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Introduction: To enhance the precision of evaluating the impact of urban 
environments on resident health, this study introduces a novel fuzzy intelligent 
computing model designed to address health risk concerns using multi-media 
environmental monitoring data.

Methods: Three cities were selected for the study: Beijing (B City), Kunming (K 
City), and Wuxi (W City), representing high, low, and moderate pollution levels, 
respectively. The study employs a Fuzzy Inference System (FIS) as the chosen 
fuzzy intelligent computing model, synthesizing multi-media environmental 
monitoring data for the purpose of urban health risk assessment.

Results: (1) The model reliably estimates health risks across diverse cities and 
environmental conditions. (2) There is a positive correlation between PM2.5 
concentrations and health risks, though the impact of noise levels varies 
by city. In cities B, K, and W, the respective correlation coefficients are 0.65, 
0.55, and 0.7. (3) The Root Mean Square Error (RMSE) values for cities B, K, 
and W, are 0.0132, 0.0125, and 0.0118, respectively, indicating that the model 
has high accuracy. The R2 values for the three cities are 0.8963, 0.9127, and 
0.9254, respectively, demonstrating the model’s high explanatory power. The 
residual values for the three cities are 0.0087, 0.0075, and 0.0069, respectively, 
indicating small residuals and demonstrating robustness and adaptability. (4) 
The model’s p-values for the Indoor Air Quality Index (IAQI), Thermal Comfort 
Index (TCI), and Noise Pollution Index (NPI) all satisfy p < 0.05 for the three cities, 
affirming the model’s credibility in estimating health risks under varied urban 
environments.

Discussion: These results showcase the model’s ability to adapt to diverse 
geographical conditions and aid in the accurate assessment of existing risks 
in urban settings. This study significantly advances environmental health risk 
assessment by integrating multidimensional data, enhancing the formulation of 
comprehensive environmental protection and health management strategies, 
and providing scientific support for sustainable urban planning.
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1 Introduction

With the acceleration of global urbanization, rapid urban 
expansion has become one of the significant challenges faced by 
contemporary society (1, 2). Economic resilience levels in coal-
dependent and traditional cities have shown fluctuations and upward 
trends. However, this trend is accompanied by the exacerbation of 
environmental issues such as air pollution, noise, and the further 
deterioration of the Urban Heat Island (UHI) effect. The continuous 
emission of harmful gasses such as fine Particulate Matter (PM) in 
cities has intensified air pollution, posing a severe threat to the 
respiratory and cardiovascular systems of humans. Simultaneously, 
the UHI effect leads to increased temperatures within cities, hindering 
natural air circulation and imposing dual pressures of air pollution 
and heat stress on residents (3). High population density and traffic 
activities exacerbate noise pollution, directly impacting residents’ 
quality of life and mental and physical health. During walking 
activities in urban environments, adverse sensory and environmental 
factors become key obstacles affecting individuals’ satisfaction with 
comfort, thereby limiting residents’ daily activities. Sensory impacts 
under hot conditions are even more pronounced, leading to 
psychological irritability and unrest. Consequently, residents may 
adopt avoidance behaviors, steering clear of spaces lacking vegetation 
to obtain optimal shading effects. Additionally, adaptive physiological 
regulation strategies in dynamic environments passively concentrate 
populations into low-density enclosures, resulting in excessive waste 
of unit area from the health perspective. The current study 
demonstrates that urban pilot policies based on a low-carbon 
perspective can generate positive and complex effects on urban 
economic development and environmental quality (4–6). Therefore, 
urban development planning and design phases must thoroughly 
consider outdoor thermal comfort, air quality, and noise pollution. 
Against this backdrop, research on urban multi-medium 
environmental monitoring and health risk assessment becomes 
particularly urgent to effectively address environmental and health 
challenges in urban development.

Urban development is closely intertwined with environmental 
factors. To achieve a comprehensive understanding of various 
environmental factors for urban development planning, it is essential 
to conduct multi-medium monitoring in advance. In recent years, an 
increasing number of scholars have employed Fuzzy Inference Systems 
(FIS) as a technical tool to extract useful information from multiple 
urban data sources by handling fuzzy and uncertain information. By 
analyzing the complex relationship between urban environmental 
factors and the health status of residents, predictions can be made 
about the impact of environmental pollution on human living 
conditions while achieving monitoring objectives. Zeinalnezhad et al. 
(7) utilized an Adaptive Neuro-FIS (AN-FIS) to model time series 
data of key pollutants, aiming to enhance the accuracy of daily 
pollutant forecasts. The study revealed that traditional time series 
forecasting models have limitations in dealing with nonlinear and 
complex components, whereas the AN-FIS can more accurately 
predict pollutant trends. For pollutants such as CO, SO2, O3, and NO2, 
the determination coefficients of the AN-FIS were 0.8686, 0.8011, 
0.8350, and 0.7640 respectively, compared to 0.8445, 0.8001, 0.7830, 
and 0.7602, respectively, for the semi-experimental model. 
Furthermore, the study indicated that the AN-FIS performed more 
accurately in predicting time series data (7). Shelton et  al. (8) 

