
Frontiers in Public Health 01 frontiersin.org

The interrelationship between 
sleep disturbance symptoms and 
aggression before and after the 
campus closure of the COVID-19 
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Background: The COVID-19 pandemic is detrimental to sleep quality and 
increases aggression among college students. Nevertheless, relevant studies 
were rare. Hence, we  collected longitudinal data during and post-campus 
closure in the current study to investigate the relationship between sleep 
disturbance and aggression.

Methods: Data from 665 college students (59.2% females, Mean age  =  19.01, 
SD age  =  1.25) were collected before (wave 1) and after (wave 2) the campus 
closure of COVID-19. All participants were asked to fill out the Buss-Perry 
Aggression Questionnaire and the Youth Self-Rating Insomnia Scale. Two 
symptom networks and a cross-lagged panel network were formed and tested.

Results: Hostility has the highest centrality in the symptom network both in waves 
1 and 2, and it bridges sleep disturbance and aggression. “Easily be woken” – “wake 
up too early” and “wake up with tired” – “function hindrance” are two important 
symptom associations in networks of waves 1 and 2. All symptoms except “difficulty 
in falling asleep” and “easily be  woken” ameliorated after closure. Moreover, 
“physical aggression” and “hostility” can trigger other symptoms in wave 2.

Conclusion: As the first study about aggression and sleep disturbance in the 
background of COVID-19, we provide valuable information about the relationship 
between sleep disturbance and aggression on the symptom dimension.
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1 Introduction

Due to the COVID-19 pandemic, college students have witnessed and experienced school 
closures or the transition to online teaching (1). While strict containment measures aim to 
prevent the spread of the virus, they also have wide-ranging effects on students’ wellbeing (2). 
Deng et al. (3) found that 33% of college students suffer from sleep disturbances during 
COVID-19, particularly during online courses (4–7).

OPEN ACCESS

EDITED BY

Luis Rajmil,  
Independent Researcher, Barcelona, Spain

REVIEWED BY

Hongyu Xu,  
Virginia Commonwealth University,  
United States
Anoop Kumar,  
Delhi Pharmaceutical Sciences and Research 
University, India

*CORRESPONDENCE

Min Li  
 limin1712@126.com  

Gang Liu  
 dliugang@126.com

RECEIVED 17 December 2023
ACCEPTED 20 February 2024
PUBLISHED 21 March 2024

CITATION

Zou J, Bian B, Li M and Liu G (2024) The 
interrelationship between sleep disturbance 
symptoms and aggression before and after 
the campus closure of the COVID-19 
pandemic: insight from a cross-lagged panel 
network model.
Front. Public Health 12:1357018.
doi: 10.3389/fpubh.2024.1357018

COPYRIGHT

© 2024 Zou, Bian, Li and Liu. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 21 March 2024
DOI 10.3389/fpubh.2024.1357018

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1357018﻿&domain=pdf&date_stamp=2024-03-21
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1357018/full
mailto:limin1712@126.com
mailto:dliugang@126.com
https://doi.org/10.3389/fpubh.2024.1357018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1357018


Zou et al. 10.3389/fpubh.2024.1357018

Frontiers in Public Health 02 frontiersin.org

Poor sleep quality among college students is associated with an 
increased likelihood of aggression (8). This is because sleep 
deprivation affects prefrontal cortical functioning, leading to a loss of 
emotional control and ultimately triggering aggressive behavior (9). 
In the context of COVID-19, sleep disturbance is also closely linked 
to interpersonal violence (10) and aggression (11). However, the 
relationship between sleep disturbance and aggression during and 
after campus closure has been rarely studied. To address this gap, the 
current study collected longitudinal data and investigated the 
relationship between sleep disturbance and aggression in a sample of 
college students affected by the COVID-19 campus closures.

