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Introduction: This paper presents a comprehensive analysis of COVID-19

transmission dynamics using an infection network derived from epidemiological

data in South Korea, covering the period from January 3, 2020, to July 11, 2021.

The network illustrates infector-infectee relationships and provides invaluable

insights for managing and mitigating the spread of the disease. However,

significant missing data hinder conventional analysis of such networks from

epidemiological surveillance.

Methods: To address this challenge, this article suggests a novel approach for

categorizing individuals into four distinct groups, based on the classification

of their infector or infectee status as either traced or untraced cases among

all confirmed cases. The study analyzes the changes in the infection networks

among untraced and traced cases across five distinct periods.

Results: The four types of cases emphasize the impact of various factors,

such as the implementation of public health strategies and the emergence of

novel COVID-19 variants, which contribute to the propagation of COVID-19

transmission. One of the key findings is the identification of notable transmission

patterns in specific age groups, particularly in those aged 20-29, 40-69, and 0-9,

based on the four type classifications. Furthermore, we develop a novel real-

time indicator to assess the potential for infectious disease transmission more

e�ectively. By analyzing the lengths of connected components, this indicator

facilitates improved predictions and enables policymakers to proactively

respond, thereby helping to mitigate the e�ects of the pandemic on global

communities.

Conclusion: This study o�ers a novel approach to categorizing COVID-19 cases,

provides insights into transmission patterns, and introduces a real-time indicator

for better assessment and management of the disease transmission, thereby

supporting more e�ective public health interventions.
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1 Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), was declared a pandemic by the World Health Organization on

March 11, 2020. According to the World Health Organization’s weekly epidemiological

update released on February 2, 2021, the epidemic of COVID-19 spread rapidly to more
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than 200 countries. Without effective control measures, the rapidly

increasing number of COVID-19 cases will greatly increase the

burden of clinical treatments. This situation may lead to a

critical shortage of healthcare system capacity for severe cases,

ultimately resulting in a sharp and alarming increase in mortality

rates. Consequently, various control measures were implemented,

leading to observed fluctuations in the efficacy of strategies like

contact tracing and isolation of confirmed cases throughout the

pandemic (1). South Korea, first reporting its COVID-19 case

on January 19, 2020 (2, 3), has experienced multiple waves of

outbreaks, in response to which it actively implemented control

measures such as social distancing, mask-wearing, lockdowns,

and enhanced efforts in testing and contact tracing. Especially,

active contact tracing has generated significant epidemiological

data, enabling analysis of extensive infection networks (4).

Understanding the infection network for COVID-19 is crucial

for several reasons. First and foremost, it allows us to grasp

the dynamics of the virus’s transmission within a population (5).

By mapping out how individuals infect each other, we can gain

valuable insights into the patterns and pathways through which the

virus spreads (1). Additionally, studying the infection network aids

in the identification of key factors influencing the transmission (2).

This includes factors such as age-specific patterns, which can help

tailor public health measures to specific demographics, ultimately

improving the effectiveness of containment strategies (6).

Previous research focused on cluster analysis, reproduction

number, and network analysis to address key transmission factors

and assess the effectiveness of various interventions during

COVID-19 pandemic (3, 6–12). In Monod et al. and Davies

et al. (7, 8) authors investigated COVID-19 transmission by

age group, aiding in identifying the primary age groups fueling

the spread and formulating age-specific response strategies. It

scrutinized the infection spread by clusters, offering insights into

evaluating social distancing measures outlined in Ryu et al., Choi

et al., and Hao et al. (3, 6, 9). Examining cluster type frequency

in both the initial and subsequent epidemic waves enables the

development of an effective strategy for controlling outbreaks (3).

Network analysis facilitates assessing specific vertices’ importance

and understanding the relationships between them (2, 5, 13).

Furthermore, Wang et al. (10) and Zhang et al. (11) investigated

the basic reproduction numberR0 of COVID-19, which represents

the transmission potential of an infectious disease in the early phase

of an epidemic (12). The time-dependent reproduction numberRt

represents the instantaneous reproduction number, indicating the

expected number of secondary infections caused by an infector at a

specific point in time (12).