investigated seasonal variations in air pollutants such as PM2.5 and 
PM10, NO, CO, O3, and SO2 in two cities, Colombo and Kandy, 
Sri Lanka, and their relationships with meteorological variables. It 
showed that except for O3, other pollutants exhibited two peaks during 
the day, aligning with urban traffic congestion. Additionally, pollutant 
concentrations showed significant differences between different 
seasons (p = 0.013 < 0.05). Wind speed and direction played significant 
roles in influencing pollutant concentrations and were independent of 
seasons. These results contributed to the formulation of air pollution 
control strategies tailored to specific seasons to reduce occurrences of 
air pollution (8). Bressane et al. (9) employed artificial intelligence 
methods as auxiliary tools, focusing on the FIS due to its ability to 
handle inherent uncertainties in complex processes, aiming to provide 
optimal performance. Through analysis using the forest inventory 
database of Southern Santa Catarina State, Brazil, various machine 
learning methods were trained using 10-fold cross-validation. Results 
demonstrated that FIS exhibited the highest performance, with an 
accuracy of 98.3%, a kappa value of 0.93, and no significant difference 
from expert classification (p = 0.976). The significance level of the 
study was 0.05. Therefore, it concluded that FIS has potential 
application prospects in classifying successional stages in subtropical 
Atlantic forests, which can substantially influence the guidance and 
decision-making process for forest logging authorization and 
corresponding compensation measures (9). Saini et al. (10) explored 
the significant impact of indoor air quality on residents’ comfort, 
productivity levels, health, and well-being, proposing a new 
application of the FIS in PM10 concentration prediction based on 
Particle Swarm Optimization (PSO) and Genetic Algorithm 
Optimization. Experimental data demonstrated that the optimized 
FIS exhibited better performance in predicting indoor air quality, with 
prediction error indicators including Mean Squared Error 
(MSE) = 4.3656, Mean Absolute Error (MAE) = 1.9351, Mean Absolute 
Percentage Error (MAPE) = 9.633%, and Root Mean Squared Error 
(RMSE) = 2.0894. Further improvement in RMSE was achieved with 
the optimized FIS-PSO = 1.0746 and FIS-GA (Genetic 
Algorithm) = 0.998. Consequently, the optimized FIS could serve as 
the foundation for real-time air quality prediction systems, 
contributing to enhancing the health and well-being of building 
occupants (10). Samani et al. (11) designed a Collaborative Space 
Decision Support System (SDSS) based on the Fuzzy Best-Worst 
Method (F-BWM) algorithm to aid in understanding and detecting 
the fairness of health services across different locations. SDSS 
evaluated the equality of health service access in different geographic 
regions through geographical information system data monitoring 
and multi-criteria decision analysis methods. The results indicated 
that in areas with the best performance in terms of fairness of health 
services, the highest score obtained by SDSS was 0.38%, while the 
lowest score was 0.28%. In regions with the worst performance in 
terms of fairness, over 70% of the areas showed varying degrees of 
fairness. Additionally, the calculated result of SDSS for the two-sample 
t-test was 2.5, with a critical value of approximately 1.676 < 2.5 at a 
significance level of 0.05. This demonstrated significant differences in 
scores between different regions assessed by SDSS at the 0.05 
significance level, indicating certain reliability of the system in 
evaluating and monitoring the spatial distribution of medical service 
fairness. This suggested that cities could allocate medical resources 
more scientifically, ensure resources were directed toward areas with 
the highest demand, improve the fairness and coverage of health 
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services, and effectively meet people’s medical needs, thereby 
appropriately reducing urban health risks (11). Sarkheil et al. (12) 
designed a Fuzzy Health Improvement System based on FIS and 
proposed two novel Fuzzy Radon Hazard Indexes (FRHI) to assess 
statistical radon environmental health risks and address relevant risk 
issues. The output index of FRHI ranged from 0 (no risk) to 100 
(highest risk level). The study measured radon concentrations in 
urban buildings and created natural radon and emission zoning maps 
using ArcGIS software to identify key areas for excellent control to 
reduce health risks from natural radon. The study showed that the 
initial fuzzy level of FRHI average was 60.1, indicating considerable 
risk; while the maximum FRHI level after 48 h was 44.8, showing a 
significant decrease in risk. This demonstrated the practicality and 
effectiveness of the method, providing innovative fuzzy methods for 
random radon risk assessment. Additionally, FIS could provide 
reliable data analysis and monitoring support in such environmental 
health risk assessments, aiding in improving urban air quality and 
providing better-quality living spaces for health (12).

