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Exploring the spatiotemporal dynamic evolution of local climate zones (LCZ) 
associated with changes in land surface temperature (LST) can help urban 
planners deeply understand urban climate. Firstly, we monitored the evolution 
of 3D urban spatial form in Chengdu City, Sichuan Province, China from 2010 
to 2020, used the ordinary least squares model to fit the dynamic correlation 
(DR) between the changes in urban spatial patterns and changes in LST, and 
revealed the changes of urban spatial patterns closely related to the rise in LST. 
Secondly, the spatiotemporal patterns of LST were examined by the integration of 
the Space–Time Cube model and emerging hotspot analysis. Finally, a prediction 
model based on curve fitting and random forest was integrated to simulate the 
LST of study area in 2025. Results show the following: the evolution of the urban 
spatial form consists of three stages: initial incremental expansion, midterm 
incremental expansion and stock renewal, and late stock renewal and ecological 
transformation. The influence of the built environment on the rise of LST is greater 
than that of the natural environment, and the building density has a greater effect 
than the building height. The overall LST shows a warming trend, and the seven 
identified LST spatiotemporal patterns are dominated by oscillating and new 
hotspots patterns, accounting for 51.99 and 11.44% of the study area, respectively. 
The DR between urban spatial form and LST varies across different time periods 
and built environment types, whereas the natural environment is always positively 
correlated with LST. The thermal environment of the city will warm up in the 
future, and the area affected by the heat island will shift to the central of the city.
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1 Introduction

The rapid development of urbanization has changed not only the spatial structure of cities 
but also the urban thermal environment, which is facing many threats and challenges as a 
result (1, 2). The changes in urban spatial form and land surface temperature (LST) exhibit 
spatial correlation and heterogeneity, and overlooking this relationship may lead to spatial 
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inequality in climate change mitigation (3), further affecting human 
health and social welfare. Local Climate Zones (LCZ) are defined as 
“areas spanning several hundred meters to several kilometers on a 
horizontal scale, characterized by uniform surface cover, structure, 
material, and human activity (4),” and serve as an effective standard 
method for distinguishing the thermal environmental heterogeneity 
of urban spatial forms (5). Understanding the dynamic evolution of 
urban spatial forms and the assessment of urban thermal environments 
based on LCZ is important to propose differentiated planning 
strategies to cope with them.

Differences in urban spatial form and layout can lead to the 
spatiotemporal differentiation of LST, and optimizing the urban spatial 
form can effectively mitigate the urban heat island effect (UHIE) (6). 
Previous studies have shown that the spatial distribution of land use 
and land cover (LULC) has an enormous influence on the urban 
thermal environment (7, 8). However, current LULC studies still lack 
support for local climate change research due to simplified classification 
and inability to detect thermal intensity changes within cities at finer 
spatial scales. Zoning practice is an effective means to bridge the gap 
between urban climate research and urban planning (5). Therefore, 
Stewart proposed the scheme of LCZ (4). Currently, studies related to 
LCZ mainly include on LCZ scientific mapping using different 
classification methods and combinations of multiple data sources (9, 
10) and research on UHIE issues based on LCZ (11, 12). In terms of 
urban climate research, due to the heavy, challenging workload of LCZ 
mapping, most of the studies are on the classification of LCZ and UHIE 
assessment at specific times, and the analysis of the evolution on the 
spatiotemporal sequences is still in its infancy, although relevant 
research results have been obtained in some regions, such as Fuzhou 
(13) and Dalian (14), China, the Yangtze River Delta region (15), and 
Bangkok, Thailand (16). However, the analysis of LCZ changes in 
multi-temporal sequences is still limited, and the relationship between 
changes in urban spatial form and LST changes is analyzed from a 
static perspective. Although the existing studies on the relationship 
between urban landscape pattern and LST help us understand the link 
between the two, the results of these studies are uncertain and 
contradictory. For example, green spaces with great patch density can 
alleviate LST in Zhuhai, China (17) and Southeast Asian cities (18), but 
the results are opposite those in a study in Beijing (19). In Wuhan, 
water shape complexity is negatively associated with LST and positively 
associated with mountainous cities like Chongqing (20). Some studies 
have suggested increasing green space coverage can alleviate LST (21), 
but some scholars have found that a decrease in green space coverage 
increases the cooling effect (22). The reasons for these inconsistent 
results may include: a lack of multi-temporal dynamic changes analysis 
in urban research data, making it difficult to accurately reflect the 
relationship between landscape patterns and LST at a specific time; 
LULC classification lacks a fine scheme, ignoring the effects of changes 
in the form, height, and density of buildings and vegetation on LST; 
The scale and size of the study area vary according to pixel size. 
Therefore, a scientific method still needs to be found to understand the 
relationship between urban spatial forms and LST.

Line graphs and thematic maps of spatial distribution are 
commonly used for studying spatiotemporal characteristics. Line 
graphs present the general trend of time change, and thematic maps 
demonstrate information on the spatial distribution of research objects. 
Yu (23) utilized spatial statistical analysis to reveal the spatiotemporal 
patterns of the regional heat island in the Pearl River Delta Metropolitan 

Region. Previous methods were based only on temporal (1D) or spatial 
(2D) information, and considering the visualization of spatiotemporal 
information simultaneously is difficult (24). Space–Time Cube (STC) 
and emerging hotspot analysis is a new spatiotemporal data model that 
integrates geographic data into a 3D cube, in which the x and y axes 
represent spatial location and the z axis represents time. The STC 
model can show the spatiotemporal dynamics of the overall 
evolutionary characteristics of the data, overcoming the discretization 
and discontinuity in time and space of traditional spatiotemporal 
analysis. This integrated approach provides a new opportunity for long-
term Earth observation and environmental monitoring. The traditional 
hotspot analysis method can only output hotspots with different 
confidence levels, whereas the emerging hotspot analysis method can 
combine time dynamics to output different types of 17 cold and hot 
spot patterns, which are new, consecutive, intensified, persistence, 
oscillating, dispersed, diminishing, and historical cold and hot spots, 
as well as one that is devoid of significant features (25). Currently, some 
studies use this method to integrate spatiotemporal information for 
spatiotemporal data reconstruction and apply long-term evolution 
monitoring analysis to urban informatics, traffic analysis, and other 
fields, such as COVID-19 epidemic monitoring (26) and traffic flow 
and accident analysis (24, 27). However, this integration is rarely 
applied in the field of remote sensing analysis. Building a STC based on 
multi-temporal LST raster data, while considering the changes in space 
and time, helps analyze the evolution trends of cold and hot spots in 
LST, which aids in overcoming the issues of spatiotemporal 
discretization and discontinuity in traditional remote sensing analysis.

