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Introduction: An easily accessible and cost-free machine learning model based 
on prior probabilities of vascular aging enables an application to pinpoint high-
risk populations before physical checks and optimize healthcare investment.

Methods: A dataset containing questionnaire responses and physical 
measurement parameters from 77,134 adults was extracted from the electronic 
records of the Health Management Center at the Third Xiangya Hospital. The least 
absolute shrinkage and selection operator and recursive feature elimination-
Lightweight Gradient Elevator were employed to select features from a pool of 
potential covariates. The participants were randomly divided into training (70%) 
and test cohorts (30%). Four machine learning algorithms were applied to build 
the screening models for elevated arterial stiffness (EAS), and the performance 
of models was evaluated by calculating the area under the receiver operating 
characteristic curve (AUC), sensitivity, specificity, and accuracy.

Results: Fourteen easily accessible features were selected to construct the 
model, including “systolic blood pressure” (SBP), “age,” “waist circumference,” 
“history of hypertension,” “sex,” “exercise,” “awareness of normal blood pressure,” 
“eat fruit,” “work intensity,” “drink milk,” “eat bean products,” “smoking,” “alcohol 
consumption,” and “Irritableness.” The extreme gradient boosting (XGBoost) 
model outperformed the other three models, achieving AUC values of 0.8722 
and 0.8710 in the training and test sets, respectively. The most important five 
features are SBP, age, waist, history of hypertension, and sex.

Conclusion: The XGBoost model ideally assesses the prior probability of the 
current EAS in the general population. The integration of the model into primary 
care facilities has the potential to lower medical expenses and enhance the 
management of arterial aging.
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1 Introduction

Vascular aging, regardless of the presence of atherosclerosis, is 
characterized by intimal and medial thickening and a loss of arterial 
elasticity, leading to vascular stiffness (1, 2). Population-based studies 
indicated that vascular aging should no longer be only considered a 
part of normal aging but rather influenced by industrialized lifestyle 
(3) and increased with the level of urbanization (4). Aortic pulse wave 
velocity (PWV) is considered a physiological method for quantifying 
arterial functional aging (5, 6) and serves as a surrogate marker of 
arterial stiffness, which is strongly related to cardiovascular diseases 
(CVDs) morbidity (7, 8).

Approximately 35% of individuals aged less than 40 years present 
a PWV value that was above the 90th percentile of PWV expected for 
their age, according to the European Reference Values Collaboration 
(9), and widespread PWV screening remains lacking in practice (10). 
Vascular aging is strongly influenced by acquired risk factors, 
primarily related to lifestyle choices and cardio-metabolic indicators 
such as smoking (11, 12), high blood pressure (13, 14), and glucose 
levels (15). This implies that arterial aging, as measured by PWV, can 
be preemptively evaluated with the aid of a suitable algorithm. This 
might allow for the precise identification of high-risk individuals at 
minimal or even zero cost, optimizing the efficiency of screening 
initiatives and reducing the health investment required for the vast 
low-risk population. We hereby reintroduce the concept of pretest 
probability. For example, in clinical practice, before diagnosing 
coronary heart disease, it is necessary to assess the disease’s prior 
probability based on symptoms and other factors. This assessment 
informs the next steps in patient testing (16). Similar to this scope, 
our testing employs cross-sectional big data and machine learning 
methods to determine the pretest probability of current 
vascular aging.

Machine learning (ML) has been successfully employed in 
medicine to establish and develop accurate models (17). It outperforms 
conventional statistical methods by automatically training itself and 
improving its performance without the need for intricate 
programming. ML has the capacity to learn from diverse data modules 
and model complex relationships, resulting in more accurate 
predictions (18). A gradient boosting-based model for arterial stiffness 
assessment using clinical characteristics was constructed in a cohort 
of 1,672 patients with diabetes (19), demonstrating effective 
classification for elevated arterial stiffness (EAS) within this specific 
group. Based on our speculation that the prevalence of elevated PWV 
would be higher in individuals with diabetes, and considering the 
distinct parameters and contributing features of the model in this 
population, we realized that the model for the general population 
would likely differ substantially.

