AUTHOR=Kabangu Jean-Luc K. , Fowler Danny , Hernandez Amanda , Newsome-Cuby Takara , Joseph Benson , Dugan John , Fry Lane , Bah Momodou G. , Eden Sonia V. TITLE=Inequities in air pollution on stroke mortality among Older Americans: a U.S. nationwide analysis JOURNAL=Frontiers in Public Health VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2024.1364165 DOI=10.3389/fpubh.2024.1364165 ISSN=2296-2565 ABSTRACT=Background

Air pollution is a known risk factor for cardiovascular diseases, including stroke. This study examines the impact of county-level air pollution on ischemic and hemorrhagic stroke mortality among U.S. individuals aged 65 and older, emphasizing racial and socioeconomic disparities.

Methods

Using data from the Center for Disease Control (CDC) Interactive Atlas of Heart Disease and Stroke, we analyzed county-level ischemic stroke mortality rates for older residents between 2016 and 2020. The data on air pollution at the county level, specifically particulate matter (PM2.5) levels, were obtained from the CDC. We applied multivariable linear and logistic regression models to examine the association between PM2.5 levels and stroke mortality, as well as the probability of meeting the Environmental Protection Agency (EPA) air quality standards.

Results

County-level analysis revealed a significant correlation (R = 0.68, R2 = 0.48, p < 0.001) between PM2.5 levels and overall stroke mortality. For every 1 μg/m3 increase in PM2.5, there was an increase of 1.89 ischemic stroke deaths per 100,000 residents. Racial and socioeconomic disparities were evident. Counties with predominantly Black populations exhibited a stark disparity, with each 1 μg/m3 increase in PM2.5 correlating with a significant rise in mortality, amounting to 5.81 additional deaths per 100,000 residents. Persistently poor counties displayed vulnerability, experiencing a 4.05 increase in ischemic stroke deaths per 100,000 residents for every 1 μg/m3 increase in PM2.5 levels. Conversely, in counties with a White majority and counties without a persistent state of poverty, the associated increases in stroke mortality per 100,000 residents for every 1 μg/m3 rise in county-level PM2.5 were 1.85 and 1.60, respectively. Counties with a majority of Black residents were over twice as likely to be non-compliant with EPA air quality standards compared to predominantly White counties (aOR 2.36 95% CI: 1.27–4.38, p = 0.006).

Conclusion

This study underscores the significant impact of county-level air pollution, particularly PM2.5, on ischemic stroke mortality among older U.S. residents. Our findings indicate that counties with predominantly Black populations and those experiencing persistent poverty not only suffer from higher mortality rates but also are more likely to be non-compliant with EPA air quality standards. Targeted interventions and policies are urgently needed to reduce air pollution in these vulnerable communities and promote equitable public health outcomes.