In the study of urban thermal environments, the accurate prediction 
of LST is essential to understanding the future UHIE and developing 
appropriate mitigation strategies. In previous research on LST predictions, 
multiple linear regression (MLR) models have been used to identify the 
influencing variables of the thermal environment (28, 29). After 
identifying the relationship between the dependent and independent 
variables, the MLR model was applied to make predictions. However, 
MLR models do not adequately capture the nonlinear relationships 
between variables, whereas the Random Forest (RF) model, based on 
machine learning methods, is widely used to handle nonlinear 
interactions and offers high simulation accuracy (30). The prediction 
results of previous LSTs relied on a single prediction model and lacked the 
combination of multiple prediction models (31, 32). The results of a single 
prediction model can only demonstrate the high or low accuracy of the 
model overall, which may lead to the prediction results of some locations 
not being the optimal choice. Therefore, a multi-model integration 
approach can provide an effective solution that combines the prediction 
results of different models, utilizes the advantages of different models 
while compensating for the shortcomings between models, and selects 
the best prediction for each location by accurately evaluating the accuracy, 
thus improving the overall prediction performance of the model.

In summary, we explores the relationship between urban spatial 
form changes and LST and predicts the LST in 2025. This study aims to 
answer the following questions: What are the characteristics of the urban 
spatial form changes, and how do the changes affect the spatiotemporal 
differentiation of LST? How much does the change in the urban 
landscape pattern affect LST, and what is the relationship between them? 
How is the spatial distribution of urban spatial pattern changes that are 
closely related to the rise of LST identified? What are the characteristics 
of combining different prediction models in the application of LST 
prediction in Chengdu? The results of this paper will help deepen our 
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understanding of the effects of dynamic changes in landscape 
composition and the configuration of refined urban spatial form on LST 
and provide a reference for the accurate prediction of future LST studies.

2 Study area and data

2.1 Study area

The study area is the central districts of Chengdu City, Sichuan 
Province, China (103°40′E–104°30′E. 30°05′N–31°0′N), which includes 
12 administrative districts with a total area of 4007.07 km2 (Figure 1). 
This range not only include the main urban construction area of 
Chengdu, while the surrounding area also covers most of the natural 
environment elements, and can meet the needs of the LCZ delineation 
scheme. The study area is the hinterland of the Chengdu alluvial Plain 
backed by the Longmen and Longquan Mountains, which represents a 
typical city on flatlands. The Chengdu city is located in the transition 
zone from the Northwest Sichuan Plateau to the Sichuan Basin, with a 
long river network and a developed water system. Humid subtropical 
climate brings sufficient heat and rainfall to the city, but its low altitude 
and special geographic and climatic conditions lead to frequent 
impairment to the city’s ventilation conditions. According to the 
monitoring data from various meteorological stations in Chengdu from 
2007 to 2015, the annual average wind speed (0.93 m/s) in the 
administrative district is low, and the frequency of static winds is as high 

as 40% (33). Such ventilation conditions are not only detrimental to the 
diffusion of pollutants, but also exacerbate the UHIE. Chengdu’s rich 
historical and cultural heritage has created a unique urban spatial and 
morphological pattern that has become rich and complex after a rapid 
urbanization. Exploring the relationship between the spatial form 
changes and LST changes in Chengdu will help provide a basis for future 
urban land use structure adjustments to cope with heat mitigation.

2.2 Data and source

The study mainly used Landsat series satellite remote sensing data 
combined with Google Earth Pro, Baidu Street View maps, and field 
investigation data as the sources of data. Landsat satellite have the 
advantages of long coverage time, free availability, and high spatial 
resolution, so Landsat remote sensing data with 30 m spatial resolution 
originated from the United States Geological Survey website1 were used 
to monitor the spatiotemporal evolution of LCZ and LST in Chengdu 
from 2010 to 2020. All Landsat images were collected during the daytime 
in the summer and autumn (May to September) of each year (overpass 
time was 11:33 a.m. Beijing time), and the screening principle was that 
the cloud cover was less than 10%. The selected Landsat data and related 

1 http://www.usgs.gov/

FIGURE 1

Location map of the study area: (A) the location of Chengdu City in China, (B) the location of the central districts in Chengdu City, and (C) a satellite 
image of the central districts of Chengdu City.
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information are shown in Table 1. Because the cloud cover in the Landsat 
images in the study area in 2012 was high, it may bias the LST inversion. 
Therefore, the imaging data from 2011 were used as a substitute. 
Additionally, we used average air temperature observation data from the 
same dates as the remote sensing images to validate the effectiveness of 
LST. This data was sourced from the Basic Meteorological Element 
Dataset of National Ground Meteorological Stations in China.2 The study 
area includes six basic meteorological stations, located in the districts of 
Pidu, Wenjiang, Xindu, Shuangliu, Xinjin, and Longquanyi in Chengdu.

3 Methods

The main steps performed are as follows (Figure 2): First, the 
spatiotemporal evolution of LCZ and LST in study area from 2010 to 
2020 was studied, and the relationship between them was analyzed. 
Second, the LST raster data were reconstructed in 3D, and the STC of 
LST was used as an input for emerging hotspot analysis to identify the 
spatiotemporal pattern of LST. Next, the dynamic relationship (DR) 
between urban spatial pattern changes and LST changes was 
examined, and the spatial distribution of urban spatial pattern changes 
with the most significant correlation was revealed. Finally, the model 
integrating curve-fitting and RF prediction simulated the LST changes 
in 2025.

3.1 Mapping LCZ

The LCZ classification framework based on the World Urban 
Database and Access Portal Tools (WUDAPT) was used to identify 
and categorize urban spatial form. The LCZ system contains 17 
distinct categories: 10 built environment types and 7 natural 
environment types (Figure 3). The steps of LCZ classification are as 
follows: (1) Image preprocessing: The Landsat image was first 
preprocessed with radiometric calibration, atmospheric correction, 

2 https://data.cma.cn/

and cropping. Then, resampling was performed using the SAGA GIS 
platform to adjust the resolution from 30 m to 100 m to obtain the 
spectral signals of urban features at the local scale (34). (2) 
Constructing training samples: Based on the historical ultrahigh 
resolution images on Google Earth Pro, the training zones were 
digitized using manual visual interpretation; relying on the 
contemporaneous Baidu Street View maps and field investigation as 
the basis of collection, each LCZ type contained 30–40 training 
samples. (3) Classification: The training sample data and preprocessed 
Landsat satellite spectral data were input into SAGA GIS, and the LCZ 
were classified using an RF classifier. (4) Accuracy assessment: Four 
independent groups of validation samples were selected separately on 
Google Earth Pro, each with about 20 LCZ types. The predicted LCZ 
were compared with the validation samples to establish a confusion 
matrix, and the accuracy of the classification was assessed by applying 
the overall accuracy (OA).