In the context of COVID-19 policies, our current knowledge of

how infections spread through transmission networks is primarily

based on virtual data and theoretical models (14, 15), with evidence

from actual data (16–18) being limitedly available. The infection

network generated from actual epidemiological data contains

numerous missing data, resulting in many connected components,

creating a disparity from analyses based on virtual data. Contact

tracing is commonly recommended for controlling COVID-19

outbreaks, yet its effectiveness is unclear. Studies evaluating the

effectiveness of contact tracing are categorized into observational

studies (19–22) and modeling studies (1, 23–25). This study

suggests that analyzing the classification of four types of confirmed

cases in the infection network, along with the distribution of

connected component lengths, can broaden insights into contact

tracing and dynamics of disease transmission. A pivotal study

analyzing changes in the infection pattern structure between

infectors and infectees based on age groups (26) is also essential.

Surprisingly, there has been no previous study on this specific

topic for COVID-19 infection between infectors and infectees in

South Korea.

This paper is motivated by the recognition of differences in

infection networks generated from actual data versus virtual data.

This research has established an infection network by assigning an

infector to all infectees from the actual epidemiological data (27)

from January 3, 2020, to July 11, 2021, in South Korea. It is

shown that the established infection network comprises many

connected components due to missing vertices (individuals) and

edges (infection events). Consequently, we proposed a method

of categorizing individuals as either (i) infectors, who are aware

of the infectees they have transmitted the virus to, or (ii)

infectees, who are cognizant of their infector. This method

allows for the categorization of vertices in the numerous distinct

connected components from a common perspective and facilitates

the derivation of analysis for each vertex. Furthermore, several

properties were established from the method. This paper analyzed

the infection network in terms of time and age groups using a

four-type categorization method and proposes a new real-time

calculated indicator of infectious disease transmission potential.

Next, the indicator was compared with the Cori reproduction

number Rt (12). Age groups are evenly distributed into nine

categories, up to 90 years old. To characterize each wave, the

period is divided into five phases, accounting for epidemic control

measures and the progression of epidemic waves.

Our analysis focuses on the comprehensive infection network

across age groups, revealing how infection spread patterns

evolve over time, and concentrates on methods to obtain

meaningful information in the presence of substantial missing

data. This analytical approach, based on epidemiological data,

emphasizes the role of active contact tracing by governments.

Ultimately, this research suggests that active contact tracing in real

pandemic situations can offer policymakers data-driven insights

for establishing more effective responses, thereby mitigating the

pandemic’s impact on global communities.

2 Methods

2.1 Data and measurement

2.1.1 Data description
The COVID-19 data provided by the Korea Disease Control

and Prevention Agency (KDCA) (27) from January 19, 2020,

to July 11, 2021, is utilized to construct the infection network

for COVID-19 transmission. This article analyzes the dataset

containing 169,597 confirmed cases (real-time reverse transcription

polymerase chain reaction test positive cases), focusing on four

specific records as follows.

(ID, age, date of report, ID of the infector)

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1362823
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lee et al. 10.3389/fpubh.2024.1362823

Here, the “ID” stands for the identity of the traced infectee,

and “age” refers to the infectee’s age. If “ID of the infector” is not

traced (untraced), it is assigned a value of 0. Each confirmed case

is assigned an anonymized ID number ranging from 1 to 169,146

associated with age, which ranges from 0 to 128, the date of report,

and the ID number of the infector. Remark that in general the date

of the report may not be exactly the same as the date of infection.

The date of the from January 19, 2020, to July 11, 2021.

2.1.2 Defining five periods of COVID-19
progression

The entire period was segmented into five distinct periods

to observe the evolution of infection characteristics. This

segmentation considered several critical factors like the emergence

of new variants, vaccine rollout, change of social distancing levels,

and other intervention measures (28).

• P1 (January 19, 2020–April 29, 2020): Since the first confirmed

COVID-19 case on January 19, 2020, South Korea experienced

a moderate rise in cases, peaking at about 694 on February 26,

2020, primarily in Daegu-Gyeongbuk due to a church-related

outbreak. Despite subsequent outbreaks at another church and

a Seoul call center, daily cases gradually declined. Measures

like the first social distancing period (March 22–April 7, 2020)

and a ban on gatherings in entertainment venues (April 8–

April 19, 2020) were enacted, resulting in an average of 145

daily confirmed cases during these periods.

