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The rapid development of the Hospital Information System has significantly 
enhanced the convenience of medical research and the management of medical 
information. However, the internal misuse and privacy leakage of medical big 
data are critical issues that need to be  addressed in the process of medical 
research and information management. Access control serves as a method to 
prevent data misuse and privacy leakage. Nevertheless, traditional access control 
methods, limited by their single usage scenario and susceptibility to single point 
failures, fail to adapt to the polymorphic, real-time, and sensitive characteristics 
of medical big data scenarios. This paper proposes a smart contracts and risk-
based access control model (SCR-BAC). This model integrates smart contracts 
with traditional risk-based access control and deploys risk-based access control 
policies in the form of smart contracts into the blockchain, thereby ensuring 
the protection of medical data. The model categorizes risk into historical and 
current risk, quantifies the historical risk based on the time decay factor and the 
doctor’s historical behavior, and updates the doctor’s composite risk value in real 
time. The access control policy, based on the comprehensive risk, is deployed 
into the blockchain in the form of a smart contract. The distributed nature of the 
blockchain is utilized to automatically enforce access control, thereby resolving 
the issue of single point failures. Simulation experiments demonstrate that 
the access control model proposed in this paper effectively curbs the access 
behavior of malicious doctors to a certain extent and imposes a limiting effect 
on the internal abuse and privacy leakage of medical big data.
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1 Introduction

Hospital Information System (HIS) is a medical information management system that 
leverages computer and information management technologies, with a focus on service and 
clinical applications (1). The HIS plays a pivotal role in modern healthcare. In recent years, the 
rapid development of the HIS has led to an accumulation of substantial data in the healthcare 
field. These data, generated through medical records, regulatory requirements, and medical 
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research, encompass a wide range of areas, including administrative 
claims, electronic medical records, disease surveillance, medical 
imaging, laboratory tests, among others (2). This accumulation has 
given rise to the concept and development of medical big data, a large-
scale collection of data within the healthcare domain that is collected, 
stored, and analyzed. Much like general big data, medical big data is 
characterized by its large volume, velocity, and diversity (3). Through 
the integration and analysis of these data using information 
technology tools and analytics, healthcare organizations, doctors, and 
researchers can gain a better understanding of disease pathogenesis, 
develop more effective treatment plans, and enhance healthcare 
services and preventive measures. The utilization of medical big data 
is anticipated to aid in the advancement of personalized medicine, 
precision medicine, and health management, thereby improving the 
quality and efficiency of healthcare.

While the potential value of healthcare data is being harnessed to 
improve the quality of healthcare services, enhance treatment 
outcomes, and reduce healthcare costs, issues such as misuse of 
healthcare data and privacy leakage have emerged. For instance, in 
February 2017, two staff members of the Shanghai Center for Disease 
Control and Prevention (CDC) and the Huangpu District CDC 
illicitly appropriated 200,000 pieces of information on newborn babies 
and sold them to infant healthcare product operators. In September 
2022, an employee of Kaiser Permanente unauthorizedly accessed a 
segment of a patient’s medical record in the Mid-Atlantic region. This 
incident led to the exposure of substantial basic and medical 
information of the patient. Given the specificity and sensitivity of 
healthcare data, these privacy breaches, driven by various illicit 
interests, have inflicted substantial losses on healthcare systems and 
patients. Currently, the privacy leakage of medical data has become a 
pressing issue in the healthcare industry.

As for the internal leakage of medical data, the principal method 
to prevent errors and over-authorization is the establishment of an 
access control system. Traditional access control methods such as 
Discretionary Access Control (DAC) (4), Mandatory Access Control 
(MAC) (5), and Role-Based Access Control (RBAC) (6) are 
characterized by their static and explicit authorization rules. However, 
these methods are unable to adapt to the dynamic and real-time 
characteristics of medical big data scenarios (7), and they also 
exacerbate the workload of information system administrators. Risk-
Adaptive Access Control (RAdAC) (8) is an access control method 
that incorporates risk into the policy to facilitate the dynamic 
adjustment of subject privileges. Despite the fact that the dynamic 
adjustment of subject privileges can be well-suited to medical big data 
scenarios, risk-based access control is fundamentally a centralized 
authorization scheme. This centralization is susceptible to causing a 
‘single point of failure’, which can impact the normal operation of 
the system.

Blockchain is a decentralized Distributed Ledger Technology 
(DLT) that offers advantages like immutability, tamper-proof, 
traceability, and authentication (9). The access history and 
authorization rules in the HIS can be  permanently stored in the 
blockchain. Smart contracts, computer programs stored in the 
blockchain system, record the result of any execution of the program 
in the blockchain system (10). In recent years, the application of smart 
contracts to blockchain by numerous scholars has endowed blockchain 
with the capability to implement distributed applications (11). 
Consequently, blockchain is considered a traceable and verifiable 

platform in distributed access control, effectively addressing issues 
such as the single point of failure inherent in traditional centralized 
access control (12).

In this study, we explore a risk-adaptive access control model 
tailored for medical big data and implement the access control policy 
as a smart contract within a blockchain. We  introduce a smart 
contracts and risk-based access control model (SCR-BAC). Our main 
contributions are summarized as follows. The SCR-BAC is distributed, 
dynamic, and adaptive, making it well-suited to complex medical big 
data access control scenarios.

