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Accurate predictive modeling of pandemics is essential for optimally distributing

biomedical resources and setting policy. Dozens of case prediction models have

been proposed but their accuracy over time and by model type remains unclear.

In this study, we systematically analyze all US CDC COVID-19 forecasting

models, by first categorizing them and then calculating their mean absolute

percent error, both wave-wise and on the complete timeline. We compare

their estimates to government-reported case numbers, one another, as well

as two baseline models wherein case counts remain static or follow a simple

linear trend. The comparison reveals that around two-thirds of models fail to

outperform a simple static case baseline and one-third fail to outperform a

simple linear trend forecast. A wave-by-wave comparison of models revealed

that no overall modeling approach was superior to others, including ensemble

models and errors in modeling have increased over time during the pandemic.

This study raises concerns about hosting these models on o�cial public

platforms of health organizations including the US CDC which risks giving

them an o�cial imprimatur and when utilized to formulate policy. By o�ering

a universal evaluation method for pandemic forecasting models, we expect this

study to serve as the starting point for the development ofmore accuratemodels.

KEYWORDS

public health interventions, biomedical engineering, machine learning, COVID-19, time

series forecasting, pandemics

1 Introduction

The COVID-19 pandemic (1) resulted in at least 100 million confirmed cases andmore

than 1 million deaths in the United States alone. Worldwide, cases exceed 650 million, with

at least 6.5 million deaths (2). The pandemic has affected every country and presented a

major threat to global health. This has caused a critical need to study the transmission of

emerging infectious diseases in order to make accurate case forecasts, especially during

disease outbreaks.

1.1 Background

Case prediction models are useful for developing pandemic preventive and control

methods, such as suggestions for healthcare infrastructure needs, isolation of infected

persons, and contact activity tracking. Accurate models can allow better decision-making
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about the degree of precautions necessary for a given region

at a particular time, which regions to avoid travel to, and the

degree of risk in various activities like public gatherings. Likewise,

models can be used to proactively prepare for severe surges

in cases by allocating biomedical resources such as oxygen or

personnel. Collecting and presenting these models gives public

health officials, and organizations such as the UNITED STATES

CENTERS FOR DISEASE CONTROL AND PREVENTION (US CDC)

(3), a mechanism to disseminate these predictions to the public,

but risks giving them an official imprimatur, suggesting that these

models were either developed or endorsed by a government agency.

1.2 Motivation

Since the start of the pandemic, dozens of case prediction

models for the US have been designed using a variety of methods.

Each of these models depends on data available about cases,

derived from a heterogeneous system of reporting, which can

vary by county and suffer from regional and temporal delays. For

example, some counties may collect data over several days and

make it public at once, which creates an illusion of a sudden

burst of cases. In counties with less robust testing programs, the

lack of data can limit modeling accuracy. These methods are

not uniform or standardized between groups that perform data

collection, resulting in unpredictable errors. Underlying biases in

the data, such as under-reporting, can produce predictable errors

in model quality, requiring models to be adjusted to predict future

erroneous reporting rather than actual case numbers. Such under-

reporting has been identified by serology data (4, 5). Moreover,

there is no universally agreed upon system for assessing and

comparing the accuracy of case prediction models. Often published

models use different methods, which makes direct comparisons

difficult. The CDC has taken in data of case prediction models

in a standardized way which makes direct comparisons possible

(3). In this study, we use Mean Absolute Percent Error (MAPE)

compared to the true case numbers to compare models for

normalization purposes. First, we consider which models have

the most accurately predicted case counts with the least MAPE.

Next, we divide these models into five broad sub-types based on

approach, i.e., epidemiological (or compartment) models, machine

learning approaches, ensemble approaches, hybrid approaches,

and other approaches, and compare the overall error of models

using these approaches. We also consider which exclusion criteria

might produce ensemble models with the greatest accuracy and

predictive power.

1.3 Contributions

A few studies (6, 7) have compared COVID-19 case forecasting

models. However, the present study is unique in several aspects.

First, it is focused on prediction models of US cases and takes into

consideration all CDC models that pass the set inclusion criterion.

Second, since these models were uploaded in a standardized format

they can be compared across several dimensions such as R0, peak

timing error, percent error, and model architecture. Third, we seek

to answer several unaddressed questions relevant to pandemic case

modeling:

• First, can we establish a metric to uniformly evaluate

pandemic forecasting models?

• Second, What are the top-performing models during the four

COVID-19 waves in the US and how do these fare on the

complete timeline?

• Third, are there categories or classes of case prediction models

that perform significantly better than others?

• Fourth, how do model predictions fare with increased forecast

horizons?

• Lastly, how do models compare to two simple baselines?

2 Methodology

This work compares various US-CDC COVID-19 forecasting

models by their quantitative aspects evaluating their performance

in strictly numerical terms over various time segments. The US-

CDC collects weekly forecasts for COVID cases in four different

horizons: 1-, 2-, 3-, and 4-weeks, i.e., each week, the models

make a forecast for new COVID cases in each of the four

consecutive weeks from the date of the forecast. The forecast

horizon is defined as the length of time into the future for which

forecasts are to be prepared. In the present study, we focus on

evaluating the performance of models for their 4-week ahead

forecasts.

2.1 Datasets

The data for the confirmed case counts are taken

from the COVID-19 Data Repository (https://github.com/

CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/

csse_covid_19_daily_reports_us), maintained by the Center for

Systems Science and Engineering at the Johns Hopkins University.

The data for the predicted case counts, of all the models, is obtained

from the data repository for the COVID-19 Forecast Hub (https://

github.com/reichlab/covid19-forecast-hub), which is also the

data source for the official US-CDC COVID-19 forecasting page.

