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Introduction: Quantifying the transmissibility over time, particularly by region

and age, using parameters such as serial interval and time-varying reproduction

number, helps in formulating targeted interventions. Moreover, considering the

impact of geographical factors on transmission provides valuable insights into

the e�ectiveness of control measures.

Methods: Drawing on a comprehensive dataset of COVID-19 cases in

South Korea, we analyzed transmission dynamics with a focus on age and

regional variations. The dataset, compiled through the e�orts of dedicated

epidemiologists, includes information on symptom onset dates, enabling

detailed investigations. The pandemic was divided into distinct phases, aligning

with changes in policies, emergence of variants, and vaccination e�orts. We

analyzed various interventions such as social distancing, vaccination rates,

school closures, and population density. Key parameters like serial interval,

heatmaps, and time-varying reproduction numbers were used to quantify age

and region-specific transmission trends.

Results: Analysis of transmission pairs within age groups highlighted the

significant impact of school closure policies on the spread among individuals

aged 0-19. This analysis also shed light on transmission dynamics within familial

and educational settings. Changes in confirmed cases over time revealed

a decrease in spread among individuals aged 65 and older, attributed to

higher vaccination rates. Conversely, densely populated metropolitan areas

experienced an increase in confirmed cases. Examination of time-varying

reproduction numbers by region uncovered heterogeneity in transmission

patterns, with regions implementing strict social distancing measures showing

both increased confirmed cases and delayed spread, indicating the e�ectiveness

of these policies.

Discussion: Our findings underscore the importance of evaluating and tailoring

epidemic control policies based on key COVID-19 parameters. The analysis

of social distancing measures, school closures, and vaccine impact provides

valuable insights into controlling transmission. By quantifying the impact of these

interventions on di�erent age groups and regions, we contribute to the ongoing

e�orts to combat the COVID-19 pandemic e�ectively.

KEYWORDS

COVID-19, infector-infectee pairs, age-specific and region-specific serial interval, time-

varying reproduction number, various interventions
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1 Introduction

As the Coronavirus Disease (COVID-19) began to rapidly

spread, the World Health Organization (WHO) declared it a global

pandemic in 2020 (1). This declaration prompted governments

around the world to introduce diverse interventions aimed at

curbing the transmission of this infectious disease and minimizing

its impact on public health. Even in the early stages of an

epidemic, it is essential to identify behavioral patterns by age

and region over time. This understanding is fundamental for

ensuring effective control and preventing further transmission.

The evaluation of each intervention, grounded in essential

epidemiological parameters and data analysis, is a critical step

in gauging the efficacy of public health measures and non-

pharmaceutical interventions.

The serial interval, which denotes the duration between the

onset of symptoms in an infector and a subsequent infectee, is

a significant parameter. This parameter, derived from available

data, can serve as a versatile indicator, particularly in assessing

the infection’s spread. On the other hand, the generation interval

represents the period between infection in an infector and infection

in an infectee (2). While the generation interval is a crucial metric

for comprehending transmission dynamics, it can be challenging

to ascertain due to data constraints. Consequently, the serial

interval is often estimated and employed as a proxy for the

generation interval, which offers the advantage of more accessible

data collection (3). This substitution enables us to gain insights

into infection patterns over time, across different age and regional

groups.

Numerous studies have highlighted the valuable role of data-

derived serial intervals in shaping effective policy implementation.

Li et al. (4), Du et al. (5), Zhao et al. (6), and Wang et al. (7)

demonstrated how they estimate optimal distributions by fitting

serial intervals to various statistical distributions. Meanwhile, Yang

et al. (8) and Aghaali et al. (9) employed contact tracing data

to estimate serial interval distributions. Knight et al. (10) and

Najafi et al. (11) harnessed serial intervals to illustrate the time-

varying reproduction number Rt , providing valuable insights into

the patterns of disease spread. Clearly, the serial interval has proven

instrumental in assessing transmissibility over time.

In prior investigations, the serial interval has served as a

valuable metric for examining the transmission dynamics across

age and region. Ali et al. (12) highlighted that the serial interval

of COVID-19 becomes longer when isolation is delayed but

contracts due to non-pharmaceutical interventions. They delved

into variations in the distribution of the serial interval concerning

the transmission of COVID-19 in Hong Kong, shedding light on

the disease’s dissemination patterns and the efficacy of control

strategies. In another study, Kim et al. (13) reported an average

serial interval of 3.78 days, with briefer intervals for children (3.0

days) and prolonged intervals for adults (5.0 days). These findings

underscore the importance of enforcing stringent public health

measures across all age groups, especially among children.