 1 We introduce a smart contract and risk-based access control 
model. Specifically, we modify the traditional risk-based access 
control to cater to distributed services within the context of 
healthcare big data. This adaptation not only mitigates the 
‘single point of failure’ problem inherent in traditional RAdAC 
to a certain extent but also enhances the efficiency of 
traditional RAdAC.

 2 We propose a method to quantify risk based on both current 
and historical behavior, taking into account the impact of 
historical behavior. Specifically, we utilize the access history in 
the blockchain to evaluate a doctor’s historical risk. We then 
quantify the current risk using the actual offset metrics of the 
doctor’s medical record choices and work goals. Furthermore, 
we employ a time decay factor to articulate the influence of 
historical behavior on the present situation.

 3 Given the complex and dynamic nature of medical big data 
scenarios, we have designed a risk management mechanism to 
implement dynamic access control. This mechanism utilizes 
the risk averages of malicious doctors over a certain period to 
compute risk thresholds. This approach aids in distinguishing 
between honest and malicious doctors more effectively, thereby 
enhancing the accuracy of the system.

The remainder of this paper is structured as follows: The ‘Related 
work’ section provides an overview of the current state of research on 
access control. The ‘Access control model’ section offers a detailed 
description of the access control model proposed in this paper. The 
‘Experimental and evaluation’ section validates the feasibility and 
superiority of our proposed access control model through simulation 
experiments. Finally, the ‘Conclusion’ section encapsulates the key 
points of the paper.

2 Related work

With the rapid development of medical big data, the vast amount 
of personal privacy information involved is facing significant threats 
and challenges. Personal privacy leakage and data misuse have become 
the core issues affecting medical informatization (13). Blockchain 
technology and the RAdAC have extensive applications in healthcare. 
They serve as crucial tools for safeguarding healthcare data integrity, 
preventing personal privacy breaches, and averting data misuse. In 
this chapter, we  delve into the related work on healthcare access 
control. This includes discussions on access control based on on-chain 
storage of Electronic Health Records (EHRs), access control predicated 
on Interplanetary File System (IPFS) storage of EHRs, and risk-
adaptive healthcare access control.
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2.1 Healthcare access control based on 
on-chain storage of EHRs

Healthcare access control based on on-chain storage of EHRs 
involves using blockchain technology to store and encrypt EHRs using 
cryptographic algorithms. The system then verifies the legitimacy of 
the user’s identity to make access control decisions. Azaria et al. (14) 
were pioneers in proposing the use of blockchain technology for access 
and privilege management of healthcare data. Their system, MedRec, 
is implemented via three smart contracts: Register Contract (RC), 
Patient-Provider Relationship Contract (PPR), and Summary Contract 
(SC). These contracts set and store permission policies and 
corresponding operations on the blockchain network, replacing the 
original EHR. Yang et al. (15) enhanced the MedRec framework to 
protect patient privacy by formulating precise access control policies 
and secret signatures using Attribute-Based Encryption (ABE). Patel 
et al. (16) proposed a blockchain-based cross-domain image-sharing 
framework that uses blockchain as a distributed database to establish 
radiology studies and patient-defined access permissions. Liu et al. (17) 
proposed a decentralized access control method based on a proxy 
re-encryption algorithm. In this method, the healthcare provider stores 
the patient’s EHR in a private blockchain, and a trusted third party 
generates the public/private key for the healthcare provider and a 
re-encryption key based on the requester’s public key. Storing EHRs on 
a blockchain and using authentication and access control decisions for 
visitors is a common approach to healthcare access control. However, 
this approach has some drawbacks; it overlooks the storage limitations 
of the blockchain, and storing raw or processed EHRs directly on the 
blockchain significantly increases the storage overhead (18).

2.2 Healthcare access control based on 
IPFS storage of EHRs

The central concept of healthcare access control, based on IPFS for 
storing EHRs, involves outsourcing EHRs to IPFS or cloud chains, 
leaving data management to Cloud Service Providers (CSPs) (19, 20). 
Zhang et al. (21) proposed a blockchain-based architecture for secure 
clinical data sharing. This architecture stores patients’ sensitive data 
through CSPs or local databases, and the blockchain only transmits its 
encrypted reference pointers to securely store and transmit the data. It 
also develops smart contracts for authentication and access control. 
Neudecker et  al. (22) utilized IPFS as a decentralized cloud storage 
system to share EHRs by outsourcing the patient’s encrypted medical 
records to IPFS. Meanwhile, the Ethereum blockchain only stores the 
corresponding hash values and the owner’s address to manage access. 
Omar et  al. (23) developed an Ethereum-based smart contract 
framework to address the CT data management problem and outsourced 
the data to IPFS to reduce storage overhead. Madine et al. (24) extended 
this approach with a decentralized data management model, enabling 
patients to take full control of their EHRs in a secure and traceable 
manner. To address the storage overhead of large-scale EHRs, Xu et al. 
(25) proposed a blockchain-based hybrid privacy-preserving scheme, 
Healthchain. This scheme encrypts EHRs using a symmetric encryption 
algorithm to protect patient privacy and stores them in an IPFS storage 
system. The corresponding hash values are stored in the blockchain to 
preserve data integrity in IPFS. While the healthcare access control 
scheme of storing EHRs in IPFS alleviates the storage overhead of the 

blockchain to some extent, this scheme has its drawbacks. Despite the 
traceability of blockchain technology, IPFS is neither secure nor 
trustworthy, and CSPs may violate patient privacy by snooping on or 
leaking EHRs (26). Additionally, outsourcing EHRs to IPFS incurs 
additional cost overhead, increasing the development cost for developers.