• P2 (April 30, 2020–July 14, 2020): During this period, there

was the lowest number of daily confirmed cases compared to

other periods. The average number of daily confirmed cases

was 37.

• P3 (July 15, 2020–October 12, 2020): The second epidemic

wave in South Korea started with a major outbreak at a Seoul

church, accounting for 12% of the total infections in period

P3, and was further exacerbated by a large rally on August 15

contributing to 6% of infections. In response, the government

escalated Seoul’s social distancing to level 2 on August 16,

expanded it nationwide on August 23, and then increased it

to level 2.5 in the metropolitan area by August 30. The peak

of this wave was on August 24, 2020, with 418 cases, and the

average daily confirmed cases during this period was 125.

• P4 (October 13, 2020–February 25, 2021): On October 12,

the social distancing level was eased to level 1. P4 coincides

with the third epidemic wave, and it started with a gradual

increase in daily confirmed cases without any apparent major

events. The third epidemic wave peak occurred on December

23, 2020, with 1206 cases. The government raised the social

distancing level on December 1 and then again on December

8 and increased screening clinics. During this period, the

average number of daily confirmed cases was 463.

• P5 (February 26, 2021–July 11, 2021): South Korea began its

vaccination campaign on February 26, 2021, and then saw

an increase in delta variant cases starting April 18, 2021.

During this period, the average number of daily confirmed

cases was 571.

2.2 Infection network of infector and
infectee

Network, also called graph mainly in mathematics, has been

used as an explanatory tool to describe the dynamics of disease

transmission (29). The terms “individuals (confirmed cases)”

and “contacts (infects)” in epidemiology can be considered as

“vertices” and “edges” in graph theory, respectively. For more

details on network epidemiology, see the review (30, 31) and

references therein.

Denote the set of all confirmed IDs from January 19, 2020

to July 11, 2021 as I , and let the set of all infection events

(m−1,m0) for the infector m−1 ∈ I and its infectee m0 ∈ I as

E . This article considers the directed network G = (I , E) as an

infection network. For complete sampling, the infection network

G must be weakly connected (replacing all its directed edges

with undirected edges produces a connected undirected graph).

However, due to the existence of unreported infection cases, it is

natural to assume that the network is constructed by the incomplete

sampling of all confirmed individuals in a population (missing

vertices) and incomplete sampling of infection events between

individuals (missing edges). So the infection network G generated

by real data consists of many weakly connected (or just connected

components in this paper) due to many missing vertices and

edges, i.e., unreported individuals and infections. Hence analysis

of unreported infections is crucial for a better understanding of the

real infection network in South Korea and other countries.

2.3 Four type classifications

Each polymerase chain reaction (PCR)-confirmed case m0 can

be classified into four different types based on (i) as an infector

m−1, whether the infectees they have transmitted the virus to have

been traced or (ii) as an infecteem1, whether they are aware of their

infector being traced (see Figure 1).

(i) An individualm0 ∈ I is said to be “untraced-untraced” type,

denoted by u-u, if {m0 ∈ I|(m−1,m0) ∈ E} = ∅ and {m0 ∈

I|(m0,m1) ∈ E} = ∅, i.e., its infector is missing (untraced)

and its infectee is missing or does not exist. Such an individual

is represented as an isolated vertex on the network.

(ii) An individual m0 is said to be “traced-untraced” type,

denoted by t-u, if {m0 ∈ I|(m−1,m0) ∈ E} 6= ∅ and {m0 ∈

I|(m0,m1) ∈ E} = ∅, i.e., its infector is confirmed (traced)

but its infectee is missing or does not exist. Such an individual

is represented as a leaf of a directed tree graph.

(iii) An individual m0 is said to be “untraced-traced” type,

denoted by u-t, if {m0 ∈ I|(m−1,m0) ∈ E} = ∅ and {m0 ∈

I|(m0,m1) ∈ E} 6= ∅, i.e., its infector is not confirmed but

its infectee is confirmed. Such an individual is represented as a

root of a directed tree graph.