3.2 LST retrieval and classification

The radiative transfer equation method was used to retrieve the 
LST values using the thermal infrared bands of Landsat images. The 
thermal infrared bands corresponded to bands b1 and 10 of Landsat 
images 7 and 8, respectively. The specific formulae refer to the study of 
Sekertekin et al. (35). Several studies have performed for nighttime LST 
inversion (36) and nighttime light intensity (37). The biggest challenge 
of this method is to distinguish between nighttime light and thermal 
anomalies. Therefore we mainly focus on daytime LST. After obtaining 
the LST data, to eliminate the effect of directly comparing the LST at 
different times and referring to the previous study on the comparison 
of the LST division methods (38), the mean–standard deviation 
method was applied to classify the LST data into different intensities 
(Table 2).

3.3 STC construction and emerging 
hotspot analysis for LST

Based on traditional spatial analysis, the STC model and the 
emerging hotspot analysis were integrated to investigate the 
spatiotemporal pattern of LST and the spatiotemporal evolution 
characteristics of LST in each LCZ type. The implementation of this 
method was joined with ArcGIS Pro, which included the following 
steps: First, the raster data were processed, and the LST data were 
added to the mosaic dataset by using “Create mosaic dataset” as a 
bridge between the multitemporal raster data and the STC data. Next, 
with the help of the tools “Construct Multidimensional Information” 
and “Create Multidimensional Raster Layer,” the time dimension 
variables were constructed in the mosaic dataset and converted into 
a multidimensional raster layer. Then, using the “Create STC from 
Multidimensional Raster Layers” tool, the multidimensional raster 
layers were transformed into STC, which can be considered 3D cubic 
grid structures with temporal and spatial information (24). Finally, 
the STC was used as input to monitor the spatiotemporal evolution 
patterns of the LST using the “emerging hotspot analysis tool,” and 
Mann–Kendall trend prediction was used to evaluate the hot and 
cold spots trends of the LST and to obtain the corresponding Z and 
p values (39). If the Z value is greater than 1.65, the time series shows 

TABLE 1 Data of remote sensing and their associated information.

Year Date of 
Landsat 
images

Sensor ID Landsat entity ID

2010 05-22 Landsat 7 (ETM) LE71290392010142SGS00

2011 05-25 Landsat 7 (ETM) LE71290392011145PFS00

2012 09-30 Landsat 7 (ETM) LE71290392011273PFS00

2013 08-17 Landsat 8 (OLI) LC81300392013229LGN01

2014 08-13 Landsat 8 (OLI) LC81290392014225LGN01

2015 04-02 Landsat 7 (ETM) LE71290392015092EDC00

2016 09-11 Landsat 7 (ETM) LE71290392016255EDC00S00

2017 05-01 Landsat 8 (OLI) LC81290392017121LGN00GS00

2018 06-05 Landsat 8 (OLI) LC81290392018156LGN00T00

2019 08-11 Landsat 8 (OLI) LC81290392019223LGN00DC01

2020 07-28 Landsat 8 (OLI) LC81290392020210LGN00DC00
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an upward trend, that is, the LST intensity increases from year by 
year; the opposite also holds true. If the Z value is close to 0, the LST 
intensity does not change significantly with the change of the time 
series. The range of the p value determines the level of significance. 
Based on the score of the Z value and the p value, the LST intensity 
is categorized into different patterns of hot or cold spots.

3.4 Quantification of urban spatial form 
and its change with LST correlation

3.4.1 Selection of urban landscape pattern indices
Changes in urban landscape patterns reflect the dynamic 

evolution of urban spatial form in relation to location (40). To 

FIGURE 2

Research and analysis procedures.

FIGURE 3

Illustration of LCZ and corresponding image display.
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quantify the impact of urban spatial forms and their changes on LST, 
indicators representing landscape composition and configuration 
were selected from the class-level Fragstats metrics. The criteria for 
selecting indicators were: to reflect urban form characteristics from 
multiple perspectives, have practical and theoretical significance, 
be easy to interpret, and minimize redundancy. Based on previous 
studies (18, 22, 41), seven landscape indicators were chosen (Table 3): 
Percentage of Landscape (PLAND) as a composition indicator, 
Landscape Shape Index (LSI) to represent the complexity of urban 
landscape shape, Patch Density (PD) to quantify the fragmentation 
of the urban landscape, Aggregation Index (AI) to indicate the degree 
of clustering of similar patches in space, Mean Patch Area (AREA_
MN) to represent the average size of patches, Cohesion to assess the 

spatial connectivity of patches, and Largest Patch Index (LPI) to 
determine the percentage of the largest patch in the landscape.

3.4.2 Calculation of urban landscape patterns
The scale of the study area and grid size of the raster data will 

affect the calculation results of the landscape pattern. A grid size of 
800 × 800 m was selected. Studies have shown that when the 
calculation results of the landscape pattern index stabilize with the 
change of scale, the results are weakened by the influence of scale, and 
the scale in this trend is considered optimal (42). Before calculating 
the landscape pattern indices, the changes in landscape patterns were 
analyzed using the moving window method. Landscape changes at 16 
different scales (n = 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 1,500, 
2000, 2,500, 3,000, 5,000, 10,000, 20,000 m) at the landscape level were 
calculated, and then the largest area, most widely distributed built-up 
landscape type (LCZ9) in the study area was selected to calculate the 
changes in its landscape indices at different scales. As shown in 
Figure  4, with the increase in distance, the trend of change in 
landscape pattern indices gradually decreases after 800 m, indicating 
that the landscape pattern indices are less sensitive above 800 m.

3.4.3 Dynamic correlation between changes in 
urban spatial patterns and changes in LST

Assessing the relationship between changes in urban spatial 
patterns and LST is of great significance for emphasizing spatial 

TABLE 2 Grading standard of urban heat island.

Grades Detailed zoning Conditions*
1 High temperature zone (HTZ) LST > μ + std

2 Sub-high temperature zone (SHTZ) μ + 0.5 std. < LST < μ + std

3 Medium temperature zone (MTZ) μ − 0.5 std. < LST < μ + 0.5 std

4 Sub-medium temperature zone 

(SMTZ)

μ − std. < LST < μ − 0.5 std

5 Low temperature zone (LTZ) LST < μ − std

*μ: mean LST; std: standard deviation of LST.

TABLE 3 Description of landscape metrics used in this paper.

Metric (Abbreviation) Equation Description

Percentage of Landscape (PLAND) PLAND P
Ai
j
n aijå� �
�

�
1

100 Landscape percentage of the corresponding patch.

Landscape Shape Index (LSI) LSI E
A

�
�0 25.