Our main aim is to investigate the heterogeneity of COVID-

19’s serial interval in South Korea, with a focus on age and

region as key factors. In South Korea, we were fortunate to have

access to valuable data collected through the dedicated efforts

of epidemiologists and transparent public health policies, which

greatly facilitated our analysis. This dataset covers the period from

January 2020 to December 2021. We divide this timeline into four

distinct phases. Each period is categorized considering various

trends in the COVID-19 pandemic, including suppression policies,

the emergence of variants, changes in transmission dynamics, and

the introduction of vaccines. More details can be found in Ha et al.

(14).

Our analysis goes beyond investigating how these serial

intervals differ with respect to age and region over time. It also

examines how various interventions influence serial intervals.

Despite the considerable body of research on COVID-19, there’s

a noticeable gap when it comes to age- and region-specific

investigations. This gap makes it challenging to gain a clear

understanding of how population demographics and regional

contexts impact the transmission of infectious diseases. Hence,

this study delves into the serial interval in the context of age

and region. Furthermore, in our efforts to evaluate transmissibility

across regions, we compute the time-varying reproduction number

(Rt) using the most appropriate region-specific serial interval. Our

goal is to shed light on the disease’s transmission patterns and

the effectiveness of response strategies. This study endeavors to

provide a distinct perspective and analytical approach compared to

previous research, with the aim of contributing to the development

of policies for managing infectious diseases.

2 Materials and methods

2.1 Data

Epidemiological data from January 2020 to December 2021

is provided by the Korea Disease Control and Prevention

Agency (KDCA) (15). We utilized data from 72,423 transmission

pairs, including symptom onset dates, for our research. The

KDCA facilitated data collection by initiating contact tracing and

maintaining records thereof. Starting from February 24, 2020, a

comprehensive investigation via contact tracing was conducted,

with the COVID-19 epidemiological investigation support system

(K-EISS) being employed from March 1, 2020 onwards. During

this period, epidemiological investigation teams in various cities

and provinces conducted retrospective investigations and gathered

information on both infectors and infectees through telephone or

text surveys. Additionally, in instances of significant outbreaks with

a high number of confirmed cases, epidemiological investigators

from the KDCA were deployed to gather information on these

cases. Furthermore, starting from June 10, 2020, the electronic

entry and exit registration system (QR code) was introduced

to streamline contact tracing efforts by efficiently recording

the movement history of all individuals. These policies and

methodologies are documented and can be referenced in the KDCA

(16, 17).

Through this, we analyzed nationwide heterogeneity using

the serial interval. In our study, we categorized age, region, and

time into four, seven, and four groups, respectively. Categorized

into four distinct age groups—1 (0–19), 2 (20–29), 3 (30–64),

and 4 (≥65). Classified into seven regional groups—1 (Metro:

Seoul, Gyeonggi, Incheon), 2 (Gyeongnam+: Gyeongnam, Busan,

Ulsan), 3 (Gyeongbuk+: Gyeongbuk, Daegu), 4 (Jeonlla+: Jeonbuk,
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FIGURE 1

(A) Daily confirmed cases, deaths, vaccines, variants, and social distancing measures are shown [the gray bars: daily confirmed cases (left y-axis), the

orange line: daily deaths (right y-axis)]. The intensity of color in the background indicates the level of social distancing, getting darker as it increases.

(B) Region-specific daily confirmed cases are shown with the black dashed line indicating Period 1–4. (C) This shows the school closure policies in

metropolitan and non-metropolitan areas. (A–C) Represent elementary, middle, and high schools, respectively. The intensity of color represents full,

partial in-person classes, and school closures, with N indicating density in partial school closures.

Jeonnam, Gwangju), 5 (Chungcheong+: Chungbuk, Chungnam,

Daejeon, Sejong), 6 (Gangwon), and 7 (Jeju). Divided across four

specific periods—Period 1 (P1): January 19 to August 11, Period 2

(P2): August 12 to November 12, 2020, Period 3 (P3): November 13,

2020, to July 6, 2021, Period 4 (P4): July 7 to December 31, 2021.

The primary factors under consideration include age, region, and

symptom onset date (14).