From a psychological perspective, aggression is a typical behavior 
characterized by purposeful attacks or hostility toward others (12). 
The general aggression model (GAM) (13) offers a comprehensive 
theoretical framework that integrates both personal factors (e.g., 
cognitions, feelings, and emotional arousal) and situational factors 
(such as COVID-19), which ultimately influence behaviors such as 
aggression. A meta-analysis revealed that lockdown characteristics, 
such as isolation, restricted social contact, quarantine duration, and 
limitations, significantly increase college students’ negative emotional 
symptoms, including anxiety, depression, and stress (14). Moreover, 
longitudinal studies found that negative emotional arousal resulting 
from sudden public health events may trigger adolescent aggression 
(15, 16). Research on college students indicates a close association 
between sleep disturbance and anxiety and depression during 
COVID-19, which can serve as risk factors for aggressive decision-
making (5, 17–20).

In the proximal path perspective of the GAM (13), contingent 
situations, such as campus closures, can significantly impact aggressive 
decision-making. Specifically, Mazza et al. (21) and Overall et al. (22) 
noted a significant increase in aggression during campus closures. 
Birmingham et al. (23) indicated that college students experienced 
restless sleep during the lockdown period, which could trigger 
aggression. Additionally, in a survey conducted by Kormukcu (24), 
college students exhibited more anger during university closures, 
although overall aggression did not increase significantly. Given the 
inconsistent results mentioned above, further study to explore the 
relationship between sleep disturbance and aggression during the 
lockdown period is of great necessity.

Nevertheless, solely considering the proximal path is insufficient 
to fully explain the mechanism linking sleep disturbance and 
aggression. The distal path perspective of the GAM should also 
be considered (13). In the distal path, long-lasting environmental 
modifiers or biological factors, such as peer relationships, family 
background, and testosterone levels, influence personal traits related 
to aggression arousal (25–27). For college students, COVID-19 has 
disrupted their educational routine by shifting from offline teaching 
to online teaching, with uncertainty regarding when life will return to 
pre-pandemic norms (28). According to the social displacement 
hypothesis (29), college students may spend more time engaging in 
online courses, using social media, or playing video games to cope 
with negative emotions, thereby increasing sleep disturbances and 
aggression (30, 31). Additionally, considering biological factors in the 
distal path, sleep disturbance can disrupt testosterone rhythms, which 
are closely linked to aggressive behavior (32, 33).

The COVID-19 pandemic has brought about sleep disturbances 
for college students who are already contending with significant 

academic stress, changes in course delivery, and diminished 
motivation (34). College students often rely on media to maintain 
interpersonal relationships, but the side effect of problematic media 
use is poor sleep quality, which can contribute to aggressive behavior 
(35). Additionally, chronic exposure to social media and competitive 
video games has been associated with the provocation of aggressive 
behavior (36, 37). In such aggressive environments, college students’ 
sleep is put at risk (38). Furthermore, individuals with severe 
aggressive tendencies show abnormal theta and delta power during 
the sleep stage (39). Considering the bidirectional relationship 
between sleep disturbance and aggression and recognizing the 
negative effects of both on mental and physical health, untangling 
their relationship in the context of COVID-19 is of 
significant importance.

However, in almost all previous studies, aggression or sleep 
disturbance has been considered a latent variable (34, 40, 41). 
Aggression and sleep disturbance encompass a dynamic cluster of 
dimensions and symptoms that interact dynamically to manifest the 
variable (42–44). For instance, as illustrated by Borsboom and Cramer 
(45), a college student who wakes up too early due to nightmares may 
exhibit hostility toward peers online. Consequently, feeling guilty, the 
college student may experience difficulties falling asleep in the 
evening. To uncover the bidirectional relationship between sleep 
disturbance and aggression on the symptom dimension, the network 
approach is optimal, as it renders symptoms (nodes) and associations 
between symptoms (edges) visible (46). Furthermore, through 
network analysis, key symptoms linking aggression and sleep 
disturbance can be readily identified (47). Additionally, by employing 
a cross-lagged panel network (CLPN), we can even identify symptoms 
during the COVID-19 campus closures that may trigger other 
symptoms after the closures.