By leveraging a vast dataset gathered from a substantial cohort 
of physical examinees, encompassing Pulse Wave Velocity (PWV) 
metrics, along with detailed insights into lifestyle patterns and 
fundamental clinical attributes, we  employed machine learning 
(ML) techniques to craft a streamlined and economical screening 
model for arterial stiffness in the general populace. This approach 
enables more precise pinpointing of high-risk demographics. Such 
a strategy may significantly reduce the likelihood of overlooking 
potential diagnoses and curtail medical squandering, enhancing the 
overall efficiency and effectiveness of health screenings for 
arterial aging.

2 Methods

2.1 Study population and data source

The retrospective dataset was extracted from the electronic 
healthcare records of the health management center of the Third 
Xiangya Hospital. The records collected spanned from 2015 to 2021 
and constituted the original set. The dataset consisted of 77,191 
physical examinees who underwent a brachial-ankle pulse wave 
velocity (baPWV) test at the health management center. The exclusion 
criteria were as follows: (1) individuals who were unable to sign 
informed consent; (2) patients with a diagnosis of end-stage renal 
disease and aortopathy. Samples with massive missing data or 
excessive outliers whose irrationality was justified by the clinician 
were deleted, resulting in a final dataset of 77,134 individuals. All 
participants signed the informed consent form. The study was 
conducted in accordance with the Declaration of Helsinki and 
approved by the Ethics Committee of the Third Xiangya Hospital (No 
2020-S609).

2.2 Feature characteristics and definitions

The dataset included a total of 82 features, which encompassed 
various types of information. These features included physical 
examination measurements such as body mass index (BMI), waist 
circumference (WC), and systolic/diastolic blood pressure (SBP/
DBP). Laboratory indicators were also present in the dataset and 
included measurements such as fasting blood sugar (FBS), lipid 
profile, and renal function markers. Additionally, questionnaire 
information was collected, including previous diagnoses of diseases, 
lifestyle factors (diet preference, smoking, alcohol consumption, 
exercise habits, working and sedentary time, and sleep status), and 
health literacy regarding basic medical knowledge. For specific 
definitions within the dataset, alcohol consumption was defined as 
consuming more than 50 g of alcohol per week. The current smoking 
status was defined as smoking more than one cigarette per day. The 
baPWV measurements were obtained using a non-invasive 
measurement system called VP-2000 manufactured by Colin Co Ltd., 
Komaki, Japan. Trained medical staff performed the measurements 
in a room after the subjects had rested in a supine position for 10 min. 
Four pneumatic cuffs were attached to the bilateral arms and ankles 
to obtain pulse waves. The baPWV was automatically calculated 
using the formula (La-Lb)/Tba, where La represents the distance 
between the heart and ankle, Lb represents the distance between the 
heart and brachium, and Tba represents the time difference between 
the initial increase in the brachial waveform and that in the ankle 
waveform. Elevated arterial stiffness (EAS) was considered as 
baPWV≥1,400 cm/s (20).

2.3 Data processing and statistical analysis

Nineteen features in the original dataset are related to detailed 
questions about smoking, drinking, exercising, and work intensity, 
including types and frequency. To reduce the redundancy of the data, 
these data are not included in the analysis for now. If factors such as 
smoking and drinking prove important in later analyses, this part of 

https://doi.org/10.3389/fpubh.2024.1365479
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Miao et al. 10.3389/fpubh.2024.1365479

Frontiers in Public Health 03 frontiersin.org

the data will be specifically analyzed. However, since factors such as 
smoking and drinking were not considered highly important in 
subsequent analyses, no further specific analysis was conducted on 
these questions. If a sample has more than 30% of its variables missing, 
then the sample is deleted. Therefore, a total of 57 samples were 
deleted. For the remaining missing data, single-value imputation was 
used to handle features. Ultimately, 63 features and 77,134 samples 
were retained. The entire dataset was randomly divided into a training 
set (70%, 53,993 samples) and a test set (30%, 23,141 samples). In the 
test set, there were 13,600 samples for the non-EAS category and 9,541 
samples for the EAS category.