• Period 1 (P1): notable outbreaks occurred in specific religious

gatherings, such as the Shincheonji Church in Daegu. Social

distancing measures and enhanced preventive actions were

implemented in response.

• Period 2 (P2): the outbreak predominantly affected the

metropolitan area. Large-scale events and various multi-use

facilities, along with the rapid spread in the capital region, led

to prioritized reinforcement of epidemic control measures.

• Period 3 (P3): the emergence of major variant viruses,

widespread transmission across the nation, and an increase in

infections in daily life settings prompted diverse interventions,

including social distancing measures and targeted testing.

• Period 4 (P4): the Delta variant’s spread, group infections

in various facilities, an elevated proportion of foreign cases,

the introduction of the Omicron variant, and subsequent

intensified social distancing measures and comprehensive

epidemic responses marked this period.

Figure 1 presents a comprehensive overview of the COVID-19

situation in South Korea spanning from January 2020 to December

2021. Figure 1A shows daily confirmed cases, deaths, vaccines,

variants, and social distancing level in South Korea. The gray

bar shows daily confirmed cases (left y-axis), and the orange

line shows daily deaths (right y-axis). Social distancing levels are

divided into metropolitan (metro) and non-metropolitan (non-

metro), and the darker the color, the higher it is. Vaccination in

high-risk groups began, and vaccinations nationwide began on

February 26, 2021. Subsequently, vaccinations for those aged 18 and

below commenced on June 27, 2021. In Period 4, it indicates the

dominance of the Delta variant.

Figure 1B represents region-specific daily confirmed cases, with

the black dashed line indicating Period 1–4. In Metro, Seoul,

Gyeonggi, and Incheon are shown with blue lines, and different

styles of red and yellow dashed lines. In Gyeongnam+, Gyeongnam,

Busan, and Ulsan are depicted with blue lines, and different styles

of red and yellow dashed lines. In Gyeongbuk+, Gyeongbuk, and

Daegu are shown with blue and red dashed lines, respectively.

In Jeonlla+, Jeonnam, Jeonbuk, and Gwangju are illustrated with

blue lines, and different styles of red and yellow dashed lines. In

Chungcheong+, Chungnam, Chungbuk, Daejeon, and Sejong are

represented with blue lines, and different styles of red, yellow, and

purple dashed lines. Gangwon and Jeju are shownwith blue and red

dashed lines, respectively.
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TABLE 1 The number of transmission pairs is represented by age and

regional groups over given periods.

Period 1 Period 2 Period 3 Period 4

0–19 73 136 2,324 11,941

20–29 242 302 3,480 4,927

30–64 902 1,729 17,851 19,157

≥65 290 597 3,580 4,892

Metro 852 2,071 18,859 16,844

Gyeongnam+ 71 131 2,892 8,747

Gyeongbuk+ 337 55 1,746 4,412

Jeonlla+ 47 110 1,560 4,949

Chungcheong+ 150 243 1,315 4,867

Gangwon 16 127 377 447

Jeju 1 7 352 578

Figure 1C depicts the in-person class policy for elementary,

middle, and high schools in South Korea, as announced by

the Ministry of Education. Figurea 1A–C respectively represent

elementary, middle, and high schools. It is presented divided into

metropolitan (metro) and non-metropolitan (non-metro), with

the intensity of color indicating full, partial in-person classes,

and school closures. In partial no in-person classes, N represents

density. Table 1 shows the number of infector-infectee pairs by age

and regional groups for periods 1 to 4.

2.2 Estimation of serial interval and
time-varying reproduction number

(Oi
j,E

i
j) is the observed symptom onset date of the infector

and infectee forming the transmission pair in the j-th period in

the i-th age or regional group. Sij represents the serial interval

corresponding to the j-th period in the i-th age or regional group

as follows:

sij = eij − oij (1)

where (sij, o
i
j, e

i
j) is the serial interval and symptom onset date of the

infector and infectee, respectively, in the j-th period in the i-th age

or regional group included in (Sij,O
i
j,E

i
j). Through Equation (1), we

derive the serial interval from contact tracing data. f ij (·) represents

the probability density function (PDF) of the serial interval of the

j-th period in the i-th age or regional group. The log likelihood to

obtain the distribution of the serial interval corresponding to the

j-th period in the i-th age or regional group is as follows:

lij(α
i
j ,β

i
j |E

i
j,O

i
j) =

Ni
j∑
logf ij (e

i
j, o

i
j|α

i
j ,β

i
j ) (2)

where Ni
j is the number of transmission pair corresponding to the

j-th period in the i-th age or regional group and αi
j ,β

i
j are the two

parameters of the PDF f ij . We estimate the distribution of PDF f ij (·)

for normal, lognormal, gamma, and Weibull distributions through

maximum likelihood estimation (MLE) with Equation (2) (2, 18).