(iv) An individualm0 is said to be “traced-traced” type, denoted

by t-t, if {m0 ∈ I|(m−1,m0) ∈ E} 6= ∅ and {m0 ∈

I|(m0,m1) ∈ E} 6= ∅, i.e., infector is confirmed and infectee is

confirmed. Such an individual is represented as neither a root

nor a leaf in a directed tree graph.
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FIGURE 1

The established infection network comprises many connected components due to missing vertices (individuals) and edges (infection events). An

infection network’s vertices can be classified into four types (u-t, u-u, t-u, and t-t) based on the classification of their infector or infectee status as

either traced or untraced. Also, the infection network evolves as an infectious disease spreads over time.

Given an infection network, one can find the

following properties due to the characteristics of infectious

disease transmission:

• The number of connected components with more

than two vertices (individuals) equals the number of

individuals (vertices) of the u-t type.

• The number of individuals excluding the u-u type

represents the total sum of the number of individuals

across all connected components with more than

two vertices.

• The quotient of the number of individuals excluding

the u-u type and the number of u-t type individuals

represents the average number of individuals per

connected component.

• The quotient of the number of t-t type individuals

and the number of u-t type individuals represents

the average number of t-t type individuals per

connected component.

2.4 Experimental settings

Data preprocessing was performed before conducting the

simulation. Firstly, 2,546 infection events (m−1,m0) ∈ E were

excluded due to missing report dates. Next, 474 individuals,

m0 ∈ I , linked to multiple infectors, m−1 ∈ I , were identified

due to uncertainty about who the actual infector is, resulting

in a total of 1,042 infection events, (m−1,m0) ∈ E . Among

the identified 1,042 infection events (m−1,m0) ∈ E , 480 of

these cases were of the u-t type for m−1 ∈ I . Finally, the

connected components that include the u-t type were excluded

from the data. Through all these preprocessing steps, the total

number of confirmed cases obtained is 164,314. All simulations

were done in Python version 3.9. The calculation of Rt was

carried out using the Epyestim library, employing Epyestim’s

default distributions and parameters. This library is described in

Thompson et al. (32).

3 Results

3.1 Analysis for infection network by time
periods

Analyzing daily confirmed cases alone is insufficient to fully

understand the transmission dynamics of infectious disease.

Therefore, as depicted in Figure 2, confirmed cases have been

categorized into four types, and a period analysis was conducted.

In Figure 2 upper panel, the period with the highest proportion

of u-u type cases among the four types was P1. In contrast, the

highest proportions for the remaining three types were observed in

P4. Moreover, the cumulative number of confirmed cases during

P4 shows a sharp increase, especially in the number of t-u type

cases. On February 23, 2021, the cumulative number of u-t type

cases surpassed that of u-u type. However, starting from April 26,

2021, the cumulative number of u-u type cases began to increase

sharply. The number of cumulative confirmed cases for u-t type is

almost the same as the number for t-t type over P4 and P5.

3.2 Analysis for infection network by time
periods and age group

The transmission dynamics might be related to the contact

pattern between age groups (7, 26, 33). Figure 3 upper panel

displays the age distribution of four types for both P1 and P4.

During P1, a high number of confirmed cases were observed in

individuals in their 20–29 and 50–59. Among all age groups of

confirmed cases, 79% were classified as the u-u type. The highest

proportion of u-u type cases was found in the 20–29 age group,

accounting for 88% of the cases in this age group, while the lowest

was in the 0–9 age group, with 49%. However, in P4, there was a

distinct shift with the majority of confirmed cases being of the t-u

type. This was most pronounced in the 0–9 age group, which had

the highest proportion of t-u type cases at 62%, whereas the 60–

69 age group had the lowest at 42%. Additionally, throughout the

entire period under study, the 0–9 age group consistently exhibited
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FIGURE 2

Categorized daily and cumulative confirmed cases over various periods are presented: (Upper) Entire period, (Lower) P1–P5, along with

representative control measures implemented in South Korea. The contrasting background colors distinguish each period.

FIGURE 3

(Upper) Age distribution categorized according to four types for both P1 and P4. (Lower) The proportion of each case type within specific age

groups over the cumulative period. The left panels display heatmap for u-u and t-u types, while the right panels show those for u-t and t-t types,

with dotted lines in the figure marking the divisions between periods P1–P5.

the highest proportion of t-u type cases, accounting for 47%. For

the age distribution in other periods, refer to Figure A1. Figure 3

lower panel presents a heatmap representing the proportion of each

case type within specific age groups over the cumulative period.

