and DKD as an open question.

Therefore, we  embarked on a systematic evaluation of the 
correlation between heavy metal exposures and the incidence of DKD, 
utilizing data from the National Health and Nutrition Examination 
Survey (NHANES) (2005.01–2020.03) in the United  States. To 
corroborate the association between heavy metal exposures and DKD, 
and to investigate their potential causative link, we  employed a 
combination of traditional cross-sectional survey methods, novel 
machine learning approaches, and Mendelian randomization (MR) 
studies. Traditional logistic regression and subgroup analyses are 
commonly applied to cross-sectional surveys. In recent years, 
epidemiologists have increasingly applied machine learning methods 
in model building. Machine learning demonstrates higher efficiency 
and lower error in analyzing complex relationships between variables 
and handling data extremes, while also exhibiting flexibility and 
robustness (25–27). MR is a method that uses genetic variants as 
instrumental variables (IVs) to effectively avoid various biases that can 
arise in observational clinical studies, balancing confounding factors, 
and is commonly used to infer causal relationships between exposures 
and outcomes (28). The comprehensive procedure of this study is 
depicted in Graphical Abstract.

2 Materials and methods

2.1 The study population in NHANES

Conducted by the National Center for Health Statistics (NCHS) in 
the United States, the NHANES is a cross-sectional study employing a 
stratified, multistage probability sampling method to representatively 
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sample the U.S. population. The survey spans a broad spectrum of areas, 
encompassing interviews, physical examinations, dietary assessments, 
and laboratory tests, among other components (29). In the current 
study, we scrutinized data from seven cycles, ranging from January 2005 
to March 2020. The research protocol for this period received approval 
from the Institutional Review Board of the NCHS, and written informed 
consent was obtained from all participants. Within the span from 
January 2005 to March 2020, a total of 76,496 individuals participated 
in the NHANES survey. Our study encompassed 43,412 participants 
aged 20 years and above, excluding 740 pregnant women. From this 
cohort, we further included 5,150 subjects with complete records for 
crucial variables, including urinary and blood heavy metal levels, age, 
gender, race, poverty status, education level, and biochemical indicators. 
We excluded one participant who declined to disclose their education 
level and two participants with ambiguous smoking status. Ultimately, 
a total of 5,147 participants were incorporated into our study. The 
meticulous selection process is illustrated in Supplementary Figure S1.

2.2 Heavy metal exposures and other 
covariates used in NHANES

Utilizing the data sourced from NHANES, our study incorporated 
measurements of nine urinary and three blood heavy metal 
concentrations, obtained across seven cycles from January 2005 to 
March 2020, for the evaluation of heavy metal exposure. The urinary 
heavy metals investigated encompassed barium (Ba), cadmium (Cd), 
cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony 
(Sb), thallium (Tl), and tungsten (W). Conversely, the blood heavy 
metals comprised cadmium (Cd), lead (Pb), and mercury (Hg).

In addition to the main variables, we integrated participants’ age, 
gender, race, education level, income status, smoking habits, physical 
activity, body mass index, presence of hypertension, hyperlipidemia, 
hyperuricemia, normal liver function, UACR, and eGFR as covariates 
to mitigate confounding influences. In this investigation, a poverty 
index below 2 was used to classify participants as low income 
individuals. Educational attainment was bifurcated into two 
categories: high school or below and above high school. Body weight 
status was gauged using three BMI thresholds: 18.5, 25, and 30, to 
categorize participants as Underweight, Normal, Overweight, or 
Obese. Abnormal liver function was determined using cutoffs of ALT 
≥43 U/L (for males) or GGT > 58 U/L (for males), and ALT ≥31 U/L 
(for females) or GGT > 35 U/L (for females). Hypertensive status was 
assigned to participants previously diagnosed with hypertension or 
those currently on hypertension medications. Hyperlipidemia was 
defined as having total cholesterol ≥240 mg/dL, triglycerides ≥200 mg/
dL, LDL-C ≥ 160 mg/dL, HDL-C ≤ 40 mg/dL, or a prior diagnosis of 
hyperlipidemia or use of related medications (30). Hyperuricemia is 
defined as a blood uric acid ≥6.0 mmol/L (31). Participants were 
classified as engaging in moderate-to-vigorous physical activity if they 
self-reported undertaking either moderate or vigorous occupational 
or recreational activities. In terms of smoking status, participants were 
categorized as follows: “never smokers” (those who have smoked 
fewer than 100 cigarettes in their lifetime), “former smokers” 
(individuals who have previously smoked 100 or more cigarettes but 
have since ceased), and “current smokers” (those who have smoked 
100 or more cigarettes and continue to do so). Comprehensive details 
regarding the questionnaire surveys, measurement methodologies, 

and instruments employed can be sourced from the corresponding 
sections within each respective study cycle (29).