Continuous measurement data conforming to the normal 
distribution were expressed as mean ± standard deviation, otherwise, 
the quartile was adopted, and the difference between categorical 
features was calculated using the chi-squared test. The difference of 
p < 0.05 on both sides was considered statistically significant.

2.4 Feature selection

In the field of machine learning, feature selection can eliminate 
irrelevant or redundant features, thereby reducing the number of 
features, improving model accuracy, and reducing runtime. Feature 
selection methods are mainly divided into three categories: filter, 
embedded, and wrapper methods.

Filter method: Features that did not show significant differences 
across categories meant they had no use for the prediction target and 
would be deleted.

Embedded: The features were input into the Lasso model for 
training after the filter method. The L1 regularization parameters were 
tuned using 10-fold cross-validation, and the coefficient would 
be shrunken to zero if their features were not important.

Wrapper: After filtering through Lasso regression, if there were 
still quite a number of features left, the wrapper method could be used 
for further selection. The working principle of recursive feature 
elimination (RFE) is to recursively remove features and build a model 
on the remaining features (in this case, the Lightweight Gradient 
Elevator (LGBM) is chosen), thereby determining which combinations 
of features contribute more significantly to the prediction results. 
Regarding the choice of the number of features, as we continuously 
increase the number of features, the AUC score of RFE-LGBM 
gradually increases and tends to stabilize. When the number of 
features reaches N, the AUC score reaches its maximum value. Adding 
more features will not enhance the model’s predictive capability, so 
ultimately, N features are determined for model building through 
RFE-LGBM.

Based on the common usage and the situation of data being 
selected at each step, we ultimately employed these three methods.

2.5 Parameter optimization and model 
evaluation

Four machine learning algorithms (logistic regression [LR], 
random forest [RF], extreme gradient boosting [XGBoost], and light 
gradient boosting machine [LightGBM]) were used to develop 
predictive models on the training data. Weights of different classes 
were assigned by setting parameters in the trained models to deal with 

data imbalance. The parameters of LR, RF, and LightGBM models 
were class_weight = “balanced,” and XGBoost’s was scale_pos_
weight = “ratio of majority and minority class.” As to the other 
parameters that required adjustment, grid searching was adopted in 
the LR model and the Bayesian Optimization Algorithm was applied 
to the RF, XGBoost, and LightGBM models. To assess the model’s 
optimization and improve its generalization ability, 10-fold cross-
validation was performed. The model’s performance was evaluated by 
calculating the accuracy, sensitivity, and specificity, and the 
distinguishing abilities of the risk assessment model were evaluated 
with the area under the receiver operator characteristic (AUC). The 
overview of the proposed ML algorithms is shown in Figure 1.

2.6 Feature importance ranking

Shapley additive explanations (SHAP) value was defined as the 
average marginal contribution of a feature value across all possible 
feature coalitions. It provides insights into the influence of each feature 
on individual samples, showcasing both positive and negative effects.

ML was implemented in Python (v 3.6) using the sklearn (v. 
0.24.1) and XGBoost (v. 1.3.3) packages. Bayesian optimization based 
on the TPE toolbox (bayes_opt v. 1.2.0) was used to tune 
hyperparameters for learning algorithms when the best combination 
of parameters yielded a low model performance. SHAP (V 0.41.0) was 
for explainable ML.

3 Results

3.1 Characteristics of the study population

A total of 77,134 subjects were included, with a mean age of 
48.6 ± 11.4 years, and 54.9 ± 10.6 years in subjects with EAS. The 
sample prevalence of EAS was 40.8%. Significant differences (p < 0.01) 
were observed in age, BMI, WC, SBP/DBP, indicators concerning 
renal function, FBS, total cholesterol (TC), triglyceride (TG), high−/
low-density lipoprotein cholesterol (HDL-c/LDL-c) (Table 1), sex, 
history of cardiovascular diseases, smoking, exercise, work intensity, 
sedentary time, sleeping quality and time, 16 items of dietary habits, 
9 items of negative emotions, and 12 items of health literacy (Table 2) 
between EAS and non-EAS.