2.3 Risk-adaptive access control for 
healthcare

The RAdAC is a centralized access control model that makes 
decisions through risk assessment results. It offers fine granularity, 
dynamism, and high flexibility, making it widely applicable in medical 
big data scenarios (27–30). The accuracy of the risk assessment results, 
which is crucial to the correctness of the decisions, forms the core of 
the RAdAC. Wang et al. (31) proposed an access control model for 
medical big data management. This model uses statistical methods 
and information theory to calculate the actual offsets of doctors’ work 
targets and medical record selection, with these offsets serving as the 
risk of doctors’ access. Hui et  al. (32) improved upon the model 
proposed by Wang et  al. They quantified the risk using the EM 
algorithm and information entropy, and used the average value of the 
risk of a malicious doctor as the risk threshold, thereby enhancing the 
accuracy of the risk assessment. Atlam et al. (33) proposed an Adaptive 
Risk-Based Access Control (AdRBAC) model for IoT that makes 
authorizations based on household context, resource sensitivity, 
operation severity, and risk history, and designed a smart contract for 
monitoring user behavior during an access session. To further improve 
the accuracy of risk assessment, Jiang et  al. (34–37) employed 
clustering, evolutionary game theory, fuzzy theory, intuitionistic fuzzy 
trust and regression analysis to quantify or predict the risk of a doctor. 
Dos Santos et al. (38) proposed an ontology-based approach for risk 
assessment and a framework based on an extension of XACML for 
executing risk-based strategies. Despite the flexibility, dynamism, and 
granularity of the RAdAC, existing research has primarily focused on 
improving the accuracy of risk assessment results. However, the single 
point of failure problem due to the centralized authorization of the 
RAdAC in medical big data scenarios has not been considered.

While blockchain and the RAdAC play significant roles in 
healthcare privacy protection, existing research in these areas remains 
limited and presents numerous challenges. Current research on 
blockchain-based access control in healthcare primarily focuses on the 
use of authentication and encryption algorithms to prevent 
unauthorized user access and patient privacy breaches. However, it 
often overlooks the storage limitations of blockchain and the potential 
for third-party intrusion into patient privacy through curiosity-driven 
snooping or EHR leaks. Similarly, research on risk-adaptive-based 
access control in healthcare has been largely centered on improving 
decision-making accuracy, often neglecting the single-point-of-failure 
problem inherent in the RAdAC. To address these issues, we propose 
storing EHRs in a local database and limiting blockchain access to 
records and smart contract authorization rules. This approach 
prevents internal healthcare data leaks without impacting the storage 
of the HIS or increasing development costs. Additionally, we aim to 
enhance the traditional RAdAC risk quantification method by 
integrating risk quantification generated by historical and current 
behaviors, thereby improving RAdAC decision-making accuracy. 
Lastly, we plan to deploy the improved RAdAC algorithm into the 
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blockchain in the form of smart contracts to mitigate the single-point-
of-failure problem to a certain extent.

3 Access control model

3.1 Basic framework

In this study, we integrate traditional RadAC with blockchain 
technology to propose a Smart Contract and Risk-Based Access 
Control model. The risk associated with a doctor’s choice of medical 
records is quantified by a risk quantification algorithm within the 
model. Furthermore, the risk is categorized into current risk and 
historical risk, with the impact of historical risk represented by a 
time decay factor. Subsequently, the risk threshold that differentiates 
honest doctors from malicious ones is calculated by the risk 
management component of the model. Finally, access control 
authorization is executed according to the access control contract 
within the blockchain. Supplementary Figure S1 illustrates the basic 
architecture of the model, which can be divided into several parts 
based on its functions:

 1 Subject S refers to the staff member who requests access to 
the HIS, which includes roles such as doctors and nurses. In 
the model proposed in this paper, we consider the doctor as 
the accessing subject and focus solely on the risk of privacy 
leakage that may arise from the doctor’s selection of 
medical records.

 2 Object O refers to the storage system for medical data within 
the HIS. This system encompasses various types of data, 
including patient personal information, electronic medical 
records, disease surveillance data, medical imaging, laboratory 
test results, and medical research data.

 3 Blockchain refers to the distributed ledger that stores the access 
history of doctors and manages the execution of smart contracts. 
When a doctor initiates a request to access the HIS storage system, 
the corresponding smart contract, which is deployed on the 
blockchain, is automatically executed to authorize access control.

 4 Smart Contracts refers to the specific contracts deployed within 
the blockchain. These include contracts designed for management 
contract, access history contract and policy contracts.