2.3 Definition and assessment of DKD in 
NHANES

The diagnostic criteria for diabetes include meeting at least one of 
the following conditions: (1) fasting plasma glucose ≥7.0 mmol/L. (2) 
glycosylated hemoglobin (HbA1c) ≥ 6.5 mmol/L. (3) prior medical 
diagnosis of diabetes by a physician or healthcare expert. (4) current 
use of diabetes medication or insulin. Among individuals with 
diabetes, participants who meet at least one of the following criteria 
are defined as having DKD: (1) UACR ≥30 mg/g. (2) eGFR <60 mL/
min/1.73m2. (3) Diabetes affected eyes/had retinopathy (32). The 
eGFR was calculated using the 4-variable Modification of Diet in 
Renal Disease (MDRD-4) equation (33). The diagnostic criteria for 
diabetes and DKD were based on the relevant guidelines provided by 
the American Diabetes Association (ADA) (32, 34).

2.4 GWAS data and single nucleotide 
polymorphisms selection

We performed MR analysis on East Asian and European cohorts 
to control for potential confounding by population characteristics. 
The Asian GWAS data, which pertained to heavy metal exposures, 
were sourced from a study involving 2,488 Chinese participants. 
Specifically, this data comprised the serum and plasma levels of 16 
heavy metals: barium (Ba), lead (Pb), cobalt (Co), molybdenum 
(Mo), cadmium (Cd), vanadium (V), chromium (Cr), aluminum 
(Al), manganese (Mn), nickel (Ni), tin (Sn), titanium (Ti), rubidium 
(Rb), strontium (Sr), copper (Cu), and zinc (Zn) (35). The East Asian 
GWAS data for DKD were collected from a Japanese study (36). For 
the European cohort, we utilized GWAS data from a Swedish study 
of 949 participants, which included whole blood levels of 11 heavy 
metals (Al, Cd, Co, Cu, Cr, Hg, Mn, Mo, Ni, Pb, and Zn) (37). The 
European GWAS data for DKD were extracted from a composite 
dataset (38). All referenced studies were ethically approved, and 
informed consent was obtained from all participants. Detailed 
characteristics of these GWAS studies can be found in the respective 
publications, with a summary provided in Supplementary Table S1.

Firstly, a genome-wide significance threshold of p < 5 × 10–5 was 
employed to identify genetic variants strongly associated with the 
exposure. Additionally, SNPs with missing key information were 
excluded from the analysis. In addition, SNPs in substantial linkage 
disequilibrium (defined as a distance of 10,000 kb, linkage disequilibrium 
r2 < 0.001) were excluded. Subsequently, the F-value for each SNPs was 
computed using the formula F = BETA2exposure/SE2exposure (39), and 
SNPs with F < 10 were further removed. Moreover, palindrome SNPs 
were also eliminated. Detailed information on the SNPs included in the 
MR analysis can be found in Supplementary Table S2.

2.5 Statistical analysis

We executed a tripartite statistical investigation to probe the 
plausible correlation between heavy metal exposures and DKD.
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In the first phase, the baseline data of 5,147 participants were 
compared based on whether they had DKD. We  employed 
descriptive statistics, such as the median, interquartile range (IQR), 
and percentages. Initial evaluations were carried out using the 
chi-squared test with Rao and Scott’s second-order correction, as 
well as the Wilcoxon rank-sum test for complex survey samples. 
We applied machine learning to NHANES data on nine urinary 
heavy metals levels and DKD status. Initially, we  randomly 
segregated the 5,147 participants into a validation group and a 
control group via random sampling. Within a cross-validation 
framework, we utilized one algorithm for variable selection, while 
harnessing another for the construction of the predictive 
classification model. The R packages used for machine learning 
analysis are as follows: randomForestSRC, glmnet, plsRglm, gbm, 
caret, mboost, e1071, BART, MASS, snowfall, xgboost. The area 
under the curve (AUC) was calculated for all 113 model 
combinations used in the dataset, which included both the training 
and validation sets. Ultimately, we selected the best model based on 
its AUC for risk model construction. The risk score was computed 
as follows:

 1 n
ii i

Risk Score Coe x
=

= ∑ ∫

Where 
i

Coe∫  represents the risk coefficient and xi symbolizes the 

urinary heavy metal variables.
In the second phase, we established three multivariate logistic 

regression models for verification. In Model 1, adjustments were made 
solely for age (continuous). In Model 2, we  accounted for age 
(continuous), gender, race, educational attainment, income stratum, 
smoking status, physical activity, and BMI. In Model 3, hypertension, 
hyperlipidemia, hyperuricemia, liver enzyme levels, UACR, and eGFR 
were further incorporated into the multifactorial regression model. 
Additionally, we  probed the interactions between heavy metal 
exposures within Model 3. To bolster the credibility of our conclusions, 
subgroup analyses were conducted within the diabetic population, 
and three models were similarly fitted. We also employed Restricted 
Cubic Spline (RCS) to discern whether the relationship between 
exposure and outcome is linear or nonlinear. If the nonlinear 
association proved insignificant, urinary and blood heavy metal 
concentrations were converted into discrete variables, based on the 
quartiles of the weighted sample distribution, to further conduct trend 
analysis. At this stage, given the multi-stage complex sampling survey’s 
characteristics, all analyses incorporated the survey weights of 
each participant.

During the final phase, we separately performed bidirectional 
two-sample MR analyses in East Asian and European populations to 
explore any causal or reverse causal relationships between heavy metal 
exposures and DKD. The TwoSampleMR software package was 
utilized for these bidirectional two-sample MR analysis, which 
incorporated the Inverse variance weighting (IVW), Weighted median 
estimator (WM), MR-Egger, and Wald ratio for MR analysis. 
We conducted heterogeneity tests using IVW and MR-Egger, and 
implemented outlier detection as required using MR-PRESSO. Further, 
the intercept of MR-Egger was employed to evaluate horizontal 
pleiotropy. Lastly, a Leave-one-out sensitivity test was executed to 
examine the potential influence of individual SNPs on the MR results. 

Supplementary Figure S2 provides a detailed research flowchart for 
this phase.

We executed the analyses for the three previously mentioned 
stages utilizing R software (Version 4.2.2). For all analyses, 
we established statistical significance as a two-sided p-value <0.05.

3 Results

3.1 Demographic characteristics

Participant demographic details and baseline comparisons are 
elaborated in Table 1. We enrolled a total of 5,147 participants, median 
age being 47 years, with a balanced dispersion across all age brackets. 
The cohort comprised 2,558 males and 2,589 females, with 
Non-Hispanic Whites forming the majority. Among these, 416 
individuals were diagnosed with DKD. Predominantly, DKD patients 
were aged above 60 years and frequently possessed an educational 
background not surpassing high school. When juxtaposed with 
non-DKD participants, a larger fraction of high-income individuals, 
former smokers, and those engaging in less physical activity were 
observed among DKD patients. Furthermore, obesity, hypertension, 
hyperlipidemia, elevated UACR, diminished eGFR, and a higher 
prevalence of increased liver enzymes were frequently found among 
DKD participants. Nonetheless, the fraction of participants with 
hyperuricemia was comparatively lower.

3.2 Associations of urinary metals with DKD 
in machine learning

We devised 113 risk prediction models utilizing methodologies 
such as Lasso, Ridge, Enet, Stepglm, Support Vector Machine (SVM), 
glmBoost, Linear Discriminant Analysis (LDA), plsRglm, 
RandomForest, Gradient Boosting Machine (GBM), XGBoost, and 
NaiveBayes, and portrayed their AUC (Supplementary Figure S3). 
Evident from the figure, the RandomForest (RF) model exhibited 
commendable predictive prowess in both training and validation sets, 
boasting AUC values of 1.000 and 0.715, correspondingly. Based on 
this, we graphically represented urinary heavy metal concentrations 
highly associated with DKD as determined by RF (Figure 1). The 
figure clearly illustrates that urinary Ba (coefficient = −0.5059) and 
urinary Tl (coefficient = −0.6510) bear an inverse correlation with the 
incidence of DKD, while the correlation coefficients between other 
urinary heavy metals and DKD are negligible.

3.3 Associations of heavy metal exposures 
with DKD in multivariate logistics 
regression

The outcomes of the multifactorial logistic regression (Figure 2) 
demonstrate that urinary Ba, urinary Pb, blood Cd, and blood Pb 
consistently exhibit significant associations with DKD across all three 
models. In Model 3, accounting for all covariates, their odds ratios 
(ORs) (95% CIs) and p values are 0.87 (0.78, 0.98), p = 0.023; 0.70 
(0.53, 0.92), p = 0.012; 0.53 (0.34, 0.82), p = 0.005; and 0.76 (0.64, 0.90), 
p = 0.002, correspondingly. For each unit increase in urinary Ba, 
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TABLE 1 Baseline characteristics of participants categorized by participants without and with DKD.