Structural composition and spatial configuration within an analysis 

unit.

Patch Density (PD) PD
A
n

� �i 10
6 The density of corresponding patches.

Aggregation Index (AI) AI
g
g

ij

ij

�
�

�
�
�

�

�
�
�
�

max( )
100

Degree of aggregation of the corresponding patches.

Mean Patch Area (AREA_MN)

j

n p
a

ij

ij�
�
1

0 25.

Average shape index of the corresponding patches within an analysis 

unit.

Cohesion 100 1

1

1

1

1

�

�

�

�
�
�

�

�

�
�
�

��
��

�
��

�

�
�

�

�
j
n

j
n

P

P a

z

ij

ij ij

Cohesion index measures the physical connectedness of the 

corresponding patch type.

Largest Patch Index (LPI)
LPI

a
A

ij�
� �

�
max

100

The percentage of the landscape occupied by the largest patch.
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considerations in urban climate mitigation studies. Ordinary Least 
Squares (OLS) modeling estimates the parameters in a regression 
model by minimizing the sum of squared residuals. In our study, a 
correspondence between changes in urban spatial form and changes in 
LST was assumed, and considering geographically weighted regression 
models will cause collinearity problems, the OLS model was chosen to 
calculate the regression relationship between changes in urban spatial 
patterns and changes in LST as follows (Equation 1):

 
Y Xij
LST

ij
Metrics� �� � ,

 (1)

where YijLST  is the LST of grid ij; XijM tricse is the metric of urban 
spatial pattern to the corresponding grid of YijLST ; β  is the regression 
coefficient of the change in the urban spatial pattern that is fitted by 
using the OLS principle of choosing the parameters of the linear 
function of the explanatory variables, which reflects the change in 
the urban spatial pattern on the degree of influence of 
LST. Dynamically, the correspondence between urban spatial 
pattern and LST evolved into the correspondence between urban 
spatial pattern changes and LST changes in this paper. The 
independent variable is the difference in spatial pattern measurement 
of the city where the grid is located between the end time and the 
start time, and the dependent variable is the LST difference of the 
corresponding grid between the end time and the start time as 
follows (Equation 2):

 
Y Y X Xij
LST

ij
LST

ij
Metrics

ij
MetricsT nd Tstart Tend Tstarte � � �� �� �� �

 
(2)

Prior to the OLS regression analysis, the values of each 
measure of the independent variables were normalized to 
eliminate the effect of differences due to unit inconsistencies as 
follows (Equation 3):

 
N

X X
X X

ij
M trics ij

Metrics Metrics

Metrics Metrics
e �

�

�
min

max min  
(3)

On this basis, to reflect the spatial characteristics of urban spatial 
pattern changes significantly correlated with the LST rise from 2010 
to 2020, the type of LCZ with the most significant correlation between 
urban spatial pattern changes and increases in LST in each of the 
selected seven landscape indices across the years were identified. Next, 
the regression coefficients of LCZ changes and LST over the 10-year 
period were cumulatively summed to obtain the change in the rank 
intensity of urban spatial patterns affected by the LST rise, which was 
normalized for comparison and analysis due to the enormous 
difference in the values of the pooled regression coefficients.

3.5 LST simulation based on curve-fitting 
and RF prediction

The results of multiple forecasting models were considered, and 
the best forecast for each location was selected. The dynamic changes 
in LST were incorporated into the forecasting utilized LST data from 
2010 to 2020, and a combination of a linear regression model based 
on curve-fitting and a nonlinear machine learning model based on RF 
was used to obtain the simulation results of the 2025 LST by evaluating 
the accuracy of the results of these two models by location. 
Spatiotemporal pattern mining based on the RF algorithm was used 
to train the RF regression model by using the time window at each 
location of the STC. Spatiotemporal pattern mining based on curve 
fitting involves fitting a parametric curve to each position in the input 
STC parameters and predicting the time series by extrapolating this 
curve to future time steps. Each prediction model was constructed for 
two purposes: a prediction model for predicting future time step 
values and a validation model for validating the prediction model and 

FIGURE 4

Landscape patterns change of LCZ9 with different window scales.
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evaluating the accuracy of its predicted values. Evaluation by location 
can compare and merge multiple predicted STC cubes and uses the 
“Root Mean Square Error (RMSE) of Prediction” or “Validation 
RMSE” values to identify the best prediction for each location.

4 Result and analysis

4.1 Analysis of changes in urban spatial 
form

4.1.1 Accuracy check and overall analysis
Figure 5 illustrates the LCZ classification results for study area 

from 2010 to 2020. LCZ maps through the WUDPT portal should 
ensure at least 50% accuracy (43), and the accuracy of existing LCZ 
maps in China is generally higher than 60% (44). In the end, the OA 
of LCZ for each year in our study reached over 65%, and for types with 
simple, easily recognizable forms such as LCZ2, LCZA, and LCZG, the 
accuracy exceeded 80%. The original LCZ framework contained 17 
types, but due to the lack of LCZ7 in Chengdu, the final classification 
result includes 16 LCZ types. Changes in the spatial distribution of 
LCZ show the spatial pattern of the city has changed significantly over 
the past decade, especially in the southeast, where rapid urban growth 
has been experienced. The area of LCZ9 is large because many western 
Sichuan Linpans are spread around the Chengdu central district, 
which is consistent with the urban form of sparse buildings distributed 
in the natural environment. The urban form of study area has been 
dominated by the widely distributed LCZ9, followed by LCZ10 
(Table 4). With the change of urbanization and land use patterns, the 
subdominant form gradually transformed from LCZ3  in 2010 to 
LCZ1 in 2020. LCZA and LCZD declined trend to 2020 reverse. The 
area of LCZE, represented by rock and hard paving, is rising.

4.1.2 Analysis of urban spatial form transfer
The changes in urban spatial form reflect the development process 

of the city (Figure 6), which is generally divided into three stages: (1) 
Incremental expansion stages from 2010 to 2013. The city experienced 
the initial stages of growth, showing a transition from a natural 
environment to a built environment dominated by sparse low-rise 
forms. Urban sprawl and the rapid increase of low-density buildings in 
the urban fringe areas. The expansion of LCZ9 converted from LCZA 
was the main landscape change in this phase. (2) Coexistence of 
incremental expansion and stock renewal stages from 2014 to 2016. The 
natural environment continued to transform into the built environment, 
while urban buildings began to develop in the direction of densification 
and verticalization. Especially in the construction of new urban areas 
such as Tianfu New District, many high-rise buildings were built one 
after another, changing the original pattern of low-rise buildings in 
Chengdu. The increase in the area of dense LCZ was mainly due to the 
conversion from other built-up types. For example, the area of LCZ1 
doubled six times during this period, mainly from the conversion of 
LCZ2-5. (3) Coexistence of stock renewal and the ecological 
transformation phase from 2017 to 2020. Urban functions were 
continuously upgraded, and the built-up types of LCZ shifted to mid- 
and high-rise forms that can intensively land use; at the same time, the 
transfer of the natural environment to the built-up environment slowed 
down, indicating Chengdu’s urban planning increasingly emphasized 
environmental protection and ecological construction.