Despite the multitude of doctors within the system, each one 
can be  uniquely described and identified by a specific set of 
information. This includes, but is not limited to, a digital signature 
that uniquely identifies the doctor, as well as their access history. 
Importantly, the amalgamation of various pieces of information can 
significantly enhance the authorization rules that describe 
individual doctors within the model. This, in turn, augments the 
flexibility and granularity of access control.

3.2 Quantification of risk in the model

During a medical consultation, the doctor initially establishes 
a working objective, typically reflecting their preliminary judgment 
or definitive diagnosis of the patient’s condition. Subsequently, the 
doctor selects the medical records pertinent to this working 

objective for the consultation. If a follow-up visit indicates that the 
patient does not have the initially diagnosed condition, the doctor 
resets the working objective and gathers the medical records 
relevant to the new objective. This iterative process persists until the 
patient recovers or concludes treatment. Typically, a doctor may 
request access to multiple medical records due to a common work 
target. However, doctors with identical work target may not 
necessarily access the same records, leading to varying levels of risk. 
Consequently, this study computes the value at risk as the actual 
deviation in a doctor’s request for access to medical records under 
a common work target. The value at risk is contingent upon the 
degree to which the doctor’s request for access to a combination of 
records fulfills the doctor’s work target.

We assume that honest and malicious doctors follow the 
following principles: An “honest doctor” is one who adheres to the 
proper protocols and accesses records only as needed for their work 
targets. In contrast, a “malicious doctor” is one who may when the 
objective of the work is determined, attempts to obtain more private 
information about the user, including attempts to access additional 
medical records, are considered. This could potentially increase the 
risk factor associated with the doctor’s access. The risk calculation 
takes into account these different behaviors to provide a 
comprehensive assessment.

To quantify the risk of doctors selecting medical records under 
the same work target, we  denote the information of a doctor’s 
single access behavior as a triple d wti i iM, , , where: d Di ∈ , with 
D representing the set of doctors, wt WTi ∈ , where wti  is the work 
target chosen by doctor di , m Mi ∈ , where M  denotes the set of 
medical records. The set of medical records chosen by doctor di 
for a given work target wt is denoted as SMd

wt
i

. Based on the 
definition of the indicator function, we have got Equation (1) 
as follows:

 
I x =

, x M
,x = M

( ) 



0
1

≠

 
(1)

We assume that the doctor’s wt has been determined, and the 
number of times doctor di chooses M  in the set SMd

wt
i

 is:

 
f SM M = I xd

wt

x SM
i

di
wt

,( ) ( )∑
∈  

(2)

The main function of Equation (2) is to return the number of 
times the doctor chooses the same medical record in the same wt.

Similarly, we assume that the doctor’s work target wt has been 
determined. The probability that the doctor chooses a medical record 
is then calculated based on this information. This approach allows us 
to effectively assess the risk associated with each doctor’s selection of 
medical records.

The doctor’s work target has been determined and the probability 
that the doctor di chooses the medical record M is Pdi,wt (M), the 
formula for Pdi,wt (M) is shown in Equation (3):

 

P M
f SM M

f SM M
d wt

d
wt

wt WT d
wti

i

i

, ( ) =
( )

( )∈∑
,

,
 

(3)
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According to the information entropy formula, we can calculate 
the amount of information that the doctor di receives under the work 
target wt as Hwt (di), the formula for Hwt (di) is shown in Equation (4):

 
H d P M P Mwt

i
wt WT

d wt d wti i( ) = ( ) ( )
∈
∑ , ,ln

 
(4)

We used the same methodology to obtain the access history of all 
doctors under the same work target and calculated the average amount 
of information for all doctors, which was calculated as shown in 
Equation (5):

 
H d

n
H dwt

i

n
wt

iµµ ( ) = ( )
=
∑1

1  
(5)

By comparing di with the average amount of information available 
to doctors, we obtain the value of the risk caused by the choice of 
medical records under the same work target, which is calculated as 
shown in Equation (6):

 
Risk d H d H di

wt
i

wt( ) = ( ) − ( )( ){ }µµ ,0
 

(6)

Based on the definitions of honest and malicious doctors, 
suppose the existence of doctors d1 and d2. Doctor d1 is an honest 
doctor who will exclusively access medical records related to the 
specified work target, such as m1 and m2. On the other hand, doctor 
d2 is a malicious doctor attempting to access a broader range of 
medical records, including m1, m2, and m3. Assuming an equitable 
selection of medical records by both doctors, the entropy values 
computed using formula (4) are 0.693 and 1.099, respectively. 
Through our risk quantification approach, we found that malicious 
doctors tend to have a more diverse selection of medical records for 
a given work objective, resulting in higher entropy values. A higher 
entropy value signifies a higher risk associated with their access. 
However, it is challenging to accurately determine whether a doctor 
is honest based solely on a single access behavior. For instance, a 
doctor may have had risk values exceeding our set threshold in a 
certain past period, but the risk value for the current access is below 
the threshold. If we  consider the doctor’s historical and current 
behavior together, we could classify the doctor as malicious. Yet, if 
we  only judge based on the current behavior, the doctor would 
be deemed an honest doctor who is permitted system access. This 
discrepancy arises because the system overlooks the significance of 
the doctor’s historical behavior, leading to potential misjudgments. 
Therefore, we propose combining the risk from the doctor’s access 
history with the current risk to yield a more accurate combined risk 
assessment. This approach enhances the robustness and reliability of 
our risk quantification method.