It is crucial for understanding the spread speed and patterns of

infectious diseases. It helps us determine how quickly an infected

individual transmits the disease to others, playing a vital role in

predicting the spread of the disease and formulating response

plans. Therefore, the mean serial interval is of utmost importance

in infectious disease modeling and prediction. We extract the

serial interval from the data based on the symptom onset dates of

infectors and infectees.

AIC (Akaike Information Criterion) is one of the useful

statistical criteria for model selection and evaluation. AIC is used

to strike a balance between the goodness of fit of a model and its

complexity. It aids in assessing model complexity and evaluating

goodness of fit, helping in the selection of the most appropriate

model. The basic formula is as follows:

AIC = −2log(likelihood)+ 2k (3)

where k represents the number of model parameters (19). AIC

takes into consideration how well a model explains the data (lower

likelihood values correspond to higher AIC) and how simple the

model is (models with fewer parameters are more likely to have

lower AIC). The model with the lowest AIC is considered the

most suitable for the given data. We identify the most suitable

distribution for the serial interval from the distribution with

Equation (3), considering age and regional groups over time.

Time-dependent reproduction number (R(t)) is an important

concept in epidemiology, indicating how an infectious disease

changes over time. This concept provides crucial information about

the spread patterns and control of the disease. We define the

time-dependent reproduction number in the i-th regional group,

R
i(t) =

Ii(t)

3i(t)
(4)

where the ratio of the number of new infected cases at time t, Ii(t),

and the total infection potential across all infected individuals at

time t, 3i(t) = Ii(t − τ ) · si(τ ) in the i-th regional group, if s(·) is

the distribution of serial interval (3). According to the Equation (4),

tracking R(t) helps understand how the rate of disease spread

changes over time and assists in evaluating the effectiveness of

control measures. It serves as a crucial tool in epidemiological

research and pandemic response planning, especially aiding in

monitoring the spread of infectious diseases and timely adjustment

of control measures. If R(t) is greater than 1, the epidemic

continues to spread, and if it is less than 1, the epidemic tends to

decrease.We utilize the previously determined optimal distribution

of the serial interval to estimate the regionalRi(t).

3 Results

In this section, to understand the heterogeneity in the spread

patterns, we presented the distribution of serial intervals, the

number of infector-infectee pairs, demographic confirmed cases,

vaccination rates, and time-varying reproduction numbers over

time by age and regional groups using contact tracing data.

Figure 2 displays bar plots illustrating age-specific serial intervals

over time (Figure 2A) and region-specific serial intervals over
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FIGURE 2

(A) Estimates of the serial interval are displayed over time according to age groups. (B) Estimates of the serial interval are displayed over time based

on regions. The x-axis represents days, while the y-axis represents the regions [the interquartile range: red line, threshold (total mean): dashed black

line, the mean for each age or regional group in the respective periods: blue star, and the median for each age or regional group in the respective

periods: blue hexagram].

TABLE 2 The proportion of the negative serial interval for the respective

age and regional groups.

Period 1 Period 2 Period 3 Period 4

0–19 9.6% 20.6% 15.4% 10.9%

20–29 10.7% 12.6% 16.7% 11.4%

30–64 14.6% 15.4% 13.8% 12.4%

≥65 16.2% 13.2% 15.3% 12.6%

Metro 12.1% 15.2% 14.5% 10.8%

Gyeongnam+ 8.5% 13.0% 15.1% 12.9%

Gyeongbuk+ 21.1% 10.9% 12.9% 12.9%

Jeonlla+ 12.8% 10.9% 15.1% 12.0%

Chungcheong+ 14.7% 14.4% 14.6% 12.8%

Gangwon - 17.3% 13.8% 12.3%

Jeju - - 13.6% 10.4%

time (Figure 2B). The x-axis represents the number of days, while

the y-axis represents different age and regional groups. The red

lines indicate the interquartile range (from the 25th to the 75th

percentile) of the serial interval. The dashed black line represents

the overall average of 3.0 across all time periods and groups.