Both these datasets were pre-processed to remove models that

have made predictions for <25% of the target dates covered by

the respective time segment. For plotting Figure 1A, the PYPLOT

module from the Matplotlib library in Python was used.

2.2 Categorizing models

The models were categorized into five different categories-

Epidemiological/ Compartmental (see Table 1), Machine Learning

(see Table 2), Ensemble (see Table 3), Hybrid (see Table 4), and

Others (see Table 5). This was based on keywords found in

model names and going to each model description on their

respective web pages and articles. The models which did not

broadly fall into these categories were kept in “others”. These

models use very different methods to arrive at predictions. We

comprehensively analyzed 51 models. The CDC also uses an
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FIGURE 1

(A) Visual overlay of real case counts and predicted case counts across all waves examined. Actual case counts are shown in red, predicted counts

are shown in gray with each trace representing a di�erent CDC COVID-19 forecasting model on the sqrt plot. (B) MAPE values of US-CDC case

prediction models on the complete timeline, i.e., Wave-I to IV. The y-axis is sorted descending from lowest error to highest. The color scheme

represents the model category. (C) Bar graph showing the non-parametric Kruskall-Wallis test results. A Mann-Whitney test was further performed

for groups with significant di�erences. Category-wise error was achieved by the models both overall and wave-wise from wave-1 to wave-4. Note

that Hybrid models have a high MAPE, i.e., overall: 261.16%, Wave 1: 25.36%, Wave 4: 99.3%, Wave 3: 1421.325%, Wave 4: 54.74%).

ensemble model, and we looked at whether this was better than

any individual model. For each model uploaded to the CDC

website, MAPE was calculated and reported in this study, and

the models were compared wave-wise as shown in various figures.

For each model, the model type was noted, as well as the

month proposed.

2.3 Wave definition

A thorough search reveals M.D., epidemiologists, and

policymakers do share the same underlying principles of the term

“wave". Popular media explain that “the word ‘wave’ implies a

natural pattern of peaks and valleys”. WHO stated in order to say

one wave is ended, the virus has to be brought under control and

cases have to fall substantially, then for a second wave to start,

you need a sustained rise in infections. As part of their National

Forecasts for COVID cases, the CDC has reported the results from

a total of 54 different models at various instances of time during

the pandemic. We define the waves, i.e., Wave-I: July, 6th 2020

to August 31st, 2020, Wave-II: September, 1st 2020 to February,

14th 2021, Wave-III: February, 15th 2021 to July, 26th 2021 and

Wave-IV: July, 27th 2021 to January, 17th 2022, corresponding to

each of the major waves in the US.

2.4 Baselines

The performance of the models was evaluated against two

simple baselines. Baseline-I is the “CovidHub-Baseline" (or CDC’s

baseline), i.e., the median prediction at all future horizons is the

most recent observed incidence (i.e., themost recent day). Baseline-

II is the linear predictor extrapolation using the slope of change in

reported active cases between the 2 weeks preceding the date of the

forecast. These baselines are included in the bar charts (shown in

Figures 1B, 2). Within each of the waves of interest, only models

that made a significant number of predictions are considered for

comparison. We only consider models that have made predictions

for at least 25% of the target dates covered by the respective

time segment for all comparisons in this section. The MAPE was

calculated on the 4-week forecast horizon. Figure 1B illustrates the

performance of models across all the waves. Same procedure, as in

Figure 2, was followed for plotting Figure 1B.

2.5 Model comparison

The performance of all the models is compared, wave-wise and

on the complete timeline based on the MAPE (or mean absolute

percent error). MAPE is defined as the ratio of absolute percentage
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TABLE 1 Epidemiological/compartmental US-CDC COVID-19 forecasting models—their description, features employed, methodology and assumptions

they make regarding public health interventions.

Model Features used for forecasting Author Method Assumptions

TTU-Squider (8) Takes into account power-law incident rate, separate compartments for silent

spreaders, quarantine/hospital isolation of infected individuals, social contact

restrictions, possible loss of immunity for recovered individuals.

Hussain Lab,

Texas Tech

University

SIR Effects of interventions are

reflected in observed data and will

continue going forward.

JHU-IDD (9) Accounts for uncertainty in epidemiological parameters including R0, spread of

more transmissible variants, infectious period, time delays to health outcomes and

effectiveness of state-wide intervention policies.

JHU IDD

Working Group

Meta population

SEIR

Current interventions will not

change during the period

forecasted.

IowaStateLW-STEM

(10)

A non-parametric space-time disease transmission model for epidemic data to

study the spatial-temporal pattern of COVID-19.

Iowa State- Lily

Wang’s Group

Non-parametric

spatiotemporal

model

−

BPagano-RtDriven (11) The effective transmission ratio, Rt, drives the model’s projections. To forecast how

Rt will change with time, the model analyzes Rt change data through the pandemic

and applies a model of that characteristic behavior to forecast infections.

BPagano SIR Effects of interventions are

reflected in observed data and will

continue going forward.

UCLA-SuEIR (12) An SEIR Model variant that takes into consideration the effects of re-openings.

Assumes a transition from a virtual “Quarantined" group to the “Susceptible"

group at a specific rate for the states that have reopened/ partially reopened. Most

notable feature is that it can infer untested cases as well as unreported cases.

UCLA Statistical

Machine

Learning Lab

Modified SEIR Contact rates will increase as states

reopen and calculate the increase

in contact rates for each state.

COVID19Sim-

Simulator (13)

Uses a validated compartment model defined using SEIR with continuous-time

progression to simulate the trajectory of COVID-19 at the state level.