The aforementioned studies illustrate that traditional models have 
limitations in dealing with complex nonlinear relationships and 
uncertainties, while AI-based methods, particularly FIS, offer certain 
advantages in addressing issues such as air quality monitoring, 
pollutant prediction, and service equity assessment. FIS demonstrates 
high accuracy and reliability in prediction, classification, and 
evaluation, providing valuable references for urban environmental 
monitoring, health risk assessment, and resource allocation. However, 
these methods still face challenges, including computational 
complexity in model training and parameter optimization processes, 
as well as insufficient cross-medium comprehensive analysis and 
quantification of integrated health impacts. To address these issues, 
this study utilizes FIS to analyze and predict urban environmental data 
through the fuzzification of input data and rule definition, employing 
autoregressive integration and logistic regression models. Specifically, 
by collecting and organizing time-series data, establishing FIS trees, 
and fuzzifying various environmental monitoring data, optimizing 
model parameters, and ultimately evaluating and predicting urban 
health risks. The aim of this study is to overcome the limitations of 
traditional single data sources, improve the accuracy and 
comprehensiveness of evaluation, quantify multiple data sources into 
evaluable indicators, establish a more complete evaluation system, and 
provide deeper insights into urban environmental management and 
health risk warning.

2 Introducing the fuzzy intelligent 
computing model for urban 
multi-media environmental 
monitoring and health risk assessment 
analysis method

2.1 Research methods

This study selects three cities, namely Beijing (B City), Kunming 
(K City), and Wuxi (W City), which represent different environmental 
characteristics, representing high pollution, clean, and moderate 
pollution levels, respectively. A model for urban health risk assessment 
is constructed by employing a FIS as the computational model and 
integrating environmental monitoring data from multiple media, 

including air quality, water quality, soil quality, and noise levels (13, 
14). The analysis of urban multi-medium environmental monitoring 
and health risk assessment using fuzzy intelligent computing models 
is divided into three parts: (1) Credibility Assessment, involving the 
evaluation of the credibility of fuzzy outputs to discern the confidence 
level associated with assessment outcomes. (2) Correlation Analysis, 
which entails the examination of the correlation between 
environmental monitoring data and health data to identify the pivotal 
factors exerting the most significant impact on health. (3) Applicability 
Analysis, focusing on the comparative assessment of results across 
diverse cities to validate the model’s robustness and adaptability under 
varied environmental conditions. The study employed historical 
monitoring data for the purpose of training and optimization, 
ensuring the precise modeling of the intricate relationship between 
the tangible environment and health parameters (15, 16). Through the 
consideration of fuzzy relationships among various environmental 
factors, the study achieved a comprehensive evaluation of health risks 
(17–20).

2.2 Research sample

In accordance with the National Urban Air Quality Report, 
released by the Chinese Ministry of Ecology and Environment in 
September 2022, the present study strategically opted for the inclusion 
of three diverse cities—namely, B City, K City, and W City—each 
characterized by distinct regional attributes and varying air quality 
statuses. The rationale for this selection is outlined as follows. The 
National Urban Air Quality Report indicates that there is currently no 
clear standard for determining the comprehensive index of 
environmental air quality to assess urban pollution levels. However, 
the Chinese Ministry of Ecology and Environment stated in the report 
that the comprehensive index of environmental air quality is a 
dimensionless index describing the overall condition of urban 
environmental air quality. It comprehensively considers the pollution 
levels of six pollutants: SO2, NO2, PM10, PM2.5, CO, and O3. A higher 
value of the comprehensive index of environmental air quality 
indicates a heavier overall pollution level. To select sample areas with 
significant differences in environmental levels during the study, 
statistics are conducted on the comprehensive index scores of 168 
cities mentioned in this report. Specifically, after compiling the report 
content, it is found that the report calculates the comprehensive index 
for 168 cities in China, with the overall numerical range of the 
comprehensive index being 1.28–5.06. Among them, there is only one 
city, Lhasa, with a comprehensive index score below 2, and only one 
city, Zibo, with a comprehensive index score above 5. Therefore, when 
dividing pollution levels, these two cities with significant differences 
are not considered. Combining the rankings of all cities, the study 
categorizes cities with a comprehensive index of 2.30 as cities with 
relatively high pollution levels, as their values are close to the upper 
limit. Cities with a comprehensive index of 3.04 are categorized as 
relatively clean cities, as their values are close to the median. Cities 
with a comprehensive index of 3.92 are categorized as cities with 
moderate pollution levels, as their values fall between the higher and 
median values.