In the existing research, Li et al. (48) and Hirota et al. (49) formed 
and analyzed the network structure of aggression in patients with 
schizophrenia and autism. However, to our knowledge, no study has 
been conducted with network analysis on the association between 
sleep disturbance and aggression among college students. As 
previously mentioned, since COVID-19 has introduced new norms to 
college life (50), in the current study, based on network analysis, 
we aimed to start from symptoms to depict a vivid map of college life 
from the perspective of aggression and sleep disturbance.

In summary, in the current study, we have five goals: (1) to find 
critical symptoms or behaviors in sleep disturbance and aggression; 
(2) to identify essential associations from the perspective of sleep 
disturbance and aggression; (3) to portray bridge symptoms that can 
connect sleep disturbance and aggression; (4) to identify how levels 
of symptoms will change with the lifting of closures through 
longitudinal data; and (5) to depict key symptoms before (wave 1) 
that can cause other symptoms after (wave 2) the campus closure due 
to COVID-19.

2 Method

2.1 Participants and procedure

The baseline data met the criterion that all participants had not 
experienced campus quarantine. Subsequently, all participants met 
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the criteria of residing on campus and experiencing at least 
1 month of mandatory school lockdown, during which students 
were not allowed to leave the school premises and could only 
engage in activities and studies on campus. One month after the 
school lifted the lockdown, college students were allowed to freely 
enter and exit the campus, and the second round of data collection 
was conducted. Hence, the baseline datasets (October to November 
2021) contained 1,302 participants (Mean age = 19.38, SDage = 1.32; 
N female = 847), while the second wave of datasets (January 2022) 
included 1,359 participants (Mean age = 19.65, SD age = 1.45; N 
female = 815), both from a university in China. When the datasets 
from both waves were combined according to the student’s school 
numbers, 665 students (Mean age = 19, SD age = 1.25; N female = 394) 
were included in the final analysis. All participants ultimately 
passed a validation question in the electronic questionnaire, which 
presented the prompt: “Among the four options, lion, dog, cat, and 
panda, please select the panda.”

All datasets were collected via the online questionnaire platform 
“Wenjuanxing”.1 Students were asked to provide signed informed 
consent before participation. The research was examined and 
approved by the Ethics Committee of the First Author’s 
Affiliated Institution.

2.2 Measures

2.2.1 Buss-Perry aggression questionnaire
The 29-item Buss-Perry Aggression Questionnaire (BPAQ) 

assesses the tendency toward aggression (42). Each item is rated from 
1 (very unlike) to 5 (very like). The BPAQ has four empirical subscales: 
physical aggression (nine items), verbal aggression (five items), anger 
(seven items), and hostility (eight items). Physical aggression and 
verbal aggression are both motor components of behavior, while anger 
is the emotional or affective component of aggressive behavior, and 
hostility is the cognitive component of behavior. The Chinese version 
was revised by Li et al. (51). In the present study, the Cronbach α 
values of four factors were 0.80, 0.65, 0.75, and 0.84, respectively.

2.2.2 Youth self-rating insomnia scale
The Youth Self-Rating Insomnia Scale (YSIS) is a 5-point Likert 

questionnaire assessing sleep disturbance in the past month (43). 
Participants answered two questions about overall sleep quality and 
six about the frequency of specific sleep disturbance symptoms. Total 
scores ranged from 8 to 40, and higher scores indicated poorer sleep 
quality. The Chinese version was revised by Liu et al. (52). In the 
current study, YSIS has a high internal consistency with the Cronbach 
α value of 0.91.