COVID-19

Simulator

SEIR Based on assumptions about how

in the future, the levels of social

distancing may evolve.

USACE-ERDC_SEIR

(14)

Bayesian Inference calculates model parameters from observations of total number

of cases. A prior probability distribution over the model parameters. The

accumulated observations & subject matter knowledge are then coupled with a

statistical model of model-data mismatch to generate a posterior probability

distribution across model parameters. To make forecasts, parameters maximizing

posterior probability density are used.

US Army

Engineer

Research &

Development

Center

Process-based

classic SEIR

model with

compartments

for unreported

infections/

isolated

individuals.

(i) Current interventions don’t

change during forecast period. (ii)

Modeled populations are large

enough that disease states

fluctuations grow slower than

average. (iii) Recovered individuals

are not infectious/ susceptible to

infections.

Microsoft-DeepSTIA

(15)

Deep Spatio-temporal network with intervention under the assumption of

Spatio-temporal process in the pandemic of different regions.

Microsoft SEIR model on

spatiotemporal

network

Current interventions will not

change during the period

forecasted.

CovidAnalytics-

DELPHI (16)

Introduces new states to accommodate for unnoticed cases, as well as an explicit

death state. A non-linear curve reflecting government reaction is used to adjust the

infection rate. Also, a meta-analysis of 150 factors is used to determine key illness

parameters, while epidemiological parameters are fitted to historical death counts

& identified cases.

MIT

Covid-Analytics

Augmentation of

SEIR model

Columbia_UNC-

SurvCon (17)

Considers transmission throughout pre-symptomatic incubation phase, employing

a time-varying effective R0 to capture the temporal trend of transmission & change

in response to a public health intervention. Uses permutation to quantify

uncertainty.

Columbia_UNC − −

CU-select,

CU-nochange,

CU-scenario_low,

CU-scenario_mid,

CU-scenario_high (18)

Produces different intervention scenarios, each assuming various interventions &

rates of compliance are implemented in the future. (i) Presents the weekly scenario

believed to be most plausible given current observations & planned intervention

policies. (ii) Current contact rates will remain unchanged in the future. Assumes

relatively (iii) low transmission, (iv) moderate transmission, & (v) high

transmission

Columbia

University

Metapopulation

county-level

SEIR

errors of the predictions normalized by the number of data points.

The error refers to the difference between the confirmed case

counts and the predicted case counts and is calculated as shown

in Equation (1) below:

MAPE = (1/n)

n∑

t=1

|(At − Pt)/At| (1)

Here, n = number of data points, At is the actual value and Pt
denoted the predicted value.

Figure 1C shows the on-parametric Kruskall-Wallis test results

on the category-wise errors, achieved by the models overall as

well as wave-wise. The mean of the MAPE values is calculated

for each category in model type, for overall and each wave

separately. The mean is calculated by adding the MAPE values

of all the models in a category and dividing it by the number

of models in that category for the corresponding wave. hen, a

non-parametric Kruskall-Wallis test is performed to determine if

there is a significant difference between the two groups. We used

scipy in Python to perform the test. For cases where significant

differences were found (for Wave-II), a Mann-Whitney test was

further performed. We did not perform the popular ANOVA test

since ANOVA conditions of normality (we used a Shapiro-Wilk

test for normality on the residuals) and homogeneity of Variances

(we used Levene’s test for equality of variances) were not met for all

waves.
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TABLE 2 Machine learning US-CDC COVID-19 forecasting models- their description, features employed, methodology, and assumptions they make

regarding public health interventions.

Model Features used for forecasting Author Method Assumptions

QJHong-Encounter

(19)

Uses (1) Reproductive Number (R) and Encounter Density (D) relation in the past

as a training set, (2) future D as input, and (3) ML/regression, the model predicts

future R, and ultimately future daily new cases.

QJHong Machine learning Assumes current interventions will

not change during the forecasted

period.

OneQuietNight-ML

(20)

Uses high-level features of daily case reports and movement trends data to make

predictions about future Covid-19 cases.

OneQuietNight

JHU_CSSE-DECOM

(21)

County-level, empirical model driven by mobility, epidemiological, demographic,

and behavioral data.

JHU CSSE

UpstateSU-GRU (22) A feed-forward RNN is used. The Seq2Seq algorithm trains the model to convert

sequences from input to those in the output. The model inputs daily smoothed

incident cases, deaths count, google mobility index, daily reproduction number,

county demographic and health risk indices to model the baseline risk score.

SUNY Upstate

and SU

COVID-19

Prediction Team

County-level

forecast using

RNN seq2seq

model.

2.6 Statistical analysis

The statistical significance of all figures was determined by

the non-parametric Kruskall-Wallis test which is followed by a

Mann-Whitney test for groups that had a significant difference. Bar

plots having a p-value <0.05 (statistically significant), are joined

using an asterisk. In Figure 3, box plots are made representing

the MAPE over all the predictions of a certain model for

the corresponding forecast horizon. A box plot displays the

distribution of data based on a five-number summary [“minimum”,

first quartile (Q1), median, third quartile (Q3), and “maximum”].

We used the boxplot function (of seaborn library) in Python

to plot it. Seaborn is a Python data visualization library based

on Matplotlib.

3 Results

When case counts predicted by the various US CDCCOVID-19

case prediction models are overlaid real-world data, visually several

features stand out as illustrated in Figure 1A. On aggregate, models

tend to approach the correct peak during various waves of the

pandemic. However, some models undershot, others overshot, and

many lagged the leading edge of real-world data by several weeks.