Stars indicate the median serial interval for each group in the

corresponding periods, while hexagrams represent the mean serial

interval for each group in their respective periods.

Table 2 represents the proportion of negative serial intervals in

age and regional groups. Values with less than 30 data points are

indicated with -. The overall proportion of negative serial interval

is 13.0%. Across age groups, the range of negative serial interval

proportions in Periods 1–4 is 9.6–16.2%, 12.6–20.6%, 13.8–16.7%,

and 10.9–12.6%, respectively. Based on regional groups, the range

in Periods 1–4 is 8.5–21.1%, 10.9–17.3%, 12.9–15.1%, and 10.4–

12.9%. Over time, there is a trend of all age and regional groups

converging toward the overall mean.

Figure 3 presents the number of infector-infectee pairs across

different age groups (Figure 3A) and regional groups (Figure 3B)

for each period. The proportion of diagonal elements within

the age group is high, with a notable prevalence of the 30–64

age group across all periods. This indicates active transmission

within the demographic engaged in social activities. The ongoing

presence of transmission pairs between 0–19 and 30–64 age groups

can be attributed to interactions in parent-child and teacher-

student relationships. Additionally, an observed surge in infections

originating from the 0–19 age group during Period 4 is noteworthy.

Similarly, the proportion of diagonal elements in the regional

group is high, with a notable prevalence of transmission pairs in

the metropolitan area. This phenomenon is attributed to the high

population density in the metropolitan area, serving as a hub for

transportation and culture. In Period 1, the higher number of

infections in Gyeongbuk+ compared to other regions is due to

group infections in closed-off churches. The initial low incidence

of infections in other regions is a result of limited population

movement due to epidemic control policies.

Figure 4 depicts demographic aspects, including age and

region-specific confirmed cases, vaccination rates, etc. Figure 4A

illustrates the number of confirmed cases per 100,000 people based

on age and period. Age groups 0–19, 20–29, 30–64, and ≥65 are

represented by blue triangles, red stars, yellow circles, and purple

pentagrams, respectively. Figure 4B presents the weekly vaccination
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FIGURE 3

(A) The heatmaps of infector-infectee pairs are displayed over time based on age groups. (B) The heatmaps of infector-infectee pairs are displayed

over time based on regions. Darker colors indicate a relatively higher count of pairs for the given time period.

FIGURE 4

(A) The confirmed cases are displayed per 100,000 people based on age groups for each period. (B) The vaccine recipients are displayed per 100,000

people for each age group. (C) The confirmed cases are displayed per 100,000 people based on regional groups for each period. (D) The population

density are displayed based on regional groups.
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counts per 100,000 people for each age group in a stacked bar

chart. Age groups 0–19, 20–29, 30–64, and ≥65 are represented

by blue, red, yellow, and purple bars, respectively. Figure 4C

displays the number of confirmed cases per 100,000 people

based on regional groups for each period. Metro, Gyeongnam+,

Gyeongbuk+, Jeonlla+, Chungcheong+, Gangwon, and Jeju are

represented by blue triangles, red stars, yellow circles, purple

pentagrams, green diamonds, sky-blue hexagrams, and violet

squares, respectively. Figure 4D represents the population density

for each regional group, calculated by dividing the population of

the corresponding region by its area (in km2).

Figure 5 presents the time-varying reproduction number (Rt)

calculated for each regional group. The red line represents the

reproduction number over time, while the blue bars indicate the

confirmed cases for the respective dates. The dashed black line

denotes the division between time periods. Using regional serial

interval data for each periods, Rt is calculated. The serial interval

distribution is fitted to various distributions, with the optimal

distribution determined through AIC analysis. This approach

allows for a more accurate estimation of Rt . Different regions

exhibit varying patterns in confirmed cases and Rt values. In the

metropolitan area, Rt stabilizes close to 1 from the latter part of

Period 2 onwards.

4 Discussion

We examined the changes in regional and age-specific

characteristics over time using contact tracing data. Our study

was intended to shed light on various strategies, including

regional social distancing measures, school closure policies, and

vaccinations. A key element of our research involved obtaining

detailed information on transmission pairs, including the timing

of symptom onset for the infector and infectee. This was made

possible through the diligent efforts of Korean epidemiological

investigators. Serial interval analysis has been a subject of research

on both domestic and international fronts. In contrast to previous

studies that relied on a limited dataset, our research stands out

for its strength, drawing from an extensive dataset of 72,423 pairs

(20, 21). This large dataset allows us to comprehensively explore

and consider heterogeneity in a more robust manner.