2.3 Network analysis

2.3.1 Item check
We used R version 4.2.1 (53) to perform all analyses. Means, 

standard deviation (SD), skewness, and kurtosis of all item scores were 

1 https://www.wjx.cn

calculated. We  assessed item redundancy using the R package 
networktools 1.5.0 (54). For informativeness, items should be excluded 
if their scores were 1.5 SD below the mean item SD (i.e., poorly 
informative). For redundancy, if more than 75% of correlations 
between two variables and all other variables were not significantly 
different, these two variables were considered redundant.

2.3.2 Cross-sectional network estimation
An extended Bayesian information criterion (EBIC) graphical 

least absolute shrinkage and selection operator (LASSO) model (55) 
was used to estimate the network. Each node (i.e., item) in the network 
represents a symptom, and each edge represents the partial correlation 
between two symptoms. The correlation matrix was shrunk to obtain 
simpler and sparser networks. Blue and red edges denote positive and 
negative correlations, respectively. The R packages bootnet 1.4.3 and 
qgraph 1.6.9 were employed for network estimation and visualization 
(46, 56). The expected influence (EI) was used to assess the centrality 
of nodes in this study. Predictability (i.e., R2) was estimated using the 
R package mgm 1.2–12 (57). Bridge symptoms serve as the channel 
connection between different disorders (47). Following previous 
research (58, 59), we screened bridge symptoms based on the criterion 
of standardized values of bridge strength ≥1 in the current study.

2.3.3 Cross-lagged network estimation
A CLPN was conducted to examine the connections between the 

first and second assessments over time by using the glmnet package 
(60). A CLPN illustrates how a single node (i.e., symptom) at the first 
time point predicts other nodes at the second time point after 
adjusting for all other variables at the first time point. The directed 
edges of each node pointing to itself represent the autoregressive 
coefficients, while the directed edges pointing to other nodes represent 
the cross-lagged coefficients. The color of the arrows indicates the 
directionality of the effect, with green arrows indicating positive 
effects and red arrows indicating negative effects. The line thickness 
indicates the strength of the association. To simplify the network, 
we  employed the LASSO approach to shrink small regression 
coefficients to 0. For directed CLPNs, we calculated two centrality 
indices: cross-lagged “in expected influence” (IEI) and “out expected 
influence” (OEI). IEI signifies the degree to which one symptom is 
predicted by other symptoms (i.e., the sum of values of incoming 
edges associated with one symptom), while OEI signifies the degree to 
which one symptom can predict other symptoms (i.e., the sum of 
values of outgoing edges associated with one symptom).

2.3.4 Network comparison
The network comparison test (NCT) was employed to evaluate the 

difference between edge invariance (distributions of edge weights) and 
global strength (the sum of all edge weights) between the networks in 
waves 1 and 2 using the R package NetworkComparisonTest 2.2.1 (61).

2.3.5 Network stability and accuracy
The case-dropping bootstrap procedure was used to assess the 

stability of centrality indices (46), providing the correlation stability 
coefficient (CS-C). The CS-C represented the proportion of samples 
that could be removed, with a 95% probability that the correlation 
between the original centrality indices would be  at least 0.70. 
Generally, the CS-C should be ≥0.25, preferably ≥0.50. Bootstrapped 
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confidence intervals (95% CIs) were computed to analyze the 
accuracy of edges. Narrower CIs indicated a more accurate network. 
Differences between edge weights and centrality strengths were also 
analyzed by bootstrap tests based on 0.95 CIs. If CIs did not include 
zero, there was a statistical difference between two edges or two 
nodes. All analyses were performed using the R package bootnet 
1.4.3 (46).

3 Results

3.1 Descriptive statistics and item check

The item check results revealed that YSIS1-YSIS5 and YSIS1-
YSIS2 are redundant. Specifically, only 20% of correlations were 
significantly different for YSIS1 and YSIS5, and only 16.7% of 
correlations were significantly different for YSIS1 and YSIS2. 
Considering that YSIS1 and YSIS2 pertain to overall sleep quality 
rather than specific symptoms, we excluded them from the subsequent 
analyses. No items were found to be poorly informative. The means, 
SDs, skewness, kurtosis, and t-test results of all symptoms are shown in 
Table 1. There were no significant differences in gender across all 
variables in both waves 1 and 2 (p > 0.05).