3.2 Feature selection

Three health literacy items (active in the acquisition of medical 
knowledge and awareness of normal pulse rate/total cholesterol) with 
no statistical difference were removed from further analysis, and 60 
features were input for subsequent feature selection.

The Lasso regression ranked the features based on their parameter 
values, and the bottom 25 features (Figure 2A) were visually observed. 
Subsequently, 21 features with zero parameter values were deleted, 
including LDL-c, history of other cardiovascular diseases (excluding 
hypertension and diabetes), awareness of normal salt intake/FBS/TG 
values, sunlight exposure, lack of enthusiasm, impatience, difficulty 
concentrating, nervousness, upset, meals on time, gluttony, frequency 
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FIGURE 1

Machine learning flowchart of this study. LR, logistic regression; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, Light gradient 
boosting machine; RFE-LGBM, recursive feature elimination-Lightweight Gradient Elevator; AUC, area under the receiver operating characteristic 
curve.

TABLE 1 Features of the participants that are continuous data in primary settings.

Feature All (n  =  77,134) Non-AS (n  =  45,688) EAS (n  =  31,446) p value

Age 48.6 ± 11.4 44.2 ± 9.7 54.9 ± 10.6 <0.001

Body mass index 24.6 ± 3.2 24.2 ± 3.2 25.1 ± 3.1 <0.001

Waist circumference 84.0 ± 9.804 82.3 ± 9.9 86.4 ± 9.1 <0.001

Systolic blood pressure 125.3 ± 16.8 118.0 ± 12.7 135.9 ± 16.3 <0.001

Diastolic blood pressure 77.2 ± 11.5 73.1 ± 9.8 83.1 ± 11.3 <0.001

Blood urea nitrogen 4.9 ± 1.3 4.8 ± 1.2 5.1 ± 1.4 <0.001

Serum creatinine 74.0 ± 18.8 72.8 ± 16.3 75.9 ± 21.9 <0.001

Serum uric acid 347.9 ± 89.6 339.9 ± 89.2 359.6 ± 88.9 <0.001

Fasting blood sugar 5.7 ± 1.5 5.4 ± 1.0 6.1 ± 1.9 <0.001

Total cholesterol 5.1 ± 1.0 5.0 ± 0.9 5.3 ± 1.1 <0.001

Triglyceride 2.0 ± 1.9 1.8 ± 1.7 2.3 ± 2.2 <0.001

High-density lipoprotein 

cholesterol

1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 <0.001

Low-density lipoprotein 

cholesterol

2.9 ± 0.9 2.9 ± 0.8 3.0 ± 0.9 <0.001

EAS, elevated arterial stiffness.
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of consumption of eggs, vegetables, fat, animal offal, coffee, sugary 
drinks, sedentary duration, and dinner party.

The 39 reserved features were considered too much, and 
we  adopted the LGBM model to train them further. With each 
addition, AUC scores for the test set were recorded. As depicted in 
Figure  2B, there was a discernible decrease in the score as 
we integrated 23 features one by one; continuous feature addition not 
only raised computational costs but also failed to enhance model 
performance. Consequently, we discarded the 16 non-contributory 
features. The remaining 23 significant features were sex, age, history 
of hypertension, SBP, DBP, BMI, WC, TC, TG, HDL-c, FBS, serum 
uric acid, serum creatinine, urea nitrogen, exercise, awareness of 
normal BP, the consumption frequency of items such as fruit, milk, 
bean products, alcohol, and smoking, work intensity, and 
irritableness. An important observation was the strong linear 
correlation between BMI and WC (r = 0.86) and between SBP and 
DBP (r = 0.78) (Supplementary Figure 1). For efficiency, we retained 
only WC and SBP, leading to a final 21 features for ML evaluation. It 
is noteworthy that we also developed a model that prioritizes features 

that are cost-effective and easily obtainable. Therefore, lab indicators 
were omitted, leaving us with 14 salient features.