B City, serving as an economic epicenter, grapples with 
pronounced air pollution challenges, emblematic of a large urban 
center characterized by elevated pollution levels. The inclusion of K 
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City, distinguished by its relatively favorable air quality, serves as a 
comparator to validate the model’s applicability within an environment 
marked by comparatively cleaner air. W City, positioned with a 
moderate air quality ranking, is incorporated into the model validation 
process to augment the generalizability of the research findings. Given 
the economic developmental and environmental dissimilarities in the 
eastern region, this city selection strategy systematically encompasses 
various pollution levels and regional scenarios, ensuring a 
comprehensive representation that yields extensive and comparable 
outcomes for the study. The Urban Air Quality Index for the three 
cities is illustrated in Table 1.

To ensure the scientific credibility of this study, standardized 
sampling methods are employed to collect environmental indicators 
from air, water, and soil in cities B, K, and W. For air quality 
assessments, high-precision particulate sampling instruments, 
including suspended particles (PM2.5, PM10), NO2, and O3 
concentration instruments, are utilized. In assessing heavy metal 
concentrations, dissolved oxygen content, pH levels, and urban noise 
levels in the water bodies of Beijing, Kunming, and Wuxi, the study 
first randomly selects sampling points in each city considering the 
differences in water body types and urban environmental 
characteristics using geographical information systems and 
environmental survey data. For sampling of water body heavy metal 
concentrations and dissolved oxygen content, standard water sample 
bottles and dissolved oxygen meters are used for collection and 
analysis, while parameters such as water temperature and oxidation–
reduction potential are simultaneously recorded. Real-time 
monitoring and recording of pH levels are conducted using standard 
pH meters. A sampling of urban noise levels utilizes professional 
acoustic monitoring equipment spectrum analyzers to monitor and 
record noise levels in different time periods and areas. After sampling, 
samples are labeled, sealed, and transported for rigorous laboratory 
analysis and data processing. The accuracy and reliability of the 
analysis results are ensured through the standard curve method and 
monitoring of quality control samples.

2.3 Selection and standards of 
experimental data materials

Urban multi-media environmental variables encompass 10 
parameters, incorporating factors such as PM2.5, NO2, PM10, and O3 
concentration in the air, as well as the concentration of heavy metals 
in water. Elaborative information is presented in Table 2.

This study refers to data indicator standards released by the World 
Water Quality Portal (WQP), World Air Quality Index (WQI), 
International Soil Reference and Information Centre (ISRIC), and 
OpenStreetMap (OSM). The specific details of the datasets are 
provided in Table 3.

2.4 Indicators for research and verification

The core of this study lies in accurately assessing the impact of 
the urban environment on residents’ health. Considering the 
categorical characteristics of selected variables in the study, in 
multimedia environmental monitoring, health issues related to 
residents include both environmental and sensory factors. Therefore, 
this study selects three categories of indicators: Indoor Air Quality 
Index (IAQI), Thermal Comfort Index (TCI), and Noise Pollution 
Index (NPI) to conduct a significant analysis of the urban health risk 
assessment model on major health indicators. IAQI is a 
comprehensive index used to evaluate air quality by quantifying the 
concentrations of various pollutants in the air and mapping them to 
graded standards within a certain range to reveal the levels of air 
quality and their impact on human health. IAQI assesses air quality 
by mapping monitored air pollutant concentrations to predefined 
graded intervals and combining the index ranges of the graded 
intervals. It uses linear interpolation to convert the monitored 
concentrations into corresponding indices, thereby reflecting the 
level of air quality. The specific calculation of IAQI is shown in 
Equation (1):

 
IAQI

I I C C
C C

Ihigh low low

high low
low=

−( )× −( )
−( )

+
 

(1)

In Equation (1), C represents the monitored air pollutant 
concentration; Clow and Chigh represent the lower and upper limits of 
pollutant concentration graded intervals, respectively; Ilow and Ihigh 
represent the corresponding lower and upper limits of the index 
ranges of the graded intervals.