Variable

Overall N = 5147a

DKD

p-valuebWithout With

N =  4731a N =  416a

Age 47 (34, 60) 46 (33, 59) 65 (54, 73) <0.001**

Age (group) <0.001**

  20–40 years 1,776 (38%) 1,750 (39%) 26 (11%)

  40–60 years 1,744 (38%) 1,636 (39%) 108 (28%)

  60+ years 1,627 (24%) 1,345 (22%) 282 (61%)

Gender 0.14

  Female 2,589 (50%) 2,403 (51%) 186 (45%)

  Male 2,558 (50%) 2,328 (49%) 230 (55%)

Race 0.2

  Mexican American 777 (8.3%) 700 (8.2%) 77 (11%)

  Other Hispanic 503 (5.5%) 470 (5.6%) 33 (4.0%)

  Non-Hispanic White 2,218 (69%) 2,047 (69%) 171 (66%)

  Non-Hispanic Black 1,060 (10%) 963 (10%) 97 (13%)

  Other Race – Including Multi-Racial 589 (7.1%) 551 (7.2%) 38 (6.6%)

Education level <0.001**

  High school or below 2,406 (39%) 2,146 (38%) 260 (59%)

  High school above 2,741 (61%) 2,585 (62%) 156 (41%)

Income level <0.001**

  Low income 2,694 (67%) 2,528 (67%) 166 (52%)

  High income 2,453 (33%) 2,203 (33%) 250 (48%)

Smoker status 0.037*

  Never smoker 2,818 (54%) 2,601 (54%) 217 (52%)

  Former smoker 1,294 (27%) 1,149 (26%) 145 (34%)

  Current smoker 1,035 (19%) 981 (20%) 54 (13%)

Physical activity <0.001**

  Moderate work activity below 1,428 (22%) 1,253 (21%) 175 (35%)

  Moderate work activity or above 3,719 (78%) 3,478 (79%) 241 (65%)

BMI <0.001**

  Underweight 1,443 (29%) 1,384 (30%) 59 (11%)

  Normal 91 (1.4%) 89 (1.4%) 2 (0.6%)

  Overweight 1,698 (33%) 1,582 (33%) 116 (28%)

  Obese 1,915 (37%) 1,676 (35%) 239 (60%)

Hypertension <0.001**

  No 3,330 (69%) 3,197 (71%) 133 (38%)

  Yes 1,817 (31%) 1,534 (29%) 283 (62%)

Hyperlipidemia <0.001**

  No 2,395 (48%) 2,297 (49%) 98 (28%)

  Yes 2,752 (52%) 2,434 (51%) 318 (72%)

Hyperuricemia <0.001**

  No 3,378 (67%) 3,180 (68%) 198 (50%)

  Yes 1,769 (33%) 1,551 (32%) 218 (50%)

Liver enzyme 0.002**

(Continued)
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FIGURE 1

Correlation coefficient between urinary heavy metal exposures and 
DKD.

urinary Pb, blood Cd, and blood Pb, the risk of DKD decreases by 13, 
30, 47, and 24%, respectively. Furthermore, we scrutinized potential 
interactions between heavy metal levels in urine and blood (Figure 3). 
We identified potential interactions between urinary Ba and urinary 
Sb, with an OR = 0.41, 95% CI of (0.18, 0.97), and p = 0.041. 
Noteworthy interactions were discerned between urinary Cd and 
urinary Co, with an OR = 0.62, 95% CI of (0.43, 0.91), and p = 0.014. 
Significant interactions were found between urinary Cd and urinary 
Pb, with an OR = 0.32, 95% CI of (0.15, 0.66), and p = 0.002. Potential 
interactions might exist between blood Cd and blood Hg, with an 
OR = 1.05, 95% CI of (1.00, 1.10), and p = 0.048. We subsequently 
employed RCS to plot the dose–response relationship curves between 
these four heavy metals and DKD (Figure 4). We discerned that the 

correlation between blood Cd and the prevalence of DKD is linear 
(P_non-linearity = 0.7751), while the associations between urinary Ba 
(P_non-linearity = 0.0001), urinary Pb (P_non-linearity = 0.0054), and 
blood Pb (P_non-linearity = 0.0029) with DKD are nonlinear.