4.1.3 Analysis of changes in urban spatial pattern
In this study, we selected LCZ1-6, LCZA, and LCZG from 16 

LCZ types for the analysis of landscape pattern changes. LCZ1-6 
represent different levels of building density and height within urban 
areas, reflecting variations in population density, economic 
development, and urbanization levels. LCZA and LCZG typically 
occur in natural areas with better ecological environments. These 
LCZ types allow for homogeneous comparisons of building density 
or height as well as comparisons between built environments and 
natural settings. Changes in landscape patterns were diverse due to 
differences in the amount of urban form and spatial layout (Figure 7). 
Overall, the changes in AI, AREA_MN, and Cohesion; LSI, PD, and 
PLAND generally follow similar trends, while the changes in PLAND 
and LPI are relatively minor. Change in the landscape pattern of 
dense built-up environments was greater than that of open built-up 
environments, and the change in the landscape pattern of water was 
smaller. In terms of the dense built environment, the landscape 
pattern indices of LCZ1 all showed an upward trend, and 2014–2016 
was the stage of dense, vertical development of urban spatial form. 
Therefore, the AI, AREA_MN and Cohesion of LCZ1 increased 
significantly, which was about twice as much as that of the previous 
one. The landscape patterns of LCZ2 and LCZ3 overall show a 
declining trend. The changes in openly built environments did not 
show a clear trend throughout the time scale and mainly fluctuated 
between years. The AI, AREA_MN and Cohesion of LCZ4 led LCZ5 
and LCZ6, with LSI, PD and PLAND in between. In terms of nature 
environments, the AREA_MN and AI of LCZA fluctuated 
significantly during 2014–2016 and changed in the opposite direction 
to its LSI, PD and PLAND. Between 2014 and 2015, the area of LCZA 
increased, but AI and AREA_MN decreased while LSI, PD and 
PLAND increased. This may be due to the newly added green spaces 
in the city being relatively small and dispersed. Between 2015 and 
2016, the area of LCZA decreased, but AI and AREA_MN increased, 
and LSI, PD and PLAND decreased, which is due to the reduction in 
fragmented green spaces, thereby increasing the continuity and 
integrity of the landscape.

4.2 Changes and analyses of urban thermal 
environment based on LCZ

4.2.1 Overall analysis of changes in urban thermal 
environment

Figure  8 shows the spatial distribution of the urban thermal 
environment in study area during 2010–2020 as quantified by the LST 
pixel histogram. The results show spatial differences in the thermal 
environment in the past decade, and the high-temperature zone 
exhibited a radial distribution from the city center to the surrounding 
areas. Except for 2012, when the spatial distribution of the thermal 
environment was more anomalous, all the other years showed heat 
island centers and peripheral cold island zones. In 2010, the Longquan 
mountain range area in the southeast of Chengdu showed a high 
LST. The remote sensing imagery revealed a large amount of exposed 
reddish-brown soil in the area, and the vegetation cover was low, which 
resulted in a high LST. To reveal the overall trend of LST changes in the 
past decade, the LST normalization results for 100 random sample 
points in the study area from 2010 to 2020 were obtained (Figure 8L). 
The LST in Chengdu showed an overall warming trend. Despite the 
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differences in the LST values retrieved in different years, the trends of 
the average LST changes in the same geographic location under different 
years were the same, indicating the distributions of the urban heat field 
in the same region in different years are consistent on a large scale while 
fluctuating significantly in a small range. The average LST from 2010 to 

2020 were 23.12, 26.40, 27.01, 27.69, 30.37, 34.03, 36.95, 35.66, 38.14, 
33.97, and 40.06°C. Corresponding air temperatures were 22.22, 24.18, 
24.35, 28.70, 25.27, 28.82, 31.98, 31.70, 34.65, 30.87, and 36.62°C, 
respectively. All differences were within the normal range, and further 
research can be conducted.

FIGURE 5

LCZ maps obtained for: (A) 2010–(K) 2020.
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4.2.2 Comparative analysis of LST for each LCZ
Figure 9 shows the LST of each LCZ from 2010 to 2020. Although 

the LST of each LCZ type represented different periods, the LCZ and 
LST data came from the same remote sensing image, and some general 
trends can be  observed. The LST of built-environmental LCZ is 
generally higher than that of natural-environmental LCZ. LCZ6 is the 
closest to the average LST. LCZG always has a lower LST than the 
average LST. The LST of compact LCZ is higher than that of open LCZ 
with comparable building heights, that is, LCZ1 > LCZ4, LCZ2 > LCZ5, 
and LCZ3 > LCZ6, because compact LCZ have a high density of hard 
paving and fewer spaces for ventilation and cooling at the same 
building heights. Among dense buildings, the LST of low-rise LCZ is 
higher than that of high-rise LCZ, for example, LCZ3 > LCZ2 > LCZ1, 
because high-rise buildings can play the role of shade between floors. 
Among open buildings, the LST of low-rise LCZ is lower than that of 
high-rise LCZ, that is, LCZ6 < LCZ5 < LCZ4, which is different from 
that of dense buildings in that open buildings cannot play the role of 
shade between floors efficiently, and under a certain degree of 
openness case, low-rise buildings contain less surface heat capacity 
and warm up slowly after absorbing heat, so the LST is lower. LCZ10 
has the higher LST in the built environment due to the emission of 
heat sources and higher industrial albedo. For natural environments, 
LCZA and LCZG have the lowest LST. Among trees of different 
heights and densities, the mitigation of the LST effect presents LCZA 
> LCZB > LCZC, and the effect of other natural types, such as LCZD 
and LCZF, in mitigating LST is moderate. The LST of LCZE is 
prominent and even higher than that of some built-up LCZ.