TCI serves as a comprehensive indicator for assessing human 
comfort, mainly describing the impact of environmental temperature 
and humidity on the human body. TCI considers factors such as 
environmental temperature, humidity, and wind speed. This index can 
reflect the degree of thermal comfort perceived by the human body, 
as well as the physiological and psychological effects of environmental 
conditions on the human body. In the calculation process of this study, 
the effect of temperature on thermal comfort is represented by T −14 3. ,  
and wind speed is corrected by 0 0216 14 3. · · .V T −( ) . The effect of 
relative humidity is presented in the form of 1 0 01 70 5− −( ). · .| |RH . 
Considering these factors, TCI reflects the impact of environmental 
conditions on human thermal comfort, with higher values indicating 
greater comfort. The calculation of TCI is shown in Equation (2):
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−
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In Equation (2), T  represents environmental temperature; V  
represents wind speed; RH  represents relative humidity.

TABLE 1 Partial city urban air quality index.

Cities Ranking Total 
number of 

cities

Composite index 
(The larger the 
comprehensive 
index value, the 

heavier the 
comprehensive 
pollution level)

K City 3 168 2.3

W City 44 168 3.04

B City 115 168 3.92
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NPI is a comprehensive index used to measure the level of noise 
pollution in the environment, mainly based on acoustic principles and 
environmental noise monitoring data. NPI considers factors such as 
the frequency, intensity, duration, and spatial–temporal distribution 
of noise, calculated through mathematical models. This index can 
reflect the degree of impact of environmental noise on human health 
and quality of life, as well as its impact on the ecological systems of 
animals and plants.

 

NPI
p d

p
i
n

i i

i
n

i
=

×( )=

=

∑
∑

1

1  

(3)

In the calculation process of NPI, it is based on the weighted 
average of the contribution rates of each noise source and the decibel 
level. Each term in the formula represents the contribution of a noise 
source, and the comprehensive NPI is obtained by summing the 
weighted contributions of all noise sources. pi  represents the 
contribution rate of the noise source i; di represents the decibel level 
of noise source i.

In order to ascertain the model’s applicability across diverse urban 
settings, this study conducts a comparative analysis of assessment 
outcomes across multiple cities. Specific applicability indicators are 
employed to assess the model’s robustness. The delineated applicability 
indicators are detailed in Table 4.

3 Fuzzy intelligent computing model 
based on FIS

3.1 Basic principles of FIS

The FIS constitutes a computational model grounded in fuzzy 
logic theory, specifically devised to adeptly handle information 
characterized by uncertainty and vagueness (21, 22). The 
implementation of FIS involves integrating fuzzy rule bases, fuzzy sets 
and membership functions, and fuzzy inference engines to handle 
uncertainty and fuzziness in events. The fuzzy rule base is constructed 
by expert knowledge, specifying the fuzzy relationships between 
inputs and outputs. Fuzzy sets and membership functions define the 
fuzzy characteristics of input and output variables, fuzzifying them to 

TABLE 2 Urban multi-media environmental factors.

Number Variable classification Input variables Reason

1

Air quality

PM2.5

PM2.5 refers to fine PM in the air and is closely associated with 

respiratory and cardiovascular diseases. It serves as a crucial indicator 

for assessing urban air quality.

2 NO2

NO2, a major component of vehicle exhaust, is also linked to respiratory 

system diseases.

3 PM10
PM10, atmospheric PM, is similarly related to respiratory diseases and 

serves as a significant indicator for measuring air quality.

4 O3 concentration in the air

O3, an essential gas in the atmosphere, poses a threat to the human 

respiratory system at high concentrations and interacts with other 

pollutants. Therefore, it is an important component of air quality 

assessment.

5

Water quality

Heavy metal concentration in water

Heavy metals are one of the primary factors contributing to water 

pollution, directly impacting water quality. Prolonged exposure may 

pose health risks to humans.

6 Dissolved oxygen content in water

Dissolved oxygen is a critical biological indicator in water bodies, 

influencing the balance of aquatic ecosystems and having certain effects 

on both aquatic organisms and human health.

7 pH value in water

The pH value reflects the acidity or alkalinity of water and is related to 

the water’s acid–base balance and pollution levels. It is a crucial 

parameter for assessing water health.

8

Soil quality

Organic matter content in the soil

High levels of organic compounds may lead to soil pollution, directly 

affecting the safety of agricultural products and water sources. 

Therefore, it is an important indicator in environmental monitoring.