3.4 Associations of heavy metal exposures 
with DKD in subgroup analysis

Likewise, we  devised three models within the diabetic cohort 
(Figure 5). The study discovered that among diabetic patients, the 
correlation between urinary Co and DKD was significant solely in 
Model 3, with an OR = 0.73, 95% CI of (0.78, 0.98), and p = 0.039. For 
each unit increase in urinary Co, the risk of DKD in diabetic patients 
reduces to 73% of the initial. The association between urinary Pb and 
DKD was significant merely in Model 2, with an OR = 0.72, 95% CI of 
(0.55, 0.95), and p = 0.02. For each unit increase in urinary Pb, the 
prevalence of DKD dwindles by 28%. Besides, in the diabetic cohort, 
the correlation between urinary Tl and DKD was significant across all 
three models, with ORs (95% CIs) and p values being 0.1 (0.02, 0.55), 
p = 0.009; 0.09 (0.02, 0.53), p = 0.008; and 0.1 (0.01, 0.74), p = 0.024, 
respectively. In Model 3, for each unit increase in urinary Tl, the risk 
of DKD in diabetic patients diminishes to merely 10% of the original. 
Concurrently, the RCS model exhibits (Figure 6) that in the diabetic 
population, urinary Co, urinary Pb, and urinary Tl all bear a linear 
correlation with the prevalence of DKD (P_non-linearity are 0.6430, 
0.7802, and 0.3631, respectively).

TABLE 1 (Continued)

Variable

Overall N = 5147a

DKD

p-valuebWithout With

N =  4731a N =  416a

  Normal 4,168 (82%) 3,870 (83%) 298 (72%)

  High 979 (18%) 861 (17%) 118 (28%)

UACR (mg/g) 6 (4, 11) 6 (4, 10) 38 (11, 110) <0.001**

eGFR (mL/min/1.73 m2) 87 (74, 102) 88 (76, 102) 67 (53, 93) <0.001**

Metals, urine

  Barium (Ba), urine (ug/L) 1.19 (0.59, 2.19) 1.23 (0.60, 2.22) 0.76 (0.40, 1.60) <0.001**

  Cadmium (Cd), urine (ug/L) 0.25 (0.13, 0.45) 0.24 (0.13, 0.44) 0.29 (0.16, 0.53) <0.001**

  Cobalt (Co), urine (ug/L) 0.33 (0.20, 0.53) 0.34 (0.20, 0.53) 0.32 (0.20, 0.50) 0.5

  Cesium (Cs), urine (ug/L) 4.6 (2.8, 6.9) 4.6 (2.8, 6.9) 4.3 (3.0, 6.8) 0.6

  Molybdenum (Mo), urine (ug/L) 37 (21, 63) 37 (21, 63) 40 (24, 63) 0.13

  Lead (Pb), urine (ug/L) 0.39 (0.21, 0.67) 0.39 (0.21, 0.68) 0.39 (0.24, 0.63) 0.5

  Antimony (Sb), urine (ug/L) 0.05 (0.03, 0.08) 0.05 (0.03, 0.08) 0.05 (0.03, 0.08) 0.5

  Thallium (Tl), urine (ug/L) 0.17 (0.10, 0.26) 0.17 (0.10, 0.27) 0.14 (0.09, 0.21) <0.001**

  Tungsten (W), urine (ug/L) 0.06 (0.03, 0.11) 0.06 (0.03, 0.11) 0.07 (0.04, 0.12) 0.064

Metals, blood

  Cadmium (Cd), blood (ug/L) 0.29 (0.18, 0.52) 0.29 (0.18, 0.52) 0.35 (0.20, 0.53) 0.2

  Lead (Pb), blood (ug/dL) 1.06 (0.70, 1.70) 1.05 (0.69, 1.69) 1.22 (0.84, 1.76) 0.010**

  Mercury (Hg), blood (ug/L) 0.85 (0.43, 1.66) 0.85 (0.43, 1.66) 0.71 (0.39, 1.60) 0.11

aMedian (IQR) for continuous variables; n (%) for categorical variables. 
bChi-squared test with Rao & Scott's second-order correction for categorical variables; Wilcoxon rank-sum test for complex survey samples for continuous variables.DKD, diabetic kidney 
disease; UACR, urinary albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate. *p-value < 0.05; **p-value < 0.01. The bold font indicates p-value < 0.05.
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3.5 Associations of heavy metal exposures 
with DKD in trend analysis

We converted heavy metal exposure into discrete variables 
(Q1, Q2, Q3, Q4) based on quartiles and fitted the same three 

models to examine the heavy metal exposures that were 
significantly linearly related to DKD (Figure  7). The results 
revealed that within the diabetic population, with the lowest 
quartile (Q1) as the reference, the urinary Pb concentration in the 
highest quartile (Q4) consistently demonstrated significant 

FIGURE 2

Associations of heavy metal exposures with diabetic kidney disease in general population. 1Model 1: age (continuous) was adjusted. 2Model 2: age 
(continuous), gender, race, education level, income level, smoker status, physical activity, BMI were adjusted. 3Model 3: age (continuous), gender, race, 
education level, income level, smoker status, physical activity, BMI, hypertension, hyperlipidemia, hyperuricemia, liver enzyme, UACR, eGFR were 
adjusted. UACR, urinary albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval. *p-value <0.05; 
**p-value <0.01.