For instance, on the u-u type heatmap, if the y-axis is labeled

20–29 and the x-axis indicates 400 days (February 28, 2021), the

value corresponds to the proportion of 20–29 age group cases that

are classified as u-u type up to 400 days. Due to the low number

of cumulative confirmed cases in the early stages of COVID-19

spread, this paper will not interpret the results for this period.
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TABLE 1 The ratio of the number of traced infectors to the number of untraced infectors for each period and age group.

0−9 10−19 20−29 30−39 40−49 50−59 60−69 70−79 80−89 90−99

P1 0.92 0.21 0.07 0.20 0.21 0.18 0.16 0.17 0.19 0.16

P2 0.95 0.64 0.45 0.28 0.46 0.93 1.16 1.63 1.13 1.40

P3 0.86 0.77 0.41 0.44 0.50 0.50 0.56 0.57 0.73 0.48

P4 2.68 2.20 1.16 1.19 1.38 1.45 1.31 1.26 1.79 2.03

P5 0.87 0.61 0.38 0.44 0.46 0.53 0.55 0.59 0.85 0.80

Entire 1.32 0.94 0.51 0.62 0.67 0.76 0.77 0.79 1.14 1.28

The red (resp. blue) color stands for the age group with the maximum (resp. minimum) ratio for each period.

FIGURE 4

The comparison of infector identification for traced (t-u, t-t type) and untraced (u-u, u-t type) cases is shown in each age group.

When considering the entire cumulative period, the age groups

with the highest proportions of u-t type and t-t type cases are

70–79 and 50–59, respectively, each accounting for 13 and 11%.

The heatmaps for each type are examined in sequence. Firstly,

examining the u-u type heatmap, it is observed that until the mid-

period of P4, themajority of confirmed cases in the 20–29 age group

were of the u-u type. This trend is not exclusive to the 20–29 age

group; up until the mid-period of P4, a high proportion of u-u type

cases is evident across most age groups. However, post the mid-

period of P4, there is a significant reduction in the proportion of

u-u type cases in all age groups except for 20–29. Next, the t-u type

heatmap shows a pattern opposite to that of the u-u type. The u-

t type heatmap indicates an increase in the proportion of u-t type

cases among the 40–79 age group after the mid-period of P4. Lastly,

the t-t type heatmap reveals an increase in the proportion of t-

t type cases among the 40–69 age group posts the mid-period of
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P4. Also, the relationship between each type with respect to both

age group and period was analyzed. As shown in Table 1, the value

obtained from dividing the number of confirmed cases with traced

infectors (or just traced infectors) by the number of confirmed cases

with untraced infectors (or just untraced infectors) was calculated

for each period and age group. In all periods except for P2, the

age group of 9 years and under has higher values compared to

other age groups, and the 20−29 age group has the lowest values.

Furthermore, this paper investigated the number of traced infectors

and the number of untraced infectors across different age groups

over time. These values were processed using a smoothing function

with a uniform kernel of 10 points, where each point is weighted

equally (1/10), to enhance data visualization and analysis. As shown

in Figure 4, in P4, for individuals aged 20 and above, the number

of untraced infectors is almost the same as the number of traced

infectors. However, in the age group below 20, there were more

cases with a traced infector than with an untraced one. During P5,

there was a significant increase in the number of untraced infectors

in the 0–59 age group.

3.3 Length of the connected components
of infection network

Infection order refers to the number of subsequent infections

traced back to a single confirmed case. For instance, if person

A infects person B, and person B then infects person C, B and

C are considered the 2nd and 3rd order infected individuals,

respectively, originating from A. In this paper, we define the length

of a connected component as n− 1, where n is the highest order of

an infector originating from a u-t type individual in the connected

component. As shown in Figure 5 (middle), in P1, the proportion

of connected components with a length of 1 is the highest at 81%,

compared to other periods. Conversely, the lowest period is P2

with 61%. For the distribution of connected component length

in other periods, refer to Figure A2. In Figure 5 (right), for the

entire period and P4, the slopes of the log scale for the number of

cases according to length, from length = 1 to length = 2, ..., and

from length = 8 to length = 9, all exhibit similar values. Another

observation is that the slope from length = 2 to length = 3 being

closest to 0 occurs during period P2. The lower panel displays the

number of connected components with the length being either 1

or >2, spanning the period from January 19, 2020, to July 11,

2021. During each epidemic wave P1, P3, and P5 at their respective

peaks, the number of connected components with a length of 2 or

more is significantly smaller compared to the number of connected

components with a length of 1.