9 Nitrogen and phosphorus content in soil

Nitrogen and phosphorus in soil serve as indicators of agricultural non-

point source pollution directly related to agricultural production and 

water quality. They are closely associated with the comprehensive 

assessment of urban environmental impacts.

10 Noise level City noise level

Noise is a form of pollution in urban environments. Prolonged 

exposure may negatively impact hearing, sleep, and mental health. It is 

a crucial factor in the comprehensive assessment of urban 

environmental impacts.
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adapt to real-world situations. Finally, through the fuzzy inference 
engine, FIS performs fuzzy reasoning based on the fuzzy rule base and 
fuzzy inputs, mapping fuzzy inputs to fuzzy outputs according to the 
logical relationships between fuzzy rules and input values (23–25). FIS 
combines fuzzy logic and inference to handle various complex 
nonlinear systems and exhibits good performance and interpretability 
in uncertain environments (26).

In the context of this study, the FIS serves the purpose of 
amalgamating multi-media environmental monitoring data for the 
assessment of urban health risks. By emulating the fuzzy reasoning 
process inherent in human cognition, the system adeptly manages the 
fuzzy relationships inherent in diverse environmental factors, thereby 
furnishing a comprehensive evaluation of health risks (27, 28). This 
approach facilitates a nuanced understanding of the precise impact of 
urban environments on resident health, culminating in comprehensive 
evaluation results (29, 30). The specific procedural intricacies are 
delineated in Figure 1.

3.2 Computational process of the FIS

In order to articulate the membership of input variables, the FIS 
employs membership functions (31, 32). This function accepts the 
variable value as input and employs a designated curve to depict the 
extent of membership of the variable to a specific fuzzy set, as 
exemplified in Equation (4):

 

µHigh A x
c x a

b
High A High A

High A

_

exp
_ _

_

( ) =
+ −

∗ −( )









1

1

 

(4)

In Equation (4), A represents the input variable; x denotes the 
variable value; aHigh A_  signifies the center of the input variable’s 
membership function; cHigh A_  is the parameter governing the 
steepness of the control curve; bHigh A_  corresponds to the base of the 
changing curve.

Within the FIS, the membership functions associated with fuzzy 
output variables assume a pivotal role. These membership functions 

portray the membership of the output variable across various risk levels 
through triangular-shaped curves (33, 34). This functional form 
facilitates the establishment of transparent associations within the fuzzy 
set of output values, effectively translating the fuzzy information of the 
input into fuzzy results for the output, as exemplified in Equation (5):
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(5)

In Equation (5), σMedium C_  denotes the standard deviation, and 
bMedium C_  signifies the center of the membership function associated 
with the output variable (35).

Within the FIS, the ultimate output undergoes a defuzzification 
process utilizing designated methods, transforming the membership 
function of the fuzzy output into a distinct, singular value (36), as 
exemplified in Equation (6):
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In Equation (6), Outputi represents the output of the i-th rule, and 
wi represents the weight of the corresponding rule.

Furthermore, considering that the comprehensive index used in 
the referenced city data adopts unified values published by the Chinese 
Ministry of Ecology and Environment, the calculation process for the 
comprehensive index in this study also follows the corresponding 
calculation method. The calculation of the comprehensive index is 
shown in Equation (7):
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In Equation (7), Isum  represents the comprehensive index of 
environmental air quality. Cp represents the concentration value of 
pollutant p. When p is SO2, NO2, PM10, and PM2.5, Cp is the monthly 
average. When p is CO and O3, Cp is the concentration value at a 
specific percentile. Sp represents the annual average secondary standard 

FIGURE 1

FIS implementation process.
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for pollutant p. When p is CO, it represents the daily average secondary 
standard. When p is O3, it represents the 8-h average secondary standard.

4 Analysis of results on urban 
multi-media environmental 
monitoring and health risk assessment 
with the introduction of fuzzy 
intelligent computing model

4.1 Credibility assessment analysis

Establishing confidence intervals at varying confidence levels 
facilitates a more exhaustive comprehension of the stability and 
credibility associated with model outputs. The analysis of credibility 
assessment contributes to a more thorough and precise interpretation 
of the model’s applicability and reliability in health risk assessment. 
The results of the credibility assessment are depicted in Figure 2.

In Figure 2, under diverse urban and environmental conditions, the 
model’s estimation of the comprehensive health risk index exhibits a 
discernible credibility range. Within the 90% confidence interval, the 
model’s health risk estimation demonstrates relative stability, 
characterized by a narrow confidence interval. Conversely, within the 
95% confidence interval, the interval widens, signaling a more exhaustive 
consideration of uncertainty in the model output. This variation suggests 

that at higher confidence levels, the confidence interval broadens, 
enhancing confidence in the model output, albeit with a proportional 
increase in the uncertainty of the estimation. In essence, the model is 
adept at furnishing credibility ranges at distinct confidence levels during 
health risk assessments, thereby contributing to a more comprehensive 
grasp of the reliability inherent in the model output.