Our study emphasizes the use of the serial interval to

assess heterogeneity and evaluate public health measures such

as non-pharmaceutical interventions and vaccine effectiveness.

Additionally, we analyze sociodemographic factors based on age

and region. Hong et al. (22) concludes that the serial interval

increases with older age and a higher proportion of females. It

underscores the importance of research revealing heterogeneity

by gender and age, and highlights the need for further studies

due to uncertainties in data collected during the pandemic.

Shim et al. (23) confirms heterogeneity through epidemiological

distributions, encompassing intervals from COVID-19 symptom

onset to diagnosis, reporting, and death, considering region, age,

gender, and period. It acknowledges limitations in not considering

vaccination and underscores the necessity to reflect changes in

social distancing and vaccination levels due to various public

health policies. Ryu et al. (24) analyzes age-specific serial intervals,

cluster types, and estimated Rt to compare the characteristics

of two epidemic waves. It acknowledges a limitation in not

considering regional heterogeneity over time. Ryu et al. (25)

estimates COVID-19 serial intervals, reproduction numbers, and

superspreading potential during the dominance of the Delta variant

in South Korea. It recognizes the limitation of not considering

vaccination.Many studies emphasize the importance of researching

heterogeneity, citing limitations such as small sample sizes and

the failure to consider demographic public health measures and

vaccination. Our study addresses these limitations by considering

spatiotemporal heterogeneity in evaluating sociodemographic

public health measures.

There are several strategies for effectively leveraging processed

information concerning measures such as the serial interval and

Rt in epidemiological analysis and decision-making. Real-Time

Monitoring emerges as a pivotal strategy, enabling the prompt

identification of emerging trends and the timely adjustment of

public health measures. For example, Forsberg White and Pagano

(26) proposed a method for simultaneously estimating the basic

reproductive number, R0, and the serial interval for infectious

disease epidemics using readily available surveillance data. These

estimates can be acquired in real-time, empowering public health

authorities to respond promptly. Another valuable strategy is

scenario planning. By considering various scenarios regarding the

transmission dynamics of the disease and calculating Rt and

the serial interval for each scenario, decision-makers can more

effectively tailor interventions to suit the prevailing situation.

Numerous studies have employed screening modeling to prevent

the spread of diseases (27–29). For instance, Rajendrakumar

et al. (30) utilized serial intervals to estimate the time-varying

reproductive number and emphasized the importance of resuming

travel gradually, while also advocating for the utilization of efficient

tools such as vaccines and medications. By integrating these

diverse strategies, health authorities can optimize the utilization of

information such as the serial interval and Rt to make evidence-

based decisions, thereby effectively controlling the spread of

COVID-19.

The mean serial intervals for 0–19 age group in Period 1–2

are 3.8 and 2.3 days, respectively (see to Supplementary Table S3).

Compared to the overall serial interval mean, these values exhibit

the largest differences in the mean serial interval by period and

age, with variances of 0.8 and 0.7. This difference is attributed to

the influence of negative serial intervals, allowing inference into

the impact of presymptomatic transmission. In Periods 1 and 2,

the respective proportions of negative serial intervals for this age

group are 9.6% and 20.6%. While presymptomatic transmission

was minimal in Period 1, a significant increase is observed from

Period 2 onwards. In Period 1, Gyeongbuk+ shows a 8.1% higher

proportion of negative serial intervals than the average, likely

due to incomplete epidemiological investigations stemming from

uncooperative religious characteristics. Over time, there is a trend

toward the distribution of serial intervals and the proportion of

negative serial intervals aligning with the overall mean across age

and regional groups. This suggests that over time, public health

measures have been effectively implemented in different age and

regional groups.

Regarding Figure 3A, the prevalence of transmission pairs

between individuals aged 0–19 and 30–64 highlights active

transmission within families and school settings. Notably, the
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FIGURE 5

The time-varying reproduction number (Rt) is calculated for each regional group. The red line represents the reproduction number over time, while

the blue bars indicate the confirmed cases for the respective dates. The dashed black line denotes the division between time periods.

substantial representation of transmission pairs in the 30–64 age

group across all periods can be attributed to the extensive economic

activities within this age range, emphasizing the role of workplace-

related infections in the spread of COVID-19. Additionally, the

older adult population aged 65 and above constitutes a significant

portion of the transmission pairs due to interactions within nursing

homes, long-term care facilities, and the sheer size of this age group.