A time decay factor is a factor that, in certain models or contexts, 
gradually reduces the weight of past data or information in the model 
over time. The main purpose is to take into account that past data may 
no longer have the same importance as more recent data. The 
application of the time decay factor better reflects the novelty and 
realism of the data and makes the model more relevant to the current 
situation. To better reflect the importance of doctors’ historical 
behaviors, we assume that accesses closer to the current time are given 

more weight, and access further away from the current time are given 
less weight. Let the time requested by a doctor under a given work 
target be T , , ,= { }t t tk1 2 .. , where t1 is the time of current access, then 
the corresponding time factor satisfies É É É1 2> >…> k . The decay 
time factor is calculated as shown in Equation (7):

 
t

t c
j kj

j
( ) =

+( )
≤ ≤

1 1
ln

,

 
(7)

where t Tj ∈ , and c is a constant.
Based on the history of doctor’s accesses in the blockchain, 

we can get the risk generated by the doctor’s first k choices of 
medical records under the same work target, which can be 
expressed as Equation (8):

 

Risk d t Risk dH i
j

k
j j i( ) = ( ) ( )

=
∑

1
ωω

 
(8)

Based on the current and historical behavior of the doctor, we 
obtained the total risk, which can be expressed as Equation (9):

 TotalRisk d Risk d Risk di i H i( ) = ( ) + ( ) (9)

3.3 Risk management in the model

A prevalent strategy for the RadAC involves a management 
mechanism that utilizes risk thresholds. These thresholds represent 
the system’s tolerance for the risk each doctor incurs. To enforce 
access control, the system dynamically updates these risk thresholds. 
If a doctor’s risk falls below the risk threshold, they are granted 
continued access. However, if a doctor’s risk surpasses the threshold, 
their access request is denied until their risk is reduced below 
the threshold.

The risk threshold is indeed a crucial aspect of risk-adaptive 
access control, and its appropriateness significantly influences the 
accuracy of access control. As per the literature (34), the risk 
threshold is calculated using the average risk of all doctors, 
encompassing both honest and malicious doctors. However, this 
calculation method has certain limitations. Specifically, when the 
proportion of malicious doctors is too large, the risk threshold will 
increase. Consequently, some malicious doctors may 
be misclassified as honest doctors, thereby affecting the accuracy of 
access control. This highlights the need for a more nuanced 
approach to calculating the risk threshold, one that can effectively 
differentiate between honest and malicious doctors regardless of 
their proportion.

In order to prevent the accuracy of access control from being 
compromised by an over-representation of malicious doctors, 
we compute the risk thresholds based on the risk of the history of 
malicious doctors using statistical methods. Denoting Rt id( ) as the 
risk of doctor di  at time t, we can obtain the risk of all malicious 
doctors at this stage R R ,R , ,Rt t t t nd d d d( ) = ( ) ( ) … ( ){ }1 2 , then the 
mean value of the risk of all malicious doctors at that stage can be 
calculated using Equation (10):
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R d

n
R dt t i

µµ ( ) = ( )1

 
(10)

Using the same method, we can obtain the mean value of risk for 
all doctors at time t, which can be expressed as Equation (11):

 
R d R d R d R di t
µµ µµ µµ µµ( ) = ( ) ( ) … ( ){ }1 2, , ,

 
(11)

Assuming that the risk mean of all doctors in the first t time 
periods approximately follows a normal distribution, the mean μ and 
variance σ of this distribution can be obtained, the range of the risk 
threshold is shown in Equation (12):

 
ϕϕ µµ σσ µµ σσt + = n +n1( ) [ ]− ,

 (12)

where n is chosen depending on the system.

3.4 Smart contracts

The auto-execution feature of smart contracts allows us to automate 
and track certain state transitions in the blockchain. By deploying smart 
contracts on the blockchain, we can record doctor access history and 
complete access control authorizations based on historical and current 
risks. Once the authorization is confirmed through our SCR-BAC in the 
blockchain, the doctor can access our HIS database off-chain. The 
SCR-BAC stores the result of this authorization as a transaction in the 
blockchain, which forms part of the doctor’s access history for their next 
request. Smart contracts within the SCR-BAC comprises a management 
contract (MC), an access history contract (AHC), and multiple policy 
Contracts (PCs). As shown in Supplementary Figure S2, the smart 
contract within the SCR-BAC is clearly outlined.

3.4.1 Management contract
The role of the MC in the SCR-BAC is to manage the nodes in the 

system and verify the legitimacy of the doctor’s identity. When a new 
doctor or database node is added to the system, the MC maps the 
doctor’s identification string to their address identity (Doc Address or 
DB Address) and creates a unique SHC for the new node.