4.2 Significance analysis results

The IAQI can directly reflect the potential impact of pollutants in 
the air on human health, and the TCI can evaluate the impact of the 
thermal environment on residents’ comfort. The NPI focuses on the 
degree of interference from noise pollution in urban areas. The 
significance analysis results are shown in Figure 3.

TABLE 3 Dataset required for experiments.

Dataset Dataset description The amount of 
data

WQP Water quality data set 1,582

WQI Air quality data set 1,448

ISRIC Soil dataset 1712

OSM Noise level data set 1,615

TABLE 4 Indicators for suitability analysis.

Index Specific 
Discussion

Significance

Root Mean Square 

Error (RMSE)

It is a measure of the 

average deviation 

between the model’s 

predictions and the 

actual observations.

The smaller the RMSE 

value, the higher the 

prediction accuracy of the 

model and the better the fit 

to the actual observed 

values.

Coefficient of 

determination (R2)

This coefficient reflects 

the degree to which the 

model explains the 

variability of the 

dependent variable.

R2 close to 1 indicates that 

the model better explains 

the variation of the 

observed data and the 

closer it is to a perfect fit.

Residual term

It refers to the difference 

between model 

predictions and actual 

observed values.

The size and distribution of 

the residual terms reflect 

the model’s fit to different 

observations. Small 

residuals indicate that the 

model fits the data well.

FIGURE 2

Credibility evaluation results of the constructed urban health risk 
assessment model.

FIGURE 3

Significance analysis results of the urban health risk assessment 
model for major urban health indicators.
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In Figure 3, under different urban and environmental conditions, 
the model’s p-values for the three core indicators IAQI, TCI, and NPI all 
satisfy p < 0.05. For City B, the p-values for IAQI, TCI, and NPI are 0.032, 
0.021, and 0.041, respectively. In City K, the p-values for all three indices 
are around 0.041, while in City W, the p-values for all three indices range 
from 0.035 to 0.037. The data indicate that the model’s evaluation results 
for the three representative urban health indicators are statistically 
significant. This implies that the model has strong predictive capabilities 
under different urban environments and possesses a certain degree of 
accuracy in assessing the health risks of urban residents.

4.3 Correlation results analysis

Correlation analysis delves into the intricate relationship between 
diverse urban environmental factors and the health risk index. 
Through specific correlation coefficients, it becomes feasible to 

preliminarily discern the weights of various factors in different cities. 
The outcomes of the correlation analysis are delineated in Figure 4.

In Figure 4, within City B, a robust positive correlation is evident 
between PM2.5 concentration and the health risk index, represented by 
a correlation coefficient of 0.75. This signifies that an escalation in PM2.5 
concentration corresponds to an increased health risk for residents in 
City B. Concurrently, noise levels also exhibit a positive correlation with 
the health risk index (correlation coefficient of 0.65), suggesting that 
noise similarly exerts a discernible impact on the health of City B’s 
residents. In City K, the correlation between PM2.5 concentration and 
the health risk index is relatively modest (correlation coefficient of 0.45), 
whereas the correlation between noise levels and the health risk index is 
more pronounced (correlation coefficient of 0.55). This data implies that 
in an environment characterized by relatively clean air, noise may exert 
a more substantial influence on the health of residents. Within City W, 
the positive correlation between PM2.5 concentration and the health 
risk index is moderate (correlation coefficient of 0.62). In comparison to 
City B and City K, City W exhibits the highest positive correlation 

FIGURE 4

Correlation analysis results between different urban environmental factors and health risk indexes. (A) Air quality factors. (B) Water quality related 
factors. (C) Soil quality factors. (D) Noise factors and risk assessment calculation.
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between noise levels and the health risk index (correlation coefficient of 
0.7), indicating that noise plays a pivotal role in health-related concerns 
for residents in City W. Generally, the impact of PM2.5 concentration 
on health is discernible across all three cities, while noise levels exert a 
more pronounced effect in Cities K and W.