3.3 Model performance and feature 
importance ranking

The performance of four classifiers—logistic regression (LR), 
random forest (RF), XGBoost, and LightGBM—across the training 
and test sets is detailed in Table 3 (for the 14-feature model) and 
Supplementary Table 1 (for the 21-feature model). Intriguingly, the 
incorporation of laboratory indicators in the 21-feature models 
resulted in only marginal improvements in performance compared to 
the 14-feature models. For instance, the AUC test scores showed 
negligible differences: LR (0.8746 vs. 0.8706), RF (0.8697 vs. 0.8695), 
XGBoost (0.8754 vs. 0.8710), and LGBM (0.8732 vs. 0.8702). This 
increment came at a significant cost to the testers, suggesting that 
classifiers with only 14 features are more suitable for broad public 
applications. In terms of overall performance, the XGBoost model 

TABLE 2 Features of the participants that are categorical data in primary settings.

Features Chi value p-value Features Chi value p-value

Sex 494.529 <0.001 Irritableness 408.974 <0.001

History of hypertension 6905.432 <0.001 Nervousness 523.143 <0.001

History of diabetes 1913.659 <0.001 Anxiousness 263.128 <0.001

History of other CVD 586.573 <0.001 Impatience 306.742 <0.001

Meals on time 828.782 <0.001 Lack of enthusiasm 562.609 <0.001

Eat midnight snack 2184.694 <0.001 Upset 374.698 <0.001

Gluttony 36.759 <0.001 Depression 513.749 <0.001

Dinner party 186.321 <0.001 Difficulty concentrating 378.7 <0.001

Drink milk 526.563 <0.001 Sleep quality 82.116 <0.001

Eating eggs 103.121 <0.001 Sleep duration 264.814 <0.001

Eat beans 13.101 0.001 Active acquisition of medical 

knowledge

0.2 0.655

Eat fruit 302.005 <0.001 Fasten seat belt 791.405 <0.001

Eat vegetables 415.069 <0.001 Observed stools 114.9 <0.001

Eat meat 100.03 <0.001 Self-measurement of BP/HR 4761.237 <0.001

Eat fatty meat 119.924 <0.001 Take first-aid medicine along 1136.878 <0.001

Eat animal offal 190.865 <0.001 Sunlight exposure 771.451 <0.001

Eat fish 178.008 <0.001 Awareness of normal BP 154.105 <0.001

Drink coffee 487.353 <0.001 Awareness of normal body temperature 13.242 <0.001

Sugary drinks 1276.974 <0.001 Awareness of normal pulse 0.01 0.919

Smoking 207.578 <0.001 Awareness of normal salt intake 79.905 <0.001

Drink alcohol 131.602 <0.001 Awareness of normal BMI 85.353 <0.001

Exercise 81.124 <0.001 Awareness of normal WC 25.583 <0.001

Work intensity 2985.317 <0.001 Awareness of normal FBS 156.494 <0.001

Sedentary duration 173.991 <0.001 Awareness of normal triglyceride 31.048 <0.001

Depressed 587.383 <0.001 Awareness of normal TC 1.525 0.217

BP, blood pressure; HR, heart rate; BMI, body mass index; WC, waist circumference; FBS, fasting blood sugar; TC, total cholesterol.
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modestly outshone the other classifiers in multiple metrics, including 
accuracy (0.7878), sensitivity (0.78), specificity (0.73), and AUC 
(0.8710) on the test set.

Feature importance was assessed in the XGBoost model, and the 
top 10 most influential features were identified as SBP, age, history of 
hypertension, FBS, TG, sex, smoking, fruit consumption, awareness 
of normal BP, and exercise, as shown in Figure 3. Figure 4 visually 
presents the SHAP values corresponding to the 14 most important 
features. The x-axis represents the SHAP values, while the y-axis lists 
the features; each dot symbolizes a sample. The color scale varies from 
low (blue) to high (red), indicating the feature values. A positive SHAP 
value indicates contributing to EAS formation, whereas a negative 

value suggests inhibition. The top 5 features in terms of importance 
were SBP, age, WC, history of hypertension, and sex.