Figure 3B underscores the significant influence of the metropolitan

area, driven by high population density resulting from its role

as a transportation, economic, and cultural hub. This heightened

density contributes to increased disease transmission due to

numerous social interactions. The elevated number of transmission

pairs in Gyeongbuk+ during Period 1 can be attributed to a cluster

outbreak in Shincheonji. The limited number of transmission pairs

in regions outside the metropolitan area from Period 1 to Period

2 can be attributed to strict early social distancing measures that

restricted inter-regional movement.

In contrast to Periods 1–3, there is a notable surge in the

number of confirmed cases per 100,000 people among those aged

0–19 in Period 4. This disparity is evident in the differences in

vaccination rates across age groups. In Period 4, the≥65 age group,

showing the lowest proportion of confirmed cases, also exhibits an

increase in the rate of third-dose vaccinations. On the other hand,

the vaccination rate for the 0–19 age group is significantly lower

than other age groups, indicating the impact of vaccination. In

Period 1, Gyeongbuk+ had the highest number of confirmed cases

per 100,000 people due to a superspreading event. Subsequently,

Metro, with the highest population density, witnesses the highest

number of confirmed cases. This suggests that population density

influences the pattern of transmission.

Through our research, we were able to analyze a dataset for

transmission pairs based on time, allowing for an evaluation of

epidemic prevention policies by region and age. The increased

spread in the 0–19 age group during Period 4, unlike other

periods, is attributed to changes in the school closure policies.

Figure 1C indicates that both metropolitan and non-metropolitan

areas uniformly implemented full in-person classes in November

2021. This resulted not only in an increase in infections among

individuals aged 0–19 but also a significant rise in infections

between 0–19 and 30–64 age groups. Epidemic prevention

policies due to school closure policies in Periods 1–3 were

effective. Additionally, except for Period 1, the metropolitan area

consistently had a higher number of confirmed cases. The high

number of transmission pairs suggests it as the most severely

affected region. However, the actual implementation of proactive

social distancing measures, as seen in Figure 1A, delayed the

spread. This is evident in theRt displayed in Figure 5.

In Figure 5, the Metro area demonstrates Rt stabilizing

near 1 during the latter part of Period 2, indicating effective

implementation of containment policies compared to other

regions. However, most other regions experience a peak in Rt

until Period 4. These findings shed light on diverse regional

transmission patterns and the varying impacts of containment

policies, underscoring the importance of research that considers

age and regional heterogeneity. Additionally, they provide insights

into the evolving characteristics of the pandemic over time. By

introducing parameters such as serial interval and Rt , we provide

a fresh perspective on epidemic prevention policies and non-

pharmaceutical interventions, going beyond simple figures like the

number of confirmed cases and deaths.

Our study comes with several limitations. We conducted

our analysis based on parameters that could be empirically

derived from available data, without accounting for various other

parameters. The use of the infector as a criterion based on region

and age could introduce bias into our analysis. Other studies,

such as those by Lau et al. (31), Hart et al. (32), and Xin et al.

(33), have approached this research question from diverse angles,

estimating infection-related parameters like the generation interval

and latent period. The choice of infector as the basis for our study

was influenced by its strong representation of behavioral patterns,
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as shown in Kim et al. (13). In our future work, we plan to

introduce additional parameters that can be assessed from various

perspectives. Also, establishing criteria based on both the infector

and the infectee and exploring differences frommultiple angles will

provide a solid foundation for gaining new insights in this field.

Our study presents gender proportions based solely on the

data without exploring gender differences across various parameter

perspectives. Upon analyzing the proportions within the dataset,

no significant gender disparities were noted. However, in future

investigations, we plan to estimate parameters while taking into

account distinctions not only across regions and age groups but

also between genders, with the goal of investigating potential

heterogeneity. Lastly, our study is specifically focused on estimating

Rt without integrating mobility (34–36). In a forthcoming study,

we will examine the influence of mobility on Rt (37–40). Our

study primarily assesses changes in key epidemiological parameters

of COVID-19 over time, taking into account the variations by

region and age in South Korea. Through this analysis, we provide

an evaluation of control policies and measures, emphasizing the

significance of research that accounts for this heterogeneity.
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