FIGURE 3

Multiplicative interactions between heavy metal exposures. Blue represents heavy metal exposure; yellow (below blue) represents the OR (95% CI) of 
the multiplicative interaction between two heavy metal exposures; red (above blue) represents the p-value of the multiplicative interaction between 
two heavy metal exposures. Darker colors indicate statistical significance. OR, odds ratio; CI, confidence interval. *p-value <0.05; **p-value <0.01.
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FIGURE 4

The dose–response relationship between (A) Ba urine, (B) Pb urine, (C) Cd blood, (D) Pb blood and DKD in general population.

FIGURE 5

Associations of heavy metal exposures with diabetic kidney disease in diabetic population. 1Model 1: age (continuous) was adjusted. 2Model 2: age 
(continuous), gender, race, education level, income level, smoker status, physical activity, BMI were adjusted. 3Model 3: age (continuous), gender, race, 
education level, income level, smoker status, physical activity, BMI, hypertension, hyperlipidemia, hyperuricemia, liver enzyme, UACR, eGFR were 
adjusted. UACR, urinary albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval. *p-value <0.05; 
**p-value <0.01.

correlation with DKD across all three models. The ORs (95% CIs) 
and p values of the three models were 0.59 (0.40, 0.87), p = 0.009; 
0.46 (0.31, 0.68), p < 0.001; and 0.59 (0.39, 0.88), p = 0.011, 
respectively. The linear trend was consistently significant, with P 
for trend all lower than 0.05, indicating a significant linear inverse 

correlation between urinary Pb concentration and DKD in the 
diabetic population. Similarly, the linear trend of urinary Tl 
concentration with DKD in the diabetic population was only 
significant in Model 1 and Model 2 (P for trend both less 
than 0.05).
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3.6 Associations of heavy metal exposures 
with DKD in MR analysis

Finally, we executed a bidirectional two-sample MR analysis to 
further probe the causal relationship between heavy metal exposures 
and DKD. Where the final count of included SNPs was 2, solely the 
IVW method was employed for MR analysis. When the number of 
SNPs was 1, only the Wald ratio method was utilized for MR analysis. 
In other instances, we applied IVW, MR-Egger, and WM methods for 
MR analysis. We conducted bidirectional two-sample MR analysis in 
both East Asian and European populations. Due to database 
limitations, when DKD was used as exposure for MR analysis in the 
European population, we could not locate suitable SNPs to serve as 
instrumental variables. All MR analysis results are displayed in 
Supplementary Table S3. We identified potential causal relationships 
only between blood Cd and blood Mn and DKD in the European 
population. We subsequently visualized the MR outcomes of the two 
(Figures 8A,B). From the figure, it is discernible that blood Cd (WM: 
OR = 1.16, 95%CI is (1.03, 1.32), p = 0.018) and blood Mn (WM: 
OR = 1.17, 95%CI is (1.00, 1.36), p = 0.044) bear a positive correlation 
with DKD. We then applied IVW and MR-Egger methods to test for 
heterogeneity. The IVW (Q = 10.614, p = 0.101) and MR-Egger 
(Q = 10.608, p = 0.060) between blood Cd and DKD, and the IVW 

(Q = 2.666, p = 0.751) and MR-Egger (Q = 2.371, p = 0.668) between 
blood Mn and DKD all generated p values greater than 0.05, indicating 
no heterogeneity. We also calculated the intercept of MR-Egger to 
examine horizontal pleiotropy. The intercept between blood Cd and 
DKD is 0.003, p = 0.960; the intercept between blood Mn and DKD is 
−0.045, p = 0.615. Both intercepts approach 0, and P is greater than 
0.05, indicating no horizontal pleiotropy. Lastly, we  conducted a 
Leave-one-out sensitivity test (Figures 8C,D). The results reveal that 
upon removal of a certain SNP, the remaining SNPs can obtain results 
similar to the overall outcomes when performing MR analysis, thus 
no single SNP exerts a significant influence on the results.

4 Discussion

Based on surveys, limited studies have ventured into exploring the 
association between heavy metal exposures and DKD. In this study, 
we initially and systematically evaluated the correlation between heavy 
metal exposures and DKD. Machine learning unveiled a relationship 
between urinary Ba and urinary Tl with DKD, with correlation 
coefficients more pronounced than other urinary heavy metals. 
Findings from the cross-sectional study suggest that in the general 
population, urinary Ba and urinary Pb exhibit a significant negative 

FIGURE 6

The dose–response relationship between (A) Co urine, (B) Pb urine, (C) Tl urine and DKD in diabetic population.