3.4.2 Access history contract
The role of the AHC in the SCR-BAC is to maintain the access 

history of a doctor node, which is created by the MC when the node 
is added. The AHC stores the Doc Address, the database address (DB 
Address) of the doctor’s access, the access status of the doctor’s access, 
the risk value caused by the access, and the address of the applicable 
PC. When a doctor initiates an access request to the SCR-BAC, the 
SHC provides a complete list of the access history. This is important 
because the PC needs to ensure that the doctor’s visit history is real-
time and complete.

3.4.3 Policy contract
The role of the PC in the SCR-BAC is to formulate the 

corresponding access control policy based on the AHC and current 
behavior. This policy is created by the AHC when a new access record 
is generated. The AHC stores Doc Address, DB Address, policy, and 
access control authorization result. When a doctor initiates an access 

request to the SCR-BAC, the PC formulates the corresponding access 
control policy based on the AHC and the current behavior. If the 
doctor’s total risk value is below the threshold, the PC authorizes the 
access; otherwise, the access is denied.

The PC devises a precise access control policy as shown in 
Supplementary Figure S3, which illustrates the entire process for 
authorizing or denying a doctor’s request. It’s important to note that a 
similar process is implemented for any doctor-initiated request. The 
PC must calculate the doctor’s historical and current risk values, 
determine the risk threshold at the current time, and perform the 
access control authorization. The PC considers the doctor’s behavioral 
history and the current situation to make the final authorization 
decision for the access request.

3.5 Distributed access control predicated 
on smart contracts

Traditional RadAC employs centralized authorization, which 
can lead to issues such as a single point of failure. To address this, 
we  propose an improvement measure that deploys the access 
control policy in the form of smart contracts into the blockchain. 
This approach leverages the automatic execution feature of smart 
contracts to achieve distributed authorization of access control. 
Specifically, we deploy multiple smart contracts in the blockchain 
to facilitate the entire access control authorization process. These 
contracts include MC, AHC and PCs. MC is responsible for 
managing the doctor nodes in the system and verifying the 
legitimacy of the doctor’s identity, AHC is responsible for 
maintaining the access history of the doctor nodes, and PC is 
responsible for formulating the corresponding access control 
policies. The entire access control process is illustrated in 
Supplementary Figure S4. This approach ensures a more robust and 
reliable access control system by mitigating the risks associated 
with centralized authorization.

The execution flow of the entire access control contract is 
described as an algorithm, as shown in Algorithm 1. The process is 
divided into four steps:

Step-1: Doctor di initiates an access request after determining the 
work target. MC gets the identity of the doctor from the blockchain 
and verifies its legitimacy. If the doctor’s identity is legal, Step-2 is 
executed; Otherwise, the request is rejected.

Step-2: Firstly, the doctor’s historical risk in the past time t is 
obtained from the blockchain and the doctor’s historical risk 
RiskH id( )  is calculated by combining the time decay factor ω t j( ). 
Secondly, the risk RiskH id( )  of the doctor’s current behavior is 
calculated based on the given work objectives and the offset of the 
doctor’s choice of medical records. Finally, TotalRisk di( ) , the 
combined risk of the doctor, is calculated.

Step-3: The risk of all the malicious doctors in the current time with 
the same work objective is obtained from the blockchain and the risk 
threshold is calculated. This operation is repeated until all the risk 
thresholds in the past time t are calculated. All the risk thresholds in time 
are taken as a set satisfying normal distribution and its mean ∝  and 
variance Ã are calculated. Finally, the risk threshold ϕ t +( )1  is calculated.

Step-4: It is determined whether the doctor’s aggregate risk is less 
than or equal to the set threshold. If it is less than or equal to the risk 
threshold, authorization is granted; otherwise, authorization is denied 
and the authorization result is returned.
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Input: Access request: AR

Output: policy result

Get Doctor’sIdentity Information from Blockchain;

if identity information is legalthen

     for each Risk dH i( ) inAccess History do

         
Risk d t Risk dH i

j

k
j j i( ) = ( ) ( )

=
∑
1

E ;

   end

   Risk d H d H di wt i wt i( ) = ( ) − ( )( ){ }0, µ ;

   TotalRisk d Risk d Risk di H i i( ) = ( ) + ( );

  for each R dµ ( ) inMalicious Doctor’s Access History do

    ϕ µ σ µ σt +( ) = +( ) +( ) 1 , ;

  end

  if TotalRisk d ti( ) <= +( )ϕ 1 then

      policy result = allow;

   end

   else

      policy result = deny;

   end

else

 policy result = deny;

end

return policy result;

ALGORITHM 1 

Access control algorithm.

4 Experimental and evaluation

4.1 Experimental settings

The data source for the SCR-BAC model proposed in this paper is 
the National Natural Science Foundation of China (NSFC) project, a 
joint collaboration between Yunnan University of Finance and 
Economics and a tertiary hospital in Kunming, China. The 
experimental data, also obtained from a tertiary hospital in Kunming, 
China, accounts for a storage space of 1,200G. This data is divided into 
five databases, with a total of 1,360 data tables, containing 2,139,373 
records. The data types include text data, image data, and video data. 
According to the experimental testing requirements of the model in 
this paper, we do not need to use all the medical data. Therefore, 
we only extract a portion of the doctors’ access history from the data 
for the experiment. We extracted access history information from 50 
doctors and used a laptop to deploy an Ethernet private chain to 
upload the doctors’ access history to the blockchain for evidence. Over 
time, we calculated the risk value of each doctor based on the access 
history stored in the blockchain. The doctors’ access history 
information was obtained as shown in Supplementary Table S1.