3.4 Daily confirmed cases relationship

Figure 6 (Upper) represents the average number of individuals

per connected component for each day from January 19, 2020,

to July 11, 2021. For instance, the value for November 31,

2020, is calculated as the sum of t-t and t-u type individuals

on November 31, 2020, divided by the number of u-t type

individuals on the same date. The observation revealed that the

value and the daily confirmed cases exhibited opposing trends.

During the epidemic waves of P1 and P3, the value is lower

compared to periods not experiencing an epidemic wave. Following

the surge in daily confirmed cases in P4, the value remains

consistent without significant increases. Figure 6 (Lower) illustrates

the average number of secondary cases for both u-t and t-t types,

calculated with a window size of 30, fromMarch 22, 2020, to July 11,

2021, and also depicts the time-dependent reproduction number

Rt (12). The value is an indicator derived from the infection

network analysis. For instance, the average number of secondary

cases for the u-t (resp. t-t) type on August 1, 2020, is defined as

the real-time calculated average value of confirmed cases directly

infected by the u-t (resp. t-t) type within the infection network

identified between July 1, 2020, and August 1, 2020. For instance,

if within the identified infection network for the period, there are 3

connected components, and the number of individuals infected by

each u-t type individual is 2, 6, and 1, respectively, then the average

number of secondary infections for the u-t type on August 1, 2020,

is calculated as (2+6+1)/3 = 3. The time-dependent reproduction

number Rt did not show a significant increase before an increase

in daily confirmed cases during P4 and P5. However, the circular

markers in Figure 6 (Lower) indicate a significant increase in the

average number of secondary cases for u-t type.

4 Discussion

Despite having a large volume of epidemiological data due to

its active contact tracing efforts compared to other countries, South

Korea’s infection network, generated from the data, comprises

many connected components as a result of numerous missing

vertices (individuals) and edges (infection events). This article

analyzed the infection network using vertices of four types: u-u, u-t,

t-u, and t-t based on whether their infector or infectee falls into the

traced or untraced category, and then analyzed the dynamics of the

infection network based on each type, time, and age group, deriving

insights. Our results showed a significant surge in the number of t-

u type cases (i.e., traced infector—untraced infectee type) during

P4 when the government upgraded the social distancing level twice

as well as expanding the screening clinics in Figure 2. A significant

surge in the cumulative number of u-u type cases was also observed,

beginning in the mid-phase of P5, coinciding with the spread of

the Delta variant. The average number of t-t type individuals per

connected component close to 1 in P4 and P5 indicates active

contact tracing in response to mass infection. In other words,

the proposed method allows for the analysis and evaluation of

phenomena induced by various events such as the implementation

of public health policies, the emergence of new variants, and more.

Our results also found age-specific transmission patterns for

the four types in Figure 3. Individuals of the u-u type pose a

significant risk of causingmass infections in the community. Across

periods P1–P5, the highest proportion of u-u type cases (57.4%)

was observed in the 20–29 age group. This can be inferred to

be due to the 20–29 age group’s wider range of activities and

frequent interactions with various people. The 0–9 (47.6%), 10–

19 (40.9%), and 80–89 (46.5%) age groups had the highest rates

of t-u type cases, indicating these demographics may serve as key

points for interrupting transmission chains. By focusing on these
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FIGURE 5

The figure (upper panel) presents the power law approximation of the distribution of connected component length for each period (middle) and the

same distributions on a log scale (right), respectively. For convenience, y-axis value (log value of the number of cases) of −1 indicates log 0. The

(lower panel) represents the number of connected components by length over time.