FIGURE 7

Forest plot for trend analysis. 1Model 1: age (continuous) was adjusted. 2Model 2: age (continuous), gender, race, education level, income level, smoker 
status, physical activity, BMI were adjusted. 3Model 3: age (continuous), gender, race, education level, income level, smoker status, physical activity, 
BMI, hypertension, hyperlipidemia, hyperuricemia, liver enzyme, UACR, eGFR were adjusted. UACR, urinary albumin-to-creatinine ratio; eGFR, 
estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval. *p-value <0.05; **p-value <0.01.
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FIGURE 8

(A,B) The scatter plot of two sample mendelian randomization analysis. (C,D) The forest map based on the analysis result of “leave-one-out method”.

correlation with the prevalence of DKD, as do blood Cd and blood Pb. 
In the diabetic cohort, urinary Tl bears a negative correlation with the 
prevalence of DKD, while urinary Co and urinary Pb only demonstrate 
a significant negative correlation with DKD in certain models. On the 
flip side, through MR analysis, we discovered a positive correlation 
between blood Cd, blood Mn, and DKD in the European population.

4.1 Barium

Our research indicates that in the general population, there exists a 
negative correlation between urinary Ba and DKD, and the RCS suggests 
a nonlinear relationship between the two. However, a similar conclusion 
was not reached within the diabetic population. Moreover, although the 
MR analysis in both East Asian and European populations did not find 
a causal link between serum, plasma, and whole blood Ba and DKD, this 
does not contradict the findings derived from this cross-sectional study. 
This is not only due to the source of the test samples and differences 
among the surveyed populations, but also because the MR analysis 
initially presumes a linear relationship between exposure and outcome, 
while the cross-sectional study suggests a nonlinear relationship between 
the two. To date, no researchers have investigated the association 
between Ba exposure and DKD, and several studies have demonstrated 
that Ba exposure is a risk factor for diabetes and renal function decline 
(13, 19, 40–42). Research has demonstrated that several metal elements, 
including Ba, may be linked with a higher eGFR in early pregnancy (43). 
An early animal experiment suggested that blood sugar levels diminished 
in rats exposed to Ba (44). Interestingly, a cross-sectional study found no 
difference in serum Ba levels between non-diabetic individuals and 
those with diabetes, but the concentration of Ba in the tears of 
non-diabetic individuals was lower than those with diabetes (45). To 
conclude, the correlation between Ba exposure and DKD remains 
undetermined. According to our investigation, our study may be the first 
to report on the association between Ba exposure and DKD.

4.2 Lead

Our study results indicate that in the general population, the levels 
of urinary Pb and blood Pb consistently demonstrate a nonlinear 
negative correlation with DKD. In the diabetic population, this 
negative correlation is also nonlinear and exhibits a significant trend 
effect. When Pb enters the human body through pathways such as the 
respiratory or gastrointestinal tract, it typically accumulates in the 
blood, soft tissues, and bones (46, 47). The half-life of Pb in these three 
locations is 35 days (in blood) (48), 40 days (in soft tissues) (49), and 
20–30 years (in bones) (50), respectively. Furthermore, although Pb is 
primarily excreted from the body through urine, the amount of Pb 
excreted is quite low. Moreover, the Pb content in adult bones accounts 
for 80–95% of the total, suggesting that the Pb levels in blood and 
urine cannot accurately reflect chronic Pb exposure (46, 47, 51, 52). 
Although previous studies have demonstrated that higher Pb exposure 
is often associated with kidney damage (53–56), as mentioned earlier, 
blood Pb cannot serve as a qualified indicator for assessing Pb 
exposure. Moreover, we cannot discount reverse causality, leaving the 
“chicken or egg” question unanswered.

4.3 Cadmium

Cd is virtually omnipresent in all foods, making it impossible for 
humans to avoid exposure to Cd in daily life. Cd can infiltrate various 
cells, including renal tubular epithelial cells (57–59) and pancreatic β 
cells (60). The half-life of Cd in the blood ranges from approximately 75 
to 128 days (61), and the average lifespan of red blood cells is 120 days, 
thus blood Cd concentration can serve as an indicator of recent 
exposure. However, on the flip side, due to the extremely low excretion 
and the human body’s inability to eliminate Cd, most of the Cd in the 
human body accumulates in the kidneys. An animal experiment 
indicated that Cd can only be excreted when cells die (62), therefore, 
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using the Cd content in blood or urine as an evaluation indicator of 
long-term Cd exposure has certain limitations. In this study, we only 
observed a negative correlation between blood Cd and the prevalence 
of DKD in the general population. Interestingly, the MR analysis results 
in the European population showed that blood Cd is a risk factor for 
DKD. The reason for this result may be attributed to the significant 
differences in the participants of the two studies. The participants of the 
MR study selected from the GWAS data of the European population are 
the older adult (37), while the cross-sectional study involves the general 
population, and the overall blood Cd level is significantly lower than 
that of the older adult. Some studies suggest that Cd exposure may 
promote the progression of DKD in diabetic patients (63, 64). Overall, 
our MR research results support this conclusion.