4.2 Risk quantification experiments and 
analysis

We simulated and generated access information for 600 doctors 
based on the access history information of the original 50 doctors. The 
medical records were labeled using the ICD-10 classification in 

accordance with healthcare system conventions. Subsequently, risk 
values were calculated for each doctor.

4.2.1 Results of risk quantification with different 
number of requests

This section is designed to evaluate the effectiveness of the 
SCR-BAC model under varying numbers of requests. We simulated 
the access behavior of 600 doctors, with 90% being honest doctors, 
10% being malicious doctors, and there was an over-access rate of 5% 
by the malicious doctors. The risk meaning for both honest and 
malicious doctors was calculated separately for each simulation. The 
results of these experiments are depicted in Supplementary Figure S5.

As depicted in Supplementary Figure S5, the risk quantification 
method of the SCR-BAC proves to be  effective across different 
numbers of requests. The risk value of malicious doctors is observed 
to be 9.5–13 times higher than that of honest doctors, demonstrating 
a clear distinction between the two types of doctors. Furthermore, 
when the number of requests reaches 15, the impact of increasing the 
number of accesses on the risk value begins to diminish. Consequently, 
the risk value associated with a doctor decrease with the number of 
requests and eventually stabilizes. This indicates that the SCR-BAC 
model effectively manages risk assessment in varying conditions.

To test the validity of the time decay factor in the SCR-BAC, 
we compared the mean risk values of 600 doctors with Wang’s (31) 
scheme. The results of the experiment are shown in 
Supplementary Figure S6.

As depicted in Supplementary Figure S6, in Wang’s scheme, the 
risk value of malicious doctors is 6–12 times that of honest doctors. In 
contrast, in the SCR-BAC model, the risk value of malicious doctors 
is 9–13 times that of honest doctors. Moreover, the risk values 
calculated by the SCR-BAC are higher than those in Wang’s scheme 
for both honest and malicious doctors. This can be attributed to the 
following reasons: The risk value in the SCR-BAC comprises two 
components—current risk and historical risk. The risk quantification 
algorithm of the SCR-BAC introduces historical risk, the influence of 
which decreases with the weakening of the time decay factor. 
Therefore, the SCR-BAC exhibits greater precision in distinguishing 
between the two types of doctors. This demonstrates the effectiveness 
of incorporating historical data into risk assessment models.

4.2.2 Risk quantification results for different 
percentages of over accesses

This section is designed to evaluate the effectiveness of the 
SCR-BAC model under varying percentages of over access. 
We simulated the access behavior of 600 doctors, with 90% being 
honest doctors and 10% being malicious doctors. For each work 
target, the number of access requests is set to 10. The risk meaning for 
both honest and malicious doctors was calculated separately for each 
simulation. The results of these experiments are depicted in 
Supplementary Figure S7. This experiment aims to understand how 
the SCR-BAC model performs under different conditions of 
over accesses.

As depicted in Supplementary Figure S7, the risk quantification 
method of the SCR-BAC proves to be  effective across different 
proportions of over access. The risk value of malicious doctors is 
observed to be  10–14 times higher than that of honest doctors, 
demonstrating a clear distinction between the two types of doctors. 
When the over access proportion reaches 6%, the impact of increasing 
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over access proportion on honest doctors begins to diminish. For 
malicious doctors, however, the risk value gradually increases as the 
percentage of over access increases. This is because when the 
proportion of over access for malicious doctor increases, the gap 
between their behavior and that of honest doctors widens, making it 
easier to differentiate between them and determine the risk threshold. 
This indicates that the SCR-BAC model effectively manages risk 
assessment in varying conditions of over access.

Similarly, to test the validity of the time decay factor in the 
SCR-BAC, we compared the mean value of risk of 600 doctors with 
Wang’s (31) scheme. The results of the experiment are shown in 
Supplementary Figure S8.

As depicted in Supplementary Figure S8, the risk values calculated 
by the SCR-BAC are higher than Wang’s scheme for both honest and 
malicious doctors. The reasons are as follows: the risk value of the 
SCR-BAC consists of two parts: current risk and historical risk, and 
the risk quantification algorithm of the SCR-BAC introduces historical 
risk, and the influence of historical risk decreases with the weakening 
of the time decay factor. Therefore, the SCR-BAC is more precise in 
distinguishing between the two types of doctors.

4.3 Access control performance and 
efficiency analysis

In this section, we firstly tested the validity of the SCR-BAC using 
three metrics: precision, recall, and F1, and compared them with 
Wang’s (31) model. In addition, we  analyzed the access control 
performance of the SCR-BAC and observed the impact on the risk 
value when the malicious doctor initiates successive access requests. 
The precision refers to the rate of doctors who are actually malicious 
among the top K doctors with the highest risk value; the recall refers 
to the proportion of malicious doctors among the top K doctors with 
the highest risk to the total number of malicious doctors; and F1 refers 
to the geometric mean of the precision and recall, which is an 
important metric reflecting the overall performance of the model.