4.2.3 Analysis of LST spatiotemporal patterns 
based on the STC model

The LST raster data from 2010 to 2020 were reconstructed in 3D 
using annual LST timestamp information, and Figure 10 illustrates the 
STC of the LST data. Figure 11a shows the results of the emerging 
hotspot analysis of LST spatiotemporal patterns. Seven spatiotemporal 
patterns of LST were identified in Chengdu: consecutive, new, 
oscillating, and sporadic hotspots; diminishing, historical and 
sporadic cold spots. Oscillating hotspots accounted for the largest 
proportion in the study area, namely, 51.99%, followed by new 
hotspots with a proportion of 11.44%. Oscillating hotspots patterns 
were most significant in Jinniu, Chenghua, Qingyang, Wuhou, and 
Jinjiang districts, indicating these districts had significant hotspots in 
the entire time frame and significant cold spots in the previous time 
frame. New hotspots have recently emerged, which are mainly 
distributed in the areas of peri urban LCZ9 as a result of urban 
expansion. Consecutive hotspots are areas that remain hot throughout 
the study period and are mainly distributed in the areas of LCZ2, 
LCZ3, and LCZ10. The periphery of study area had sporadic 
distributions of diminishing, historical, and sporadic cold spots, which 
were mainly distributed in areas of stable vegetation cover. The 
northwestern and southeastern areas, where the thermal environment 
characteristics is not significant due to natural geographic conditions, 
are considered areas where the pattern is not monitored. This paper 
reveals the spatiotemporal variation patterns of LST intensity based 
on its temporal and spatial variations over the past 10 years and 
identifies the main hotspots patterns in Chengdu: oscillating hotspots 
> new hotspots (less than 1% of consecutive and sporadic hotspots).

To reveal the spatiotemporal changes in LST for each LCZ type, 
we extracted the urban spatial forms that remained unchanged from T
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2010 to 2020 (specifically, the centroids of intersecting patches of each 
LCZ over the decade) and analyzed the variations in their LST during 
this period. Figures 11b1–b4 show the STC of the LST of each LCZ 
from 2010 to 2020, with a spatial scale of 800 × 800 m. The LST of LCZ 
in the built environment and the natural environment showed an 
upward trend (Figures  11c1,c2). Among the densely built 
environments, LCZ2 had the greatest upward trend in LST. In openly 
built environments, LCZ4 had the largest upward trend in LST. The 
rise in LST in LCZ9 in the built environment was also quite significant. 
Among the natural types, LCZC showed a more pronounced LST rise 
relative to LCZA and LCZB. In addition, the warming trends of LCZD 
and LCZE were significant. This analysis method is conducive to 
observing differences in the intensity of LST changes between the 
different LCZ as well as spatiotemporal trends in LSTs within 
each LCZ.

4.3 Relevance between urban spatial 
pattern changes and LST changes in 
dynamic way

Figure  12 presents the DR between changes in urban spatial 
patterns and changes in LST. The influence of different time periods 
and types of built environments on LST varies, while the influence of 
natural environments on LST is always negatively correlated. Changes 
in AREA_MN and PLAND have a greater effect on LST than changes 
in AI and Cohesion. In determining the DR, the effect of time series 
was comprehensively considered. The DR between changes in 
landscape pattern and changes in LST between adjacent years for each 
LCZ was analyzed, and more than half of the positive and negative 
correlations as the final DR were selected. The analyses of the 
relationship between changes in each landscape index and change in 
LST reveal the following:

According to PLAND, LSI, and PD analysis, in densely built 
environments, changes in LCZ1 are positively correlated with LST, 
whereas LCZ2 and LCZ3 are negatively correlated. This indicates that 
increases in PLAND, LSI, and PD in dense high-rise buildings lead to 

higher LST, whereas similar increases in mid and low-rise buildings have 
a smaller effects on UHIE. High-rise buildings, which typically have more 
heat-absorbing surfaces and complex structures and shapes, therefore 
have a greater effects on UHIE. In the open-built environment, changes 
in the LSI have a similar effects on LST as in dense built environments. 
This finding indicates the effects of LSI on LST is related to the height of 
the building, with some consistency across different building densities. 
The changes in PD for LCZ4 and LCZ6 are positively correlated with LST, 
while for LCZ5, the correlation is negative. Changes in PLAND are 
negatively correlated with LST across these zones, indicating that 
compared to open mid-rise buildings, the increase in high and low-rise 
buildings has a greater impact on UHIE. However, increasing the 
proportion of permeable or low heat capacity ground cover helps alleviate 
UHIE. In natural environments, changes in PLAND, LSI, and PD for 
LCZA and LCZG are negatively correlated with LST, demonstrating that 
increasing the proportion of vegetation and water, as well as the density 
and complexity of patches, can effectively mitigate the UHIE.

According to the analysis of AI and Cohesion, changes in LCZ1 
are positively correlated with LST, whereas changes in LCZ2 and LCZ3 
show a negative correlation. This occurs because in dense high-rise 
buildings, increased clustering and connectivity lead to narrow gaps 
between buildings, creating “urban canyons” that restrict air 
circulation and facilitate the accumulation of heat. In contrast, changes 
in AI and Cohesion in open-type buildings are negatively correlated 
with LST. The degree of dispersion of buildings is greater in the open-
built environment, and this dispersed structure helps provide more 
ventilation and air circulation, along with a higher level of greenery 
than in dense buildings. In natural environments, changes in LCZA 
are negatively correlated with LST, benefiting from the transpiration 
and shading provided by trees, which help reduce LST. The changes in 
LCZG are negatively correlated with LST. Due to the high specific heat 
capacity of water, they absorb and store heat during the day and slowly 
release it at night, effectively regulating LST.

According to AREA_MN and LPI analysis, changes in built-up 
environments are mostly positively correlated with LST, and changes 
in natural environments are all negatively correlated with LST. The 
effect of changes in dense built environments on the rise in LST 

FIGURE 6

Transfer results of LCZ types from 2010 to 2020.
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shows a relationship of LCZ3 > LCZ1 > LCZ2. Low-rise buildings 
have larger footprints and less shading between buildings, and the 
changes in AREA_MN and LPI have a more significant effect on 
LST. High-rise buildings are characterized by floor-to-floor shading, 
which reduces some of the heat absorption. By contrast, midrise 

buildings are lower in height, which is more conducive to air 
circulation and has less influence on UHIE. In the open-built 
environment, the effect on LST increase is shown as 
LCZ4 > LCZ6 > LCZ5. LCZ4 has a higher building height and 
contains more hard surfaces, and LCZ6 has a larger footprint, and 

FIGURE 7

Changes in urban spatial pattern from 2010 to 2020.

https://doi.org/10.3389/fpubh.2024.1357624
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jian et al. 10.3389/fpubh.2024.1357624

Frontiers in Public Health 13 frontiersin.org

their changes have a greater effect on UHIE. By contrast, midrise 
buildings are more conducive to reducing the rise in LST due to 
solar radiation. In natural environments, changes in LCZA and 

LCZG show negative correlations with LST, indicating larger areas 
of vegetation cover and water are more conducive to 
mitigating UHIE.