4 Discussion

In this study, we established four ML models for arterial stiffness 
screening in a large-scale physical examination population using easily 
accessible measurements and questionnaire indicators. Among them, 
XGBoost demonstrated superior performance in validation. 
Interestingly, while including optional laboratory features led to a 

FIGURE 2

Feature selection successively using the Lasso algorithm and recursive feature elimination-lightweight gradient elevator (RFE-LGBM). (A) Coefficients 
profile of bottom 25 features resulting from the Lasso algorithm, where features with zero coefficients were removed. (B) Five-fold cross-validation 
criterion of RFE based on LGBM, 23 features were optimal and finally kept. AUC, area under the receiver operating characteristic curve.

TABLE 3 The results of classification algorithms based on 14 costless features.

Model Accuracy_train Accuracy_test Sensitivity Specificity AUC_train AUC_test

LR 0.7839 0.7877 0.78 0.72 0.8678 0.8706

RF 0.7852 0.7845 0.77 0.72 0.8678 0.8685

XGB 0.7870 0.7878 0.78 0.73 0.8722 0.8710

LGBM 0.7967 0.7865 0.77 0.73 0.8702 0.8702

LR, logistic regression; RF, random forest; XGBoost, extreme gradient boosting; LightGBM, Light gradient boosting machine; RFE-LGBM, recursive feature elimination-Lightweight Gradient 
Elevator; AUC, area under the receiver operating characteristic curve.
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minor enhancement in model performance, the gains may not justify 
the increased complexity and costs. This model holds promise for 
predicting early-stage vascular aging, particularly in regions with 
elevated epidemiological risks.

Traditional CVD risk factors played a noticeable role in affecting 
arterial stiffness (AS). A meta-analysis (21) highlighted age and blood 
pressure as the primary determinants of arterial stiffness. Additionally, 
history of hypertension and waist circumference were also influential 

FIGURE 3

Feature importance plot of the best-performing extreme gradient boosting model measured by F-score. SBP, systolic blood pressure; BP, blood 
pressure; HR, heart rate.

FIGURE 4

Feature weight sorting by Shapley additive explanations (SHAP) value. SBP, systolic blood pressure; BP, blood pressure; HR, heart rate.
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factors. Regarding the more costly and invasive laboratory indices, 
abnormalities in glucose metabolism (22), triglyceride (23), HDL-c, 
uric acid (24), and glomerular filtration rate (GFR) (25) as determined 
by serum creatinine have all been linked to varying degrees with 
arterial stiffness. Our model, which incorporated 21 features—
including both questionnaire items and select laboratory indices—
aligns well with findings from previous studies. However, one 
exception was total cholesterol (26, 27), where its potential anti-
stiffening effects remain a matter of debate. A notable model for 
assessing arterial stiffness is the SAGE scoring system. This model, 
derived from a cohort of 3,943 outpatients and using multiple logistic 
regression, incorporated variables such as SBP, age, glycemia, and 
GFR. Impressively, it achieved a 0.77 ROC in its validation cohort (28).

Most traditional models related to cardiovascular risk integrate 
both laboratory and clinical parameters (29–31). Securing these 
variables often entails financial expenditures, making the broad 
application of such models somewhat limited in the general 
population (32). In our earlier exploration, we  compared results 
derived from both self-assessment items and blood tests with those 
garnered exclusively from self-assessment features. Intriguingly, the 
differences were minimal, which we  attribute primarily to the 
overwhelming influence of factors such as blood pressure, age, and 
waist circumference. A notable strength of our study is its reliance on 
non-invasive, easily obtainable indicators that come at a minimal cost, 
which are sufficient to craft a scalable EAS model. However, using a 
vast number of these indicators poses challenges. These raw datasets 
tend to be  non-linear, intricate, and possibly inter-correlated or 
influenced by a plethora of confounding variables (33). This 
complexity could lead to significant deviations and diminished 
accuracy when building models. Given this backdrop, ML algorithms 
emerge as a preferable approach, offering a remedy to these pitfalls. 
We initially employed LASSO and RFE-LGBM to filter out superfluous 
features and avert overfitting caused by collinearity. Ultimately, 
leveraging four distinct ML algorithms to assess EAS proved more 
effective than relying on a single model. Notably, XGBoost marginally 
surpassed the other three in metrics such as accuracy, sensitivity, 
specificity, and AUC.