3.1 Complete timeline analysis

The MAPE values of all US CDC models were analyzed over

the complete timeline and compared to two “Baselines”, which

represented either an assumption that case counts would remain

the same as the previous week (Baseline-I) or a simple linear

model following the previous week’s case counts (Baseline-II) (see

Figure 1B). Here, “IQVIA_ACOE-STAN,” “USACE-ERDC_SEIR,”

“MSRA-DeepST,” and “USC-SI_kJalpha_RF” achieve the best

performance with low MAPE ranging from 5 to 35%. In a

comparison of overall performance, ensemble models performed

significantly better than all other model types. However, the

performance of ensemblemodels was not “significantly” better than

the baseline models (no change or simple linear model) which

performed better than both machine learning and epidemiological

models overall (see Figure 1C). The peak predictions of all US-CDC

models were plotted on the complete timeline and included in the

study (see Figures 5–8).

3.2 Wave-wise analysis of best performing
models

The MAPE values of all US CDC models were also analyzed

wave-wise (see Figure 2). During the first wave of the pandemic,

“Columbia_UNC-SurvCon" achieved the lowest MAPE = 14%,

closely followed by “USACE-ERDC_SEIR" (MAPE = 17%) and

“CovidAnalytics-DELPHI" (MAPE = 25%). Here, only 4 models

performed better than both baselines. Three of these were

epidemiological models while one was a hybrid model. From the

bar plot of MAPE values of models categorized based on model

type (refer Figure 1C), it can be inferred that during the first wave,

hybrid models performed the best and attained the lowest MAPE.

This was followed by the epidemiological models and those based

on machine learning. On the other hand, ensemble models had the

largest MAPE during this wave and none of them surpassed the

Baseline-I MAPE, i.e., 31%.

During the second wave, “IQVIA_ACOE-STAN" performed

the best with a MAPE score of 5% (see Figure 2). In this wave,

a total of 13 models performed better than both baselines, with

MAPE ranging from 5 to 37. These included five ensemble models,

four epidemiological models, two machine learning models,

and two hybrid models. All ensemble models exceed Baseline-I

performance (that had MAPE = 37%), with the exception of “UVA-

Ensemble". The epidemiological models showed a staggered MAPE

distribution. Followed by the hybrid and the models categorized as

“other" model sub-types, these have the lowest average MAPE in

wave-II. In contrast to wave-I, ensemble models provide the best

forecasts in wave-II (see Figure 1C). Here, hybrid models are the

worst-performing models.

During the third wave (see Figure 1C), ensemble models

performed similarly to wave-I. Baseline models had a relatively

elevated high MAPE with Baseline-I and II MAPE scores being 74

and 77%, respectively. In wave-III, “USC-SI_kJalpha” is the best-

performedmodel withMAPE= 32% (see Figure 2). Here, 32models

performed better than both baseline models. These included 12
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TABLE 3 Ensemble learning US-CDC COVID-19 forecasting models- their description, features employed, methodology, and assumptions they make

regarding public health interventions.

Model Features used for forecasting Author Method Assumptions

USC-SI_kJalpha (23) Examines the impact of parameters learned via rapid linear regressions,

emphasizing the reduction of hardware demands and achieving faster predictions.

Using logistic regression, the model adjusts to samples for each variation within a

specific day, considering dynamic patterns through a focus on recent data. Uses

Random Forest to capture empirical errors in quantile projections, accounting for

future trend changes.

USC SIR Current interventions will not

change during forecasting period.

COVIDhub-ensemble

(24)

An ensemble, or model average, of submitted forecasts to the COVID-19 Forecast

Hub.

COVID-19

Forecast Hub

− −

UCF-AEM (25) Combines a traditional SEIR model with mixture modeling and uses ensemble

neural networks to extract information from a complicated mixture modeling

system.

UCF SEIR model with

ensemble neural

networks.

Current interventions will not

change during the forecasted

period.

LNQ-ens1 (26) Uses an ensemble of three models; two fit with LightGBM, and the third is a neural

net. Ensemble weights are chosen each week manually based on performance in

the previous week.

LockNQuay Ensemble of

three models.

Intervention effects are reflected in

observable data and will continue

in the future.

COVIDhub-baseline

(27)

Baseline model for predictions. The most recent observed incidence is the median

projection for all future horizons. From 1 week to next, the slope of the predicted

medians for cumulative will be constant and equal to previously observed slope.

The model looks at week-to-week incidence variations to generate a median

distribution.

COVID-19

Forecast Hub

− −

COVIDhub-

trained_ensemble

(28)

A weighted ensemble combination of all component model forecasts. COVID-19

Forecast Hub

Ensemble −

UVA-Ensemble (29) Combines models using Bayesian model averaging. Auto-regressive method with

features including mobility, other county case counts time-series, an LSTMmodel

with mobility data as an additional predictor, and PatchSim, an SEIR variant with

interaction between counties modeled using commuter data and calibrated on new

confirmed cases.

University of

Virginia,

Bio-complexity

COVID-19

Response Team

Ensemble of 3

models.

Impact of interventions is

represented in observed data in 2

of 3 models, while the third

assumes that interventions will

change in the future.

Caltech CS156 Ensemble of 14 ML models: (a) Feedforward Neural Network, (b) Quantile Neural

Network, (c) LSTM, (d) Conditional LSTM, (e) Encoder-Decoder Conditional

LSTM, (f) Autoregressive, (g) Sessional Autoregressive, (h) Decision Tree, (i)

Gradient-Boosted Decision Tree, (j) K-NN, (k) Gaussian Process, (l) Bayesian

epidemiological, (m) Two-group epidemiological, (n) Curve-fitting.