Specifically, the impact of PM2.5 concentration on urban 
environmental monitoring varies significantly across different cities. In 
City B, the strong positive correlation with high PM2.5 concentration 
indicates poor air quality, elevating the risk of residents developing 
respiratory and cardiovascular diseases. The positive correlation with 
noise levels further highlights the potential threat of urban noise to 
health. In City K, within a relatively clean air environment, the 
heightened correlation between noise levels and health risks 
underscores the independent impact of noise on health, potentially 
leading to issues like sleep disorders. Meanwhile, in City W, despite 
moderate PM2.5 concentration, noise levels emerge as a primary factor, 
reflecting the intricate relationships within the urban environment 
where diverse factors interweave and influence human life and health. 
The environmental factors contributing to health risks vary across 
different cities, necessitating tailored environmental protection and 
health intervention measures based on specific circumstances.

4.4 Applicability results analysis

Applicability analysis endeavors to affirm the viability of the 
model across diverse urban and environmental conditions. Through 
a comparative examination of data indicators across three cities, a 
holistic comprehension of the model’s efficacy in various 
environmental contexts is attained, thereby assessing its generalization 
capability and robustness. The outcomes are elucidated in Figure 5.

In Figure 5, the RMSE values are diminutive, registering at 0.0132, 
0.0125, and 0.0118, respectively. This data signifies that the model 
displays a high degree of accuracy in prediction across the three cities, 
aligning closely with the observed values. The R2 values stand at 
0.8963, 0.9127, and 0.9254, nearing 1, indicating that the model 

effectively elucidates variations in the data and possesses robust 
explanatory capability. The relatively modest magnitudes of the 
residual terms, measuring 0.0087, 0.0075, and 0.0069, imply minimal 
disparities between the model’s predicted outcomes and the observed 
values, showcasing a relatively even distribution of residuals. 
Consequently, this model manifests notable robustness and 
adaptability across diverse environmental conditions, facilitating the 
assessment of health risks in assorted urban settings.

5 Discussion

This study presents two key innovations in the field of environmental 
health risk assessment. Firstly, the study employs multi-media 
environmental monitoring data for urban health risk assessment. By 
utilizing key indicators such as PM2.5, NO2, PM10, O3, and others as 
inputs, coupled with a comprehensive health risk index as the output, it 
achieves a holistic evaluation of urban environments. Compared to 
single-media assessment methods, this approach offers higher scientific 
rigor and practical utility. This integrated assessment across various 
media provides a more comprehensive and authentic reflection of the 
diverse health threats residents face. Secondly, the study analyzes regional 
characteristics by selecting cities with distinct air quality features—
Beijing (high pollution), Kunming (low pollution), and Wuxi (moderate 
pollution)—to evaluate model performance. This regional analysis 
highlights the impact of geographical variations on health risks, which is 
particularly relevant to China’s diverse environmental conditions. The R2 
values are 0.8963, 0.9127, and 0.9254, respectively, approaching 1. 
Additionally, the model’s p-values for the three core indicators IAQI, 
TCI, and NPI satisfy p < 0.05 under different urban environments. The 
data indicate that the model provides a comprehensive explanation for 
the variability in the data and possesses strong explanatory power.

However, the study acknowledges limitations, including the lack 
of consideration for individual differences and the long-term health 
impacts of environmental exposure. Future research will address these 
gaps by incorporating more precise environmental monitoring data 
and exploring individual variability factors. The significance of this 
study lies in its refinement of the relationship between urban 
environments and health, providing innovative approaches for urban 
environmental health assessment and enhancing assessment accuracy. 
This research contributes to the development of more effective 
strategies for environmental protection, cleaner production, and 
sustainable urban planning.

6 Conclusion

This study employs a Fuzzy Inference System (FIS) to assess 
urban health risks through the integration of multi-media 
environmental monitoring data, including PM2.5, NO2, PM10, 
and O3. The model’s effectiveness is demonstrated through 
credibility, correlation, and applicability analyses. City-specific 
analyses unveil notable findings. In Beijing (B City), a strong 
positive correlation is observed between PM2.5 concentration and 
the health risk index (correlation coefficient 0.75), with noise 
levels also showing a positive correlation (correlation coefficient 
0.65). Kunming (K City), with cleaner air, exhibits a greater impact 

FIGURE 5

Analysis results of the applicability of the urban health risk 
assessment model under different urban and environmental 
conditions.
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of noise on health, while Wuxi (W City), with moderate pollution, 
shows positive correlations for both PM2.5 and noise levels 
(correlation coefficients 0.62 and 0.7, respectively). The model’s 
minimal residual values and uniform distribution indicate 
exceptional robustness and adaptability, providing reliable support 
for urban health risk assessment. This research underscores 
the  importance of multidimensional environmental data in 
developing comprehensive and sustainable urban health 
management strategies.
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