Contrary to conventional methodologies such as logistic 
regression, which operate under the presumption of variables being 
independent and purely linear (34), XGBoost adopts a non-parametric 
approach. It integrates a regularized loss function and marries 
gradient-boosting algorithms with decision trees, preserving inter-
feature correlations (35). We theorize that this unique characteristic 
underpins XGBoost’s standout performance.

Another study that focused on assessing the risk of EAS in 
diabetic patients reported ROC values of 0.928 and 0.821 using a 
gradient-boosting algorithm for a discovery dataset of 760 Chinese 
individuals and a validation dataset of 912 Japanese individuals, 
respectively (19). In comparison, our study’s significantly larger 
dataset ensured a more normal distribution and, consequently, more 
precise analyses. The ROC values in our study were 0.8826 and 0.8754 
for the training and test datasets, respectively. The closer alignment of 
these values suggests a superior model fit (36). Furthermore, by 
targeting the general population rather than specialized groups, our 
model may boast broader applicability.

Currently, PWV assessment is used for patients suspected or 
diagnosed with CVD and individuals undergoing self-funded health 
examinations in Chinese hospitals. However, it is challenging to 

implement PWV screening for the general population outside of 
hospital settings to enhance the management of CVD. Moreover, the 
subject’s general physical examination reveals the need for a more 
standardized approach in developing personalized medical 
examination programs, particularly concerning vessel checks. 
Currently, the formulation of these programs is largely influenced by 
the individual’s economic status, resulting in either missed diagnoses 
due to inadequate testing or unnecessary resource wastage through 
over-testing. For instance, the number of physical examinees in China 
surged from 444 to 549 million in 3 years, according to the China 
Health Statistics Yearbook, with the average cost per examination 
amounting to 755.8¥ (37). This typically includes visceral color 
ultrasound and selected blood tests such as lipid, glucose, hepatic and 
renal function, and complete blood count (38). However, this cost 
does not necessarily cover more specialized, expensive tests such as 
arterial stiffness assessments, CT scans, or gastrointestinal 
endoscopies. This suggests that early identification measures in 
primary care remain inadequate, even for those who undergo routine 
physicals, let alone those who have not visited a hospital. Therefore, 
incorporating a convenient and easily accessible assessment model 
into primary care could offer a cost-free initial screening for the 
general population. This would allow healthcare providers to tailor 
preventive strategies to those at higher risk. Machine learning models 
serve as a viable pathway for achieving this, particularly for 
asymptomatic individuals. At the current stage, the process of 
transforming a model derived from the research process into a 
practical clinical tool involves a productization process. This includes 
placing the model in the cloud or making it into a web-based version, 
accessible from anywhere. It also involves connecting certain data 
links, allowing data to be transferred from medical devices to the 
servers that host the model. We plan to make this model into an easily 
accessible web-based version.

4.1 Limitations

Our study is not free from limitations. First, given its cross-
sectional design, it is not possible to infer causal relationships from 
the data. However, previous studies had established definite causality 
that we could follow. Our initial intention for the research was to 
assess the current status of arterial aging, thus making the study 
design reasonable. Second, the standards for evaluating certain 
lifestyle factors, such as fruit and bean consumption or exercise habits, 
were not unified and objectively quantified. This could potentially 
decrease the prediction’s precision. Finally, since the study relies on 
data from physical examinations conducted in China, there may 
be restrictions on the applicability of the results to other ethnicities 
or cultures.

5 Conclusion

The primary aim of our research was to provide an effective model 
for evaluating the risk of early Arterial Stiffening (EAS) using only 
questionnaires and physical measurements. Overall, we found that the 
model’s diagnostic accuracy and assessment capabilities were 
satisfactory. Incorporating this risk assessment model into primary 

https://doi.org/10.3389/fpubh.2024.1365479
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Miao et al. 10.3389/fpubh.2024.1365479

Frontiers in Public Health 09 frontiersin.org

healthcare settings could significantly improve the prevention and 
management of arterial aging across the broader populace.
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