Caltech Ensemble of 14

models

−

MIT-Cassandra (30) Based on the ensemble of predictions from four models, including (1) MDP

feature representation, (2) KNN time-series, (3) Bi-LSTM time-series, (4)

C-SEIRD epidemiological.

MIT Cassandra Ensemble of four

models

Assumes that current interventions

will remain in place indefinitely.

FDANIHASU-Sweight

(31)

Ensemble of submitted forecasts to COVID-19 Forecast Hub. The ensembles are

formed by weighting the individual model forecasts with their past performances

FDANIHASU Ensemble −

compartment models, three machine learning models, four hybrid

models, eight ensemble models, and five un-categorized models.

In the fourth wave of the pandemic, several models performed

similarly between a MAPE of 28% and a baseline of 47% (Figure 2).

Ensemble models performed the best whereas epidemiological

models had the highest MAPE during this wave. Baseline-I and II

MAPE scores were 47 and 48%, respectively. In wave-IV, “LANL-

GrowthRate” is the best performed model with MAPE = 28%

(Figure 2). In the fourth wave, 17 models performed better than

both baseline models. These included six compartment models,

seven ensemble models, one machine learning models, two hybrid

models, and one uncategorized models.

3.3 E�ect of increase in forecast horizon

The MAPE of models in the US CDC database increased each

week out from the time of prediction. Figure 3 depicts a strictly

increasing rise in MAPE with the increase in the forecast horizon.

In other words, the accuracy of predictions declined the further out

they were made. At 1 week from the time of prediction, the MAPE

of models examined clustered just below 25% MAPE and declined

to about 50% MAPE by 4 weeks.

The MAPE in each week was relatively bi-modal, with several

models fitting within a roughly normal distribution and others

having a higher MAPE. The distribution of the points indicates

that the majority of models project similar predictions for smaller

forecast horizons, while the predictions for larger horizons are

more spread out. The utility ofmodel interpretation would improve

by excluding those models that fall more than one standard

deviation (σ ) from the average MAPE of models.

Though we examined 54 models overall (reported 51 in

the full timeline), many of these did not make predictions

during the first wave of the pandemic when data was less

available and therefore do not appear in the wave-wise MAPE

calculation and subsequent analysis. The number of weeks for

which each model provides predictions was highly variable, as seen

in Figure 4.
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TABLE 4 Hybrid US-CDC COVID-19 forecasting models- their description, features employed, methodology, and assumptions they make regarding

public health interventions.

Model Features used for forecasting Author Method Assumptions

JHUAPL-Bucky (32) Uses public mobility data to build a Spatial compartment model. JHUApplied

Physics Lab

Spatial

compartment

model

−

FRBSF_Wilson-

Econometric

(33)

Econometric model that connects the current transmission rate with the fraction

of the population that is vulnerable to the shift in new infections from now until a

future horizon. Current transmission rate is assumed to be caused by people’s

mobility and the weather. Mobility, weather, and acquired natural immunity are

accounted for; Includes infection growth lag, implying infection growth lag

predicts future infection growth. County-specific intercepts are introduced, which

allows each county to have a distinct mean level of infection increase.

Federal Reserve

Bank of San

Francisco/Wilson

SIR-derived

econometric

county panel

data model

Intervention effects are reflected in

observable data and will continue

in future.

IEM_MED-

CovidProject

(34)

Uses an AI model to fit data from various sources and project new cases of

COVID-19. Assumes that the R-value (average number of secondary infections)

changes quite rapidly over time due to changes in human behavior and uses a

sliding window that fits the data and finds the best R-values for each window.

IEMMED SEIR model with

ML

Current interventions will not

change during the forecasted

period.

MOBS-

GLEAM_COVID

(35)

A metapopulation method is used. The world is divided into geographical

subpopulations, and human mobility between subpopulations is depicted on a

network. This data layer on mobility identifies the number of persons traveling

from between sub-populations. The mobility network is made up of many mobility

processes, ranging from short-distance commuting to intercontinental travel.

Superimposed on the globe population and mobility layers is an agent-based

epidemic model that describes the infection and population dynamics.

MOBS Lab at

Northeastern

Metapopulation

age-structured

SLIR

Social distancing policies in place

at the date of calibration are

extended for the future weeks.

DDS-NBDS (36) Jointly modeling daily deaths and cases using a negative binomial distribution

based non-parametric Bayesian generalized linear dynamical system (NBDS).

Team DDS Bayesian

hierarchical

model

Intervention effects are reflected in

observable data will continue in

future.

4 Discussion

Accurate modeling is critical in pandemics for a variety of

reasons. Policy decisions need to be made by political entities

that must follow procedures, sometimes requiring weeks for a

proposed policy intervention to become law and still longer to

be implemented. Likewise, public health entities such as hospitals,

nurseries, and health centers need “lead time" to distribute

resources such as staffing, beds, ventilators, and oxygen supplies.

However, modeling is limited, especially by the availability of data,

particularly in early outbreaks (46). Resources such as ventilators

are often distributed heterogeneously (47), leading to a risk

of unnecessary mortality. Similarly, the complete homogeneous

distribution of resources like masks is generally sub-optimal and

may also result in deaths (48). Likewise, it is important to develop

means of assessing which modeling tools are most effective and

trustworthy. For example, a case forecastingmodel that consistently

makes predictions that fare worse than assuming that case counts

will remain unchanged or that they will follow a simple linearmodel

isn’t likely to be useful in situations where modeling is critical. The

use of these baselines allows for the exclusion of models that “fail”

to predict case counts adequately.