FIGURE 8

LST distribution for: (A) 2010–(K) 2020; (L) overall change trend of LST.
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4.4 Urban spatial patterns closely 
associated with LST rise

Figure 13 show the spatial distribution of landscapes, where different 
landscape pattern indices are strongly associated with LST rise during 
2010–2020. Spatially, the changes in AREA_MN and PD that influence 
LST have similar distribution characteristics, primarily concentrated in 
urban centers, with relatively weaker correlations in the urban peripheries 
(Figures 13A,B). Although AREA_MN has the greatest influence on LST, 
the landscape area of LST rise associated with AREA_MN is relatively 
small because the changes in urban spatial form affected by AREA_MN 
are mainly the built-up LCZ in the city, where changes in building area and 
density significantly influence the rise in LST. Changes in LSI, AI, 
Cohesion, and PLAND are more widespread and evenly distributed 
spatially (Figures  13C–F), with LSI showing significant small-scale 
clustering in the northeastern part of the city (Figure 13c1), indicating that 
changes in landscape shape complexity in this area have a substantial 
impact on LST. Changes in PLAND that significantly affect the rise in LST 
are distributed in the southeastern Longquan Mountain area, and the 
spatial distribution of LPI influence on LST is the smallest (Figure 13G). 
In terms of area, the landscape metrics influencing LST from largest to 

smallest are Cohesion, LSI, AI, PLAND, AREA_MN, PD, and LPI, 
respectively covering 2355.89 km2, 2242.53 km2, 1984.99 km2, 1369.85 km2, 
909.44 km2, 887.81 km2, and 837.74 km2, accounting for 58.80, 55.96, 49.53, 
34.19, 22.70, 22.15, and 20.91% of the total study area, respectively.

4.5 LST feature analysis based on curve 
fitting and RF prediction

Figure 14A illustrates the LST simulation results for study area in 
2025. The model shows a prediction RMSE of 0.048 and a validation 
RMSE of 0.053. Our RMSE value is lower than previous LST 
prediction studies with a single model (RMSE = 0.059) (41), which 
shows the multi-model integrated prediction method can effectively 
present the future structure of the urban thermal environment. 
Compared with the LST in 2020 (Figure 14B), significant changes are 
as follows: Quantitatively, the simulated thermal environment in 2025 
has an average LST of 40.21°C, which is expected to increase by 
0.15°C compared with 2020. Spatially, first, the conversion of low- and 
sub medium-temperature zones into medium temperature zones with 
higher LST in most areas, and the significant increase in 

FIGURE 9

Box plots of LST in different LCZ types from: (A) 2010–(K) 2020.
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medium-temperature zones implies the overall thermal environment 
of the city will be generally warmer. Second, the extent of high and sub 
high temperature zones are concentrated in urban centers, and the 
extent of UHIE-affected areas will become more clustered in urban 
cores in the future. The results of the global spatial autocorrelation 
analysis (Figure  14C) show that the Moran’s I  is 0.40, which is 
significant at the 5% level. This indicates that there is a significant 
spatial autocorrelation in the urban thermal environment overall in 
the future. The high-temperature zones form “high–high” clusters, 
continuing the thermal characteristics from 2020. These clusters are 
mostly distributed outside the Third Ring Road of Chengdu. The 
“low–low” clusters are in Wenjiang District in the north-west, Xinjin 
District in the south-west, and Longquan Mountain Range in the east 
of the study area.

4.6 Discussion

4.6.1 Enhancement of research on the 
relationship between the evolution of refined 
urban spatial patterns and the thermal 
environment

The previous single LULC classification system ignored the 
complexity and spatial heterogeneity of the urban landscape structure 
(45), such as the variation of building heights and densities within the 
city and the differences in vegetation cover in the natural environment. 
Fine-grained evolutionary analyses of urban spatial patterns can help 

reveal the transitions of different properties within the built and 
natural environments of cities as well as the patterns of transitions 
between the natural and built environments of cities. Such 
observations provide an important basis for understanding the 
influence of urban spatial form on the urban thermal environment at 
the regional scale. The spatial correlation and heterogeneity of urban 
spatial form and LST are often easily overlooked in urban climate 
mitigation strategies. Previous one-size-fits-all design strategies have 
failed to reflect the thermal mitigation capacity of land surface 
properties accurately (46), and spatial inequalities in climate change 
mitigation may occur. Therefore, identifying urban spatial patterns 
closely related to LST rise under refined LULC classification helps 
planners and decision makers develop urban planning and thermal 
mitigation strategies according to the specific conditions of the city.

4.6.2 Examining the influence of changing urban 
landscape patterns on LST in a dynamic way

Changes in urban landscape patterns are one of the crucial factors 
in the formation of UHIE. Previous studies have revealed the static 
correlation between landscape pattern and LST (18, 47), that is, the 
relationship between landscape pattern and LST at a specific time, 
which only reflects the static influence of landscape pattern on 
LST. However, the urban spatial form is constantly changing, and the 
change in landscape pattern has a dynamic effect on LST, which is an 
evolving characteristic that cannot be  captured by static studies. 
Therefore, the relationship between changes in urban landscape 
patterns and changes in LST were examined from a dynamic 

FIGURE 10

STC of LST from 2010 to 2020.
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perspective. Specifically, the study focused on the relationship between 
the difference in the independent variable and the difference in the 
dependent variable to reveal how changes in landscape patterns affect 
changes in the urban thermal environment. In addition, the multi-
temporal study highlights the dynamic nature of urban spatial form 
change, which is conducive to identifying trends in urban landscape 
and construction patterns in the context of evolving urban sprawl and 
construction activities. Although the results of this paper show that 
changes in the landscape pattern of some built forms are negatively 
correlated with changes in LST, this does not mean that these built 
environments can be increased indefinitely in the city, but rather that 
these types of built environments are more conducive to mitigating 
the influence of the UHIE, relative to those built environments 
positively correlated with changes in LST.

4.6.3 Application of combining multiple 
prediction models in urban thermal environment 
simulation

The choice of model is crucial to the accuracy of LST prediction. 
Traditional global and regional models have low resolution, which 
determines they are not suitable for understanding local LST changes 
(48). In this paper, a combination of a linear regression model based 
on curve-fitting prediction and a nonlinear machine learning model 
based on RF prediction was applied to the simulation of LST, and the 
dynamic changes of the multi-temporal series of LST historical data 
were also considered. The multi-model integration approach can 
improve the accuracy of LST prediction by giving full play to the 
advantages of different models, thus better presenting the 
characteristics of the future thermal environment. When selecting the 
best prediction model, the applicability, advantages, and disadvantages 
of different models should be considered comprehensively, which 
helps reduce the overfitting or underfitting problems faced by a single 
model. This integrated approach is expected to provide new insights 
for urban thermal environment prediction studies.