4.3.1 Access control performance with different 
number of requests

We simulated the access behavior of 600 doctors, with 90% being 
honest doctors, 10% being malicious doctors, and there was an over-
access rate of 5% by the malicious doctors. We test the accuracy, recall 
and F1 score of the SCR-BAC by adjusting different numbers of 
access requests. The experimental results are shown in 
Supplementary Table S2.

As depicted in Supplementary Table S2, the precision of the 
SCR-BAC is 100% in the top 10 doctors with the highest risk value, 
even though the precision of the SCR-BAC reaches more than 95% 
in the top 30 doctors with the highest risk value. As the number of 
access requests increases, the recall of the SCR-BAC reaches more 
than 80%, and at least 80% of the 50 malicious doctors are malicious. 
F1 also increases with the number of access requests. This proves that 
more access information helps the SCR-BAC to accurately learn the 
access behavior of doctors, more accurately distinguish between two 
types of doctors and calculate the risk value of doctors. Comparing 
with Wang’s scheme, the SCR-BAC outperforms Wang’s scheme in 
Precision, Recall and F1 scores regardless of the number of 
access requests.

4.3.2 Access control performance with different 
over accesses ratios

We simulated the access behavior of 600 doctors, with 90% of 
honest doctors and 10% of malicious doctors, and for each job target, 
the number of access requests is 10. We tested the accuracy, recall, and 
F1 scores of the SCR-BAC by adjusting different proportions of over-
access. The experimental results are shown in Supplementary Table S3.

As depicted in Supplementary Table S3, when the over-access 
ratio is 4% or more, the accuracy of the SCR-BAC reaches more than 
90%. When the percentage of over-access is 6%, the recall rate of the 
SCR-BAC reaches more than 79%. The performance of F1 also 
increases with the increase of the percentage of over-access. 
Comparing with Wang’s scheme, the SCR-BAC outperforms Wang’s 
scheme in Precision, Recall and F1 scores regardless of the over-access 
ratio. Because the risk quantification algorithm introduces historical 
risk, as more malicious behavior makes the gap between the risk 
values of malicious and honest doctors larger, the SCR-BAC is more 
likely to distinguish between the two types of doctors.

4.3.3 Access control overall performance analysis
When a doctor initiates an access request, they invariably desire a 

swift authorization result, regardless of whether the result is an 
authorization or denial. To verify the efficiency of the access control 
scheme, we  established two conditions for authorization: 1) the 
combined risk value of the doctor is less than or equal to the risk 
threshold; 2) the minimum allowable time interval between two 
consecutive requests is 100 s.

In order to understand the blocking time of the SCR-BAC model 
with successive initiation of malicious requests and the impact of 
successive initiation of malicious requests on the real-time risk value 
of the doctor. We assumed that a malicious doctor initiates a series of 
malicious requests within a set time, with each request generating a 
risk of 6.51, exceeding the threshold value of 6.50. After the series of 
malicious requests ends, the doctor continues to make requests within 
the set time, with each request generating a risk of 0.5. We  then 
calculated the real-time risk value of the doctor and the blocked time. 
The results of these experiments are depicted in 
Supplementary Figure S9.

As illustrated in Supplementary Figure S9, the impact of malicious 
requests diminishes over time. When a doctor initiates two 
consecutive malicious requests, the risk value significantly exceeds the 
threshold value, leading the SCR-BAC to block access for 700 s, a 
duration longer than that in Wang’s scheme. When the doctor initiates 
three consecutive malicious requests, the SCR-BAC blocks access for 
up to 2,200 s, which is substantially longer than the duration in 
Wang’s scheme.

The reason for this difference lies in the factors considered in 
the two schemes: In Wang’s scheme, the access control authorization 
is determined solely by the doctor’s current behavior, without 
taking into account the doctor’s historical behavior. In contrast, the 
SCR-BAC determines access control authorization based on both 
the doctor’s current behavior and historical behavior. When a 
malicious behavior generates a high risk value, the impact generated 
by this high risk value does not immediately dissipate. Instead, it 
takes a certain period of time for this impact to diminish and 
be  disregarded. Therefore, the access control efficiency of the 
SCR-BAC is significantly higher than that of Wang’s scheme, 
demonstrating the importance of considering both current and 
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historical behaviors in access control authorization. This highlights 
the effectiveness of the SCR-BAC model in managing risk 
assessment under varying conditions and behaviors.

5 Conclusion

Medical big data holds significant value in medical research and 
patient treatment. However, there is a risk of internal privacy leakage 
when doctors access this data. In this paper, we propose a medical big 
data access control model based on smart contracts and risk. This 
model quantifies the risk value based on both the current and 
historical behaviors of doctors. It describes the impact of historical 
behaviors through a time decay factor and deploys the access control 
policy into the blockchain in the form of a smart contract. This 
approach addresses the single point of failure problem inherent in 
traditional RadAC. Simulation results indicate that the access control 
model proposed in this paper effectively limits the access behavior of 
malicious doctors, thereby mitigating the risk of internal abuse and 
privacy leakage in medical big data. This demonstrates the potential 
of our model in enhancing the security and privacy of medical big 
data access.
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