Direct comparison of error based on the difference from real-

world data potentially excludes important dimensions of model

accuracy. For example, a model that accurately predicts the time

course of disease cases (but underestimates cases by 20% at any

given point) might have greater utility for making predictions

about when precautions are necessary when compared to a model

that predicts case numbers with only a 5% error but estimates

peak cases 2 weeks late. To assess the degree of timing error, the

peak of each model was compared to the true peak of cases that

occurred within the model time window. MAPE i.e., the ratio of

the error between the true case count and a model’s prediction to

the true case count, is a straightforward way of representing the

quality of predictive models and comparing between model types.

MAPE has several advantages over other metrics of measuring

forecast error. First, since MAPE deals with negative residuals

by taking an absolute value rather than a squared one, reported

errors are proportional. Second, since it’s a percent error, it is also

conceptually straightforward to understand. Using absolute error as

a measure might be misleading at times. For example, a model that

predicts 201, 000 cases when 200, 000 cases occur has good accuracy

but the same absolute error as a model that predicts 1, 100 cases

when 100 occur. MAPE accounts for this by normalizing by the

number of data points.

The average MAPE of successful models which we define as

lower MAPE than either baseline model varied between methods

depending on the wave they were measured in. In the first wave,

epidemiological models had a mean MAPE of 31%, and machine

learning models had a mean MAPE of 32%. In the second wave,

these were 45 and 44%, respectively. In the third wave, these

were 63 and 63%, and in the fourth wave, these were 92 and

44%, respectively. Therefore, we notice that the mean MAPE of

models got worse with each wave. This is because each model

type is susceptible to changing real-world conditions, such as the

emergence of new variants with the potential to escape prior

immunity, or a higher R0, new masking or lockdownmandates, the

spread of conspiracy theories, or the development of vaccines which

will decrease the number of individuals susceptible to infection.

In waves-2 and 3, the best performing model was a hybrid

and machine learning model, respectively. In waves, 1 and 4,

the best model was an epidemiological and an “other” model,
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TABLE 5 Other US-CDC COVID-19 forecasting models- their description, features employed, methodology and assumptions they make regarding

public health interventions.

Model Features used for forecasting Author Method Assumptions

IBF-TimeSeries (37) Combines mechanistic disease transmission model with a curve-fitting approach. Institute of

Business

Forecasting

Modified Time

Series Model

Do not make any specific

assumptions.

RobertWalraven (38) Uses a skewed Gaussian distribution with four empirical parameters: height,

position, left growth rate, and right decay rate. The model makes no

epidemiological assumptions and has no epidemiological parameters.

Robert Walraven Skewed Gaussian

distribution

Current interventions will not

change during the forecasted

period.

UMich-RidgeTfReg

(39)

This model is based on ridge regression (penalized Ordinary Least Squares

regression) to make predictions without relying on external assumptions. The

model uses Finite Impulse Response filtering to forecast confirmed cases each day

as a function of prior day numbers.

UMich Ridge regression Current interventions will not

change during the forecasted

period.

Karlen-pypm (40) Uses Discrete-time difference equations with long periods of the constant

transmission rate.

Karlen Working

Group

Discrete-time

difference

equations

Intervention effects are reflected in

observable data and will continue

in the future.

LANL-GrowthRate

(41)

Presents two processes: first statistical model depicts how the number of

COVID-19 infections varies over time while the second model correlates the

number of infections with the reported data. The underlying numbers of

susceptible and infected cases in the population at the preceding time step, scaled

by the size of the state’s initial susceptible population, are used to map the rise of

new instances. These two components’ weights are dynamically adjusted.

Los Alamos

National Labs

Statistical

dynamical

growth model

Interventions on the first day of the

forecast will continue over the

following 4 weeks.

JCB-PRM (42) Built on observations of macro-level societal and political responses to COVID-19

characterized only in terms of infections and deaths. Assumes that the actual net

impact of policy actions undertaken, though not identical across time or

geography, is predictable. Identifies acceptability ranges from observation data up

to current time.

John Burant Phenomeno-

logical statistical

model

Incidence of COVID-19 in the

population determines the strength

and impact of future control

measures.

SigSci-TS (43) Time series forecasting using ARIMA for case forecasts and lagged cases for death

forecasts.

Signature Science

FOCUS

Autoregressive

time-series

model

Current interventions will not

change during the forecasted

period.

CEID-Walk (44) The model is based on a random walk with no drift. The variance in step size of

random walk is estimated using the last few observations of a target time series.

University of

Georgia CEID

Forecasting

Working Group

Statistical

random walk

model

Social distancing policies in place

at the date of calibration are

extended for the future weeks.

MIT_ISOLAT-

Mixtures

(45)

A non-mechanistic, non-parametric forecasting model that forecasts time series as

a sum of bell curves. The confidence intervals are calculated by applying a

multiplicative log-Gaussian perturbation to the observed time series.

IDSS COVID-19

Collab. at MIT

Mixture model

− Current interventions will remain

in place indefinitely.

respectively (see Figure 2). In each wave, some examples of each

model type were successful, and some were unsuccessful. After

wave 1, ensemble and ML models on average had the lowest

MAPE but no model category significantly outperformed baseline

models (Figure 1C). These results suggest that no overall modeling

technique is inherently superior for predicting future case counts.