FIGURE 6

The right y-axis and the black line represent daily confirmed cases, while the left y-axis represents all other values. (Upper) The average number of

individuals (vertices) per connected component for each day. (Lower) The average number of secondary cases for each type and time-dependent

reproduction number Rt over time.

patterns in the implementation of public health policies, it may be

possible to more effectively contain outbreaks and prevent wider

community spread. Individuals of the u-t type, as initial infectors in

a connected component, help identify which age groups had more

asymptomatic COVID-19 cases and were more engaged in contact

tracing, based on their age-wise proportions. Across periods P1–

P5, the highest proportion of u-t type cases (13%) was observed

in the 70–79 age group. From mid P4, it was observed that the

proportion of u-t type cases in the 30–79 age group was higher

compared to other age groups. The proportion of t-t type cases by

age group also allows for the inference of which age groups were

more actively involved in contact tracing. Across periods P1–P5,

the highest proportion of t-t type cases (11%) was observed in the

50–59 age group. After mid P4, the 40–69 age group showed a

higher proportion of t-t type cases compared to other age groups.

Furthermore, the analysis of the value obtained from dividing

the number of confirmed cases with traced infectors (or just

traced infectors) by the number of confirmed cases with untraced

infectors (or just untraced infectors) across age groups revealed a

sequence of 0–9 > 90–99 > 80–89 > 10–19 > 70–79 > 60–69
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> 50–59 > 40–49 > 30–39 > 20–29. For the 0–9 and 80–99 age

groups, where the number of contacts is limited, contact tracing

was more manageable; however, in age groups like 20–39, which

have a higher number of contacts, contact tracing was found to be

more challenging. These analyzes provide valuable information for

understanding the transmission dynamics of COVID-19, allowing

us to suggest strengthening or relaxing control measures for specific

age groups based on the period’s characteristics.

Our results also investigated the distribution of the lengths of

connected components within the infection network. In P2, the

proportion of connected components with a length of 1 was the

lowest, while the proportions with lengths of 2 and 3 were the

highest. This indicates that during P2, which had the lowest daily

average of 37 confirmed cases, the infection network had fewer

missing edges (infection events). Further investigation across the

entire period, as shown in the lower panel of Figure 5, revealed an

increase in the number of connected components with a length

of 1 during surges in daily confirmed cases. The earlier results

motivated the hypothesis that the average number of individuals

per connected component for each day would decrease during

spikes in infections. This was indeed observed in the upper panel

of Figure 6. It means that when the number of daily confirmed

cases surges, it becomes challenging to contact trace high-order

transmissions. This phenomenon may stem from changes in the

government and the public’s willingness to engage in contact

tracing and limitations of existing contact tracing methods in the

face of a highly infectious virus spreading worldwide. For this

reason, this article proposed the average value of confirmed cases

directly infected by the u-t type as an indicator of infectious disease

transmission potential. Utilizing the infection network up to 30

days prior allows for real-time calculation, and this indicator shows

high values before a surge in daily confirmed cases. Due to the

indicator allowing for an approximation of real-time unreported

cases, it is more sensitive compared to Rt and increases before the

third epidemic wave. Thus, the indicator can be a useful indicator

in situations like in South Korea, where active contact tracing

is conducted.

Our study has several limitations. Firstly, this article does not

consider unreported cases including asymptomatic individuals,

those with mild symptoms who were not tested, and unreported

self-tests from the surveillance pyramid (34). Considering

unreported cases is a key research topic for understanding and

predicting the scale of infections (35–37). Acknowledging the

constraints imposed by unreported cases, especially concerning

COVID-19 transmission within contact networks, we recognize the

potential of methods such as multiple imputation techniques (35)

and data augmentation through link prediction (36) to provide

valuable insights. Furthermore, the exploration of machine

learning-based approaches (37) presents another promising

avenue for addressing data gaps. Studies that have not estimated

unreported cases but have specifically limited unreported cases to

environmental factors include Myall et al. (38), which analyzed

patient-contact networks using patient contacts obtained from

hospital health records. Despite its limitations, the KDCA data

this paper analyzed remains trustworthy. According to the

KDCA, based on serological surveillance and contact tracing

data, the rate of unreported cases in South Korea from January

19, 2020, to July 30, 2022, was ∼19.5%. This rate is notably

lower than those seen in international contexts, a difference

attributed to the widespread availability of testing and the public’s

adherence to control measures (39, 40). Secondly, the study did

not quantitatively assess contact tracing effectiveness. There are

several previous studies about the effectiveness of contact tracing

strategies for COVID-19 (1, 41, 42). Kretzschmar et al. (41)