4.6.4 Urban planning and thermal environment 
improvement strategies

LCZ mapping plays an irreplaceable role in comprehensively 
assessing the urban thermal environment and explaining the spatial 

distribution of LST (49). The LCZ of study area was reclassified into 
four types based on the changes in LCZ from 2010 to 2020, and the 
optimal layout of urban spatial form and thermal environment 
improvement strategies was proposed from the perspective of urban 
planning based on the results of the paper:

 1 Urbanization type (natural to built-up LCZ). Urbanization is 
the main driver of UHIE. If the intensity of land development 
in urban growth cannot be avoided, adjusting the landscape 
patterns of urban spatial forms can help improve the 
UHIE. Planning of open, mid-rise buildings in new urban 
areas is encouraged. When necessary, the average height and 
footprint of open buildings should be reduced to decrease heat-
absorbing surfaces. Optimizing the urban building form by 
appropriately increasing the average building height of dense 
buildings, promoting verticalization. Additionally, reduce the 
AI and Cohesion of dense high-rise buildings, and 
appropriately increase their AREA_MN and LPI on the 
outskirts of the city, is recommended.

 2 Ecotype (built to natural LCZ). Ecotype is an effective way to 
improve UHIE. The results show the LST of natural-type LCZ 
is lower than that of built-up LCZ, and all the natural 
environment changes are negatively correlated with the 
LST. Cities are encouraged to increase the natural-type urban 
spatial form as well as their landscape patterns, especially the 
AREA_MN and LPI of LCZA, and the PD and AREA_MN of 
LCZG, to increase the ecosystem’s mitigating capacity for 
LST. In addition, for natural environment types such as LCZD 
and LCZE, which are represented by cultivated land and hard-
paved areas with significant warming trends, increasing 
vegetation cover or use cooling materials are strongly needed 
to reduce heat absorption on hard surfaces.

 3 Static (unchanged built-up and natural LCZ): The maintenance 
of the ecological balance and environmental quality of the city 
and the protection of natural landscapes and ecosystems from 
degradation and destruction is suggested. Due to the 
requirements of urban development and planning intensity, 
high-density building clusters are easy to form in areas with 
good landscapes, and the relevant authorities should strictly 

FIGURE 11

(a) Spatiotemporal patterns of LST from 2010 to 2020; (b1-b4) STC of LST changes of each LCZ; (c1-c2) line chart of LST changes of each LCZ.
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control the planning boundaries of no-build and limited-build 
zones (50) and set appropriate development intensities and 
land-use types.

 4 Conversion (LCZ with changes within the built): Conversion 
type mainly refers to the regeneration of stock, and urban 
regeneration requires careful consideration of building 

coverage and building height. Aerial height is achieved without 
affecting building density (51). Existing dense buildings and 
built environment types with high heat release should 
be renewed as much as possible, especially LCZ3 and LCZ10. 
Cooling materials can be used to retrofit existing buildings for 
energy efficiency, and built environments with hard surfaces 

FIGURE 12

Dynamic regression between urban spatial pattern and LST.
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should be  considered for permeable paving when they are 
being renewed. In addition, the configuration of open spaces 
in cities needs to maintain spatial connections with the 
surrounding natural environment and promote the penetration 
of cool air into urban areas.

4.6.5 Limitations and future research
This study has achieved certain results in several aspects, but 

limitations need to be addressed. In terms of remote sensing data 
processing, the current remote sensing image classification based on 
the WUDAPT method can characterize the spatial distribution and 
quantitative features of urban form more accurately, but the recognition 
accuracy of single grid can still be  improved. Future studies may 

consider combining multisource data (52, 53), machine learning (54), 
or boosting the number of training sets as well as postfiltering 
processing of LCZ maps (55) to improve the LCZ classification 
accuracy. In analyzing the correlation between changes in urban spatial 
patterns and LST, only representative, typical LCZ types were selected, 
and the changes of each of the 16 LCZ types were linked to LST, which 
will provide a more detailed, comprehensive understanding.

5 Conclusion

This study aimed to explore the changes in the spatial form of 
Chengdu and their effect on LST, and predicted the future 

FIGURE 14

(A) Simulation results of LST in 2025; (B) LST in 2020; (C) Local autocorrelation characteristics of LST in 2025.

FIGURE 13

Relationship between landscape pattern and LST rise: (A) AREA_MN; (B) PD; (C) LSI; (D) AI; (E) PLAND; (F) Cohesion and (G) LPI.
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characteristics of the urban thermal environment. Based on the 
research findings, targeted policy recommendations were 
proposed to provide feasible guidance and references for policy 
makers in relevant fields. We  monitored the changes of urban 
spatial forms in Chengdu from 2010 to 2020 based on a systematic 
LCZ zoning scheme and analyzed the relationship between LCZ 
and LST. STC and emerging hotspot analysis were applied to 
reveal the spatiotemporal patterns of LST across different LCZ, 
and an OLS model was used to explore the DR between landscape 
pattern changes and LST, revealing the spatial distribution of 
urban landscape pattern changes closely associated with rising 
LST. A multi-model integration approach was applied to simulate 
the LST in 2025. We concluded as follows: the change of spatial 
form in Chengdu has gone through three different stages: urban 
expansion in the early stage, most typically the transformation of 
LCZA to LCZ9, the coexistence of urban expansion and renewal 
in the middle stage, where buildings start to develop in the 
direction of densification and verticalization, and the upgrading 
of urban functions and ecological transformation in the later 
stage, which is manifested in the intensive development of the city 
and the increase of green coverage. The landscape pattern changes 
of dense buildings are greater than that of open buildings, and the 
landscape pattern changes of water are the most stable.

The LST of the built-up LCZ is higher than that of the natural-
type LCZ. Under similar building heights, the LST of dense 
buildings is higher than that of open buildings as a whole. In dense 
buildings, the LST follows the order low-rise > mid-rise > high-rise 
buildings. In open buildings, the LST follows the order high-rise > 
mid-rise > low-rise buildings. Oscillating and new hotspots are the 
two main spatiotemporal hotspots patterns of LST, accounting for 
51.99 and 11.44% of the study area, respectively. The effects of 
landscape pattern changes on LST varies across different built 
environment types and time periods, while changes in natural 
environment landscape patterns are always negatively correlated 
with LST. Changes in AREA_MN and PD that affect the rise in LST 
are mainly distributed in the city center. The influence of LSI, AI, 
Cohesion, and PLAND is more widespread, while the distribution 
range of LPI is the smallest. The average LST in 2025 will increase 
by 0.15°C from that of 2020. More low and sub-medium 
temperature zones will transition to medium temperature zones, 
while the coverage of high and sub-high temperature areas will shift 
towards the city center.
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