Compartmental (or epidemiological) models broadly use

several “compartments” which individuals can move between such

as “susceptible,” “infectious,” or “recovered,” and use real-world

data to arrive at estimates for the transition rate between these

compartments. However, the accuracy of a compartment model

depends heavily on accurate estimates of the R0 in a population,

a variable that changes over time, especially as new virus variants

emerge. For example, the emergence of the Iota variant of SARS-

CoV-2 (also known as lineage B.1.526) resulted in an unpredicted

increase in case counts (49). Machine learning models train

algorithms that would be difficult to develop by conventional

means. These models “train” on real-world data sets and then

make predictions based on that past data. Machine learning models

are sensitive to the datasets they are trained on, and small or

incomplete datasets produce unexpected results. Hybrid models

make use of both compartment modeling and machine learning

tools. On the other hand, ensemble models combine the results of

multiple othermodels hoping that whatever errors exist in the other

models will “average out” of the combinedmodel. Ensemblemodels

potentially offer an advantage over individual models in that by

averaging the predictions of multiple models, flawed assumptions

or errors in individual models may “average out” and result in a

more accurate model. However, if multiple models share flawed

assumptions or data, then averaging these models may simply

compound these errors. An individual model may achieve a lower

error than multiple flawed models in these cases.

The “baseline” models had a MAPE of 48 and 54% over the

entire course of the pandemic in the US. Most models did not

perform better than these. Among those that did, we discuss

the five with the best performance (in increasing order of their

performance). First, “QJHong-Encounter” is a model by Qijung

Hong, an Assistant professor at Arizona State University. This

model uses an estimate of encounter density (howmany potentially

infectious encounters people are likely to have in a day) to predict

changes in estimated R (reproduction number), and then uses

that to estimate future daily new cases. The model uses machine

learning. It had a MAPE of 38% over all waves. Second, “USC-

SI_kJalpha_RF” is a hybrid model from the University of Southern
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FIGURE 2

MAPE values of US CDC Forecasting models in wave-I to IV. Models are sorted in descending order of MAPE. The color scheme represents the model

category. Here “Baselines” are represented in red.

California Data Science Lab. This model also uses a kind of hybrid

approach, where additional parameters are modeled regionally

for how different regions have reduced encounters and machine

learning is used to estimate parameters (23). It had a MAPE of

35% over all waves. Third, “MSRA-DeepST” is a SIR hybrid model

from Microsoft Research Lab-Asia that combines elements of SEIR

models and machine learning. It had a MAPE of 34%. Next,

“USACE-ERDC_SEIR” is a compartment model developed by the

US Army Engineer Research and Development Center COVID-19

Modeling and Analysis Team. It adds to the classic SEIR model,
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FIGURE 3

Predictions are most accurate closest to the time of prediction. The MAPE in predictions of all models for di�erent forecast horizons is shown. The

dots in each box plot represent the MAPE over all the predictions of a certain model for the corresponding forecast horizon. The y-axis is the MAE

between the predicted case count and the reported case count. The x-axis is the forecast horizon.

adding additional compartments for unreported infections and

isolated individuals. It used Bayesian estimates of prior probability

based on subject matter experts to select initial parameters. It

had a MAPE of 31%. Lastly, “IQVIA_ACOE_STAN” is a machine

learningmodel from IQVIA-Analytics Center of Excellence and has

the highest apparent performance on the overall timeframe. The

calculated MAPE for this model was 5%. Notably, the MAPE of 5%

is much lower than the MAPE of 31% of the next closest model.

Although MAPE is superior to other methods of comparing

models, there are still some challenges. For example,

“IQVIA_ACOE_STAN” appears to be the lowest model by

far, but the only data available covers a relatively short time

frame, and unfortunately discontinued its contribution to the

CDC website after Wave 2. The time frame that it predicted also

does not include any changes in case direction from upswings

and downswings. This advantages the model compared to other

models, which might cover time periods where case numbers

peak or new variants emerge. This highlights a potential pitfall of

examining this data: the models are not studying a uniform time

window.

Data reporting is one of the sources of error affecting model

accuracy. There is significant heterogeneity in the reporting of

COVID-19 cases by state. This is caused by varying state laws,

resources made available for testing, the degree of sequencing

being done in each state, and other factors. Additionally, different

states have heterogeneity in vaccination rate, population density,

implementation of masking and lockdown, and other measures

that may affect case count predictions. Therefore, the assumptions

underlying different models and the degree to which this

heterogeneity is taken into account may result in models having

heterogeneous predictive power in different states. Although this

same thinking could be extended to the county level, the case

count reporting in each county is even more variable and makes

comparisons difficult.

To make the comparison between models more even, we used

multiple times segments to represent the various waves during the

pandemic. Models that have made fewer predictions, particularly

avoiding the “regions of interest” such as a fresh wave or a peak,

would only be subjected to a less challenging evaluation than the

models that covered most of the timeline. Further, the utility of

models with only a few predictions within “regions of interest” is

also questionable. Considering these aspects, we define four time

segments corresponding to each of the major waves in the US.

Within each of these waves of interest, we consider only models

that made a significant number of predictions for the purpose

of comparison. Such a compartmentalized comparison is now

straightforward, as all models within a time segment can now have

a common evaluation metric.

We focus on evaluating themodel performance for their 4-week

ahead forecasts. A larger forecast horizon provides a higher real-

world utility in terms of policy-making or taking precautionary

steps. We believe this to be a more accurate representation of a

model’s predictive abilities as opposed to smaller windows in which

desirable results could be achieved by simply extrapolating the

present trend. Therefore, due to the time delays associated with

policy decisions and the movement of critical resources and people,

the long-term accuracy of models is of critical importance. To take

an extreme example, a forecasting model that only predicted 1 day

in advance would have less utility than one that predicted ten days

in advance.

The failure of roughly one-third of models in the CDC database

to produce results superior to a simple linear model should raise

concerns about hosting these models in a public venue. Without

strict exclusion criteria, the public may not be aware that the are

significant differences in the overall quality of these models. Each

model type is subject to inherent weaknesses of the available data.