analyzed contact tracing effectiveness using a stochastic model,

finding that immediate tracing and testing are crucial for reducing

the spread of COVID-19. Delays in testing and tracing significantly

diminish the potential to keep the effective reproduction number

below 1. Korean Government implemented the contact tracing

described in Gong and Jung (42). Contact tracing for COVID-19

was performed using information from credit card records,

handwritten visitor logs, QR codes through KI-Pass, and the Safe

Call system after interviews in Korea. Hellewell et al. (1) found

tracing and isolation could control outbreaks within 12 weeks.

There are previous studies to investigate the infection network of

COVID-19 in Jo et al., Luo et al., and Van (2, 43, 44). Luo et al. (43)

in 2021 developed an infection network considering the history

of exposure and transmission source. The visualization method,

which identifies vertices in the infection network as clusters of

infected individuals, revealed a highly central infection cluster in

Van (44). However, this article developed an infection network,

categorizing infector-infectee pairs by age group and periods,

specifically focusing on untraced cases. Jo et al. (2) emphasized

the importance of gathering network data and examining network

structures to improve the effectiveness of governmental responses

to COVID-19. Additionally, future research is to expand the

analysis to encompass infection networks incorporating spatial

information, as discussed in Kwon and Jo (45).

The current research reveals that, despite active contact

tracing efforts, South Korea’s infection network, derived from a

large volume of epidemiological data, comprises many connected

components due to numerous missing entities (individuals)

and infection events (edges). The presence of numerous

connected components complicates the inference of relationships

between vertices. Therefore, a four-type classification method for

vertices (confirmed cases) is proposed. This method enables the

categorization of vertices within the numerous distinct connected

components from a common perspective, thereby facilitating

the analysis and interpretation for each vertex type. The changes

in the number of cases for each type over time relate to the

emergence of new coronavirus variants (such as Delta) or the

implementation of control measures. When analyzed by age group,

it was observed that certain age groups are more sensitive to these

events. Additionally, our research analyzed the infection network

from the perspective of connected components, proposing a new

indicator and comparing it withRt . Despite limitations, the study’s

categorization of epidemiological data into four types not only

offers a robust foundation for evaluating public health policies

and comprehending the dynamics of COVID-19 transmission but

also serves as a foundational health planning tool for resource

management and tool selection/development for contact tracing.

5 Conclusion

In conclusion, South Korea’s epidemiological data generated

from active contact tracing enables novel infection network

analysis. The analysis reveals significant age-specific transmission
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patterns, particularly in the 20–29, 40–69, and 0–9 age groups. The

patterns show a distinct shift around the midpoint of P4, with

the 20–29 (57.4%) age group exhibiting the highest proportion

of u-u type cases, the 40–69 age group predominantly showing

u-t and t-t types, and the 0–9 (47.6%) age group having the

highest rate of t-u type cases across entire periods. This suggests

a relationship between age groups and the four-type classification.

A significant increase in t-u and u-u type cases was observed

during certain periods, providing opportunities for analysis and

evaluation of phenomena induced by various events, such as the

implementation of public health policies, the emergence of new

COVID-19 variants, and more. Also, through the investigation

of the distribution of lengths of connected components within

the infection network, it was found that the average number of

individuals per connected component tends to decrease during

surges in daily confirmed cases, indicating that tracing high-

order transmissions becomes more challenging. Accordingly, the

average value of confirmed cases directly infected by the u-t type

is proposed as an indicator to assess the potential for infectious

disease transmission. Additionally, this approach could facilitate

the early detection of changes in willingness among individuals to

participate in tracing, or in the reduced capacities of contact tracing

systems. The investigation of infection networks is crucial for

advancing the capacity to control and mitigate the transmission of

infectious diseases. Recognizing the necessity for a more thorough

age-based categorization, the study emphasizes potential areas

for future research improvements in comprehending and refining

public health strategies. Additionally, the study presents a new

real-time indicator using contact tracing data collected during

actual infection spread, ultimately providing support for decision-

makers and contributing to reducing the pandemic’s impact on

global communities.
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