4.4 Thallium

Tl is a recognized toxic heavy metal with good water solubility. It 
is mainly absorbed through the skin and mucous membranes, and 
vegetables are the main source of human Tl exposure (65). Thallium 
poisoning can affect various organs in the human body. Its biological 
half-life is 3–8 days and is primarily excreted through urine (66). 
Currently, there is no evidence of a correlation between low-dose Tl 
exposure and DKD. We found that in the diabetic population, urinary 
Tl and DKD are linearly negatively correlated, and there is a significant 
trend effect. Whether there exists a causal relationship between Tl 
exposure and DKD remains unknown. However, due to the high 
toxicity of Tl metal and its better water solubility compared to other 
metals, we cannot help but speculate that the decrease in urinary Tl 
content is due to the decline in renal filtration function in DKD.

4.5 Other heavy metal exposures

In addition to the aforementioned heavy metal exposures, we also 
discovered that urinary Co in the diabetic population demonstrated a 
significant linear negative correlation with DKD in Model 3, which 
adjusted for all covariates. Furthermore, in the MR analysis, we found 
that blood Mn might be  a risk factor for DKD in the European 
population. However, these pieces of evidence only suggest potential 
correlations between heavy metal exposure and DKD, but they do not 
provide definitive conclusions. On the other hand, in this study, 
we did not find evidence of a correlation between other heavy metal 
exposures and DKD.

4.6 Strengths and limitations

In summary, we  utilized data from the NHANES survey 
conducted from 2005 to March 2020, enabling a comprehensive 
investigation of the correlation between heavy metal exposure and 
DKD using a large sample size. The rigorous data collection 
procedures of NHANES and the professionally trained staff ensured 
the reliability of our research. Moreover, we combined novel machine 
learning statistical methods with traditional chi-square tests, 
rank-sum tests, and logistic regression analyses to validate our 
research results from multiple perspectives. We considered sampling 

weights in our analysis, making our conclusions more robust and, to 
some extent, generalizable to the adult population in the United States. 
Furthermore, we  conducted subgroup analyses, evaluated the 
association between heavy metal exposure and DKD in the diabetic 
population, incorporated RCS curves into our analysis models, and 
conducted interaction and trend analyses. To compensate for the 
inability of cross-sectional studies to determine causality, 
we conducted bidirectional two-sample MR analyses in East Asian 
and European populations to assess the causal relationship between 
heavy metal exposures and DKD.

Despite our preliminary and systematic evaluation of the 
correlation between heavy metal exposures and DKD, this study has 
some limitations. Firstly, considering the differences in the half-life 
of heavy metals in the human body, the concentrations of heavy 
metals in urine and blood may not necessarily serve as qualified 
indicators for evaluating heavy metal exposures. Moreover, the 
metabolism of urine and blood may affect the measurement results. 
Secondly, we were unable to obtain the heavy metal content in other 
body tissues (such as hair, nails, bones, or organs) to assess heavy 
metal exposure. As the distribution of different heavy metals in the 
body varies, measuring the heavy metal content in urine and blood 
only once as a variable for assessing heavy metal exposures prevents 
us from accurately estimating the degree of heavy metal 
accumulation in the body. Thirdly, we  did not use oral glucose 
tolerance test (OGTT) as a diagnostic criterion for diabetes, which 
may have resulted in fewer diagnosed diabetic and DKD patients 
than in reality. Then, due to database limitations, we did not include 
other heavy metal exposures or harmful substance exposures, so 
we  cannot rule out these confounding factors. Finally, in the 
bidirectional two-sample MR analysis, we were unable to obtain 
more extensive GWAS data on heavy metal exposure. The GWAS 
data on heavy metal exposures included in this study had a small 
sample size and were limited to specific populations. We  were 
unable to conduct reverse MR analysis in the European population, 
nor could we  generalize the results of the MR to the 
general population.

5 Conclusion

In conclusion, our study provides evidence for the correlation 
between certain heavy metals and DKD, particularly urinary Ba in the 
general population and urinary Tl in the diabetic population, 
correlations that have not been reported previously. Our research 
findings may hold certain value for public environmental health. 
Considering the limitations of cross-sectional studies and two-sample 
MR studies, more rigorous prospective cohort studies and mechanistic 
studies are needed in the future to validate our conclusions.
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