The accuracy of compartment models is heavily dependent on

the quality and quantity of reported data and also depends on a
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FIGURE 4

Plot depicting frequency of 04 week ahead predictions made by models. Here, models were ordered alphabetically on the y-axis. The x-axis

represents the target dates for which the predictions were made. Dates range from July 2020 to Jan 2022.

variable that might change with the emergence of new variants.

Heterogeneous reporting of case counts, variable accuracy between

states, and variable early access to testing resulted in limited data

sets. Likewise, it seems that since training sets did not exist, machine

learning models were unable to predict the Delta variant surge.

Robust evidence-based exclusion criteria and performance-based

weighting have the potential to improve the overall utility of future

model aggregates and ensemble models.

Because the US CDC has a primary mission focused on

the United States, the models included are focused on United

States case counts. However, globally the assumptions necessary

to produce an accurate model might differ due to differences in

population density, vaccine availability, and even cultural beliefs

about health. However, identifying the modeling approaches that

work best in the United States provides a strong starting point

for global modeling. Some of the differences in modeling will be
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FIGURE 5

Plots depicting the peak predictions of US-CDC models—“BPagano-RtDriven,” “CEID-Walk,” “Covid19Sim-Simulator,” “CovidAnalytics-DELPHI,”

“Columbia_UNC-SurvCon,” “COVIDhub-baseline,” “COVIDhub-ensemble,” “COVIDhub-4_week_ensemble,” “COVIDhub_CDC-ensemble,”

“CU-nochange,” “COVIDhub-trained_ensemble,” over complete timeline.

accounted for by different input data, which can be customized

by country or different training sets in the case of machine

learning models.

The ultimate measure of forecasting model quality is whether

the model makes a prediction that is used fruitfully to make a

real-world decision. Staffing decisions for hospitals can require

a lead time of 2–4 weeks to prevent over-reliance on temporary

workers, or shortages (50). Oxygen has become a scarce resource

during the COVID-19 pandemic and also needs lead time (51).

This has had real-world policy consequences as public officials

have ordered oxygen imports well after they were needed to

prevent shortages (52). Indeed for sufficient time to be available

for public officials to enact new policies and for resources to

be moved, a time frame of 8 weeks is preferable. The need

for accurate predictions weeks in advance is confounded by

the declining accuracy of models multiple weeks in advance,

especially considering the rise time of new variant waves (Figure 3).

During the most recent wave of infections, news media reported

on the potential for the “Omicron” variant of SARS-CoV-2 to

rapidly spread in November of 2021, however in the United

States, an exponential rise was not apparent in case counts until

December 14th, when daily new case counts approximated 100

k new cases per day, and by January 14th, 2022, new cases

exceed 850, 000 new cases per day. The time when accurate

predictive models are most useful is ahead of rapid rises in

cases, something none of the models examined were able to

predict, given the rise in SARS-CoV-2 cases that occurred during

the pandemic.
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FIGURE 6

Plots depicting the peak predictions of various US-CDC models—“CU-scenerio_low,” “CU-scenario_mid,” “CU-scenerio_high,”

“CWRU-COVID_19Predict,” “DDS-NBDS,” “CU-select,” “FRBSF_Wilson-Econometric,” “Geneva-DetGrowth,” “FDANIHASU-Sweight,”

“IEM_MED-CovidProject,” “IowaStateLW-STEM,” “IBF-TimeSeries,” “USACE-ERDC_SEIR,” “USC-SI_KJalpha,” “UpstateSU-GRU,” over complete timeline.

5 Conclusion

Although forecasting models have gained immense attention

recently, many challenges are faced in developing these to

serve the needs of governments and organizations. We found

that most models are not better than CDC baselines. The

benchmark for resource allocation ahead of a wave still remains

the identification and interpretation of new variants and strains

by biologists. We propose a reassessment of the role of forecasting

models in pandemic modeling. These models as currently
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FIGURE 7

Plots depicting the peak predictions of various US-CDC models—“IUPUI-HkPrMobiDyR,” “JBUD-HMXK,” “IQVIA_ACOE-STAN,” “JHUAPL-Bucky,”

“JHU_CSSE-DECOM,” “JCB-PRM,” “Karlen-pypm,” “KITmetricslab-select_ensemble,” “JHU_IDD-CovidSP,” “LNQ-ens1,” “Microsoft-DeepSTIA,”

“LANL-GrowthRate,” “MIT_ISOLAT-Mixtures,” “MOBS-GLEAM_COVID,” “MIT-Cassandra,” over complete timeline.

implemented can be used to predict the peak and decline of

waves that have already been initiated and can provide value

to decision-makers looking to allocate resources during an

outbreak. Prediction of outbreaks beforehand however still

requires “hands-on” identification of cases, sequencing, and

data gathering. The lack of clean, structured, and accurate

datasets also affects the performance of the case prediction

models, making the estimation of patient mortality count and

transmission rate significantly harder. More robust sources

of data on true case numbers, variants, and immunity
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FIGURE 8

Plots depicting the peak predictions of various US-CDC models—“MUNI-ARIMA,” “MUNI-VAR,” “MSRA-DeepST,” “OneQuietNight-ML,”

“prolix-euclidean,” “OliverWyman-Navigator,” “RobertWalraven-ESG,” “SDSC_ISG-TrendModel,” “QJHong-Encounter,” “TTU-squider,” “UCF-AEM,”

“SigSci-TS,” “UCLA-SuEIR,” “UMich-RidgeTfReg” and “UChicagoCHATTOPADHYAY-UnIT” over complete timeline.

would be useful to create more accurate models that the

public and policymakers can use to make decisions. Future

work can focus on framing a novel evaluation metric for

measuring the time lag and direction of prediction in the

short term.
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