3.2 Cross-sectional symptom networks

The aggression-sleep disturbance networks at two time points are 
shown in Figure  1 and Supplementary Figure S1, and weighted 
adjacency matrices are shown in Supplementary Tables S1, S2.

For the first time point, 17 edges were not zero (38%) among 45 
possible edges, and all edges were positive. The edge of “wake up with 
tired” – “function hindrance” (YSIS7 – YSIS8) showed the strongest 
association, followed by the edge of “easily be woken” – “wake up too 
early” (YSIS4 – YSIS5) and the edge of “sleep deprivation” – “wake up 
with tired” (YSIS6 – YSIS7), see Figure 1A. For the second time point, 
19 edges were not zero (42%) among 45 possible edges, and all edges 
were positive. The edge of “easily be woken” – “wake up too early” 
(YSIS4 – YSIS5) showed the strongest association, followed by the 
edge of “wake up with tired” – “function hindrance” (YSIS7 – YSIS8) 

and the edge of “verbal aggression” – “hostility” (BPAQ2-BPAQ4), see 
Figure 1B.

In Figure  1C, “hostility” (BPAQ4) had the highest node EI, 
followed by “function hindrance” (YSIS8) and “sleep deprivation” 
(YSIS6) at the first time point. Each node’s neighbors could potentially 
account for an average of 53% of the variance (M predictability = 0.53 ± 0.07). 
Similarly, in Figure 1C, “hostility” (BPAQ4) had the highest node EI, 
followed by “function hindrance” (YSIS8) and “sleep deprivation” 
(YSIS6) at the second time point. Each node’s neighbors could 
potentially account for an average of 60% of the variance 
(M predictability = 0.60 ± 0.06).

“Hostility” (BPAQ4) and “wake up with tired” (YSIS7) emerged 
as the bridge symptoms at the first time point (see Figure  1D). 
However, only “hostility” (BPAQ4) emerged as the bridge symptom at 
the second time point (see Figure 1D).

3.3 Cross-lagged panel network

The CLPN structure is shown in Figure 2A, and all edge weights 
are shown in LASSO cross-lagged regression matrices in 
Supplementary Table S3.

A total of 68 edges were not zero (68%) among 100 possible edges. 
Except for autoregression paths, the edge of “difficulty in falling 
asleep” – “easily be woken” (YSIS3 – YSIS4) showed the strongest 
cross-lagged association, followed by the edge of “physical aggression” 
– “function hindrance” (BPAQ1 – YSIS8) and the edge of “hostility” 
– “wake up with tired” (BPAQ4 – YSIS7). Figure 2B shows the OEI and 
IEI values. “Hostility” (BPAQ4) had the highest node OEI, followed 
by “physical aggression” (BPAQ1) and “difficulty in falling asleep” 
(YSIS3). “Easily be woken” (YSIS4) had the highest node IEI, followed 
by “function hindrance” (YSIS8) and “wake up with tired” (YSIS7). 
Autoregression paths are shown in Supplementary Figure S2.

3.4 Network accuracy and stability

In Figure 3, the case-dropping bootstrap procedure showed that 
CS-Cs of EI at the first and second time points were 0.44 and 0.59, 
respectively. The CS-Cs of OEI and IEI were 0.42 and 0.71, respectively. 

TABLE 1 Descriptive information and t-test results of data from two-time points.

First wave Second wave t-test

Mean SD Skew Kurtosis Mean SD Skew Kurtosis p Cohen’s d

BPAQ1 1.99 0.69 0.57 0.17 1.9 0.64 0.47 −0.6 −0.09 −0.14

BPAQ2 2.64 0.67 −0.15 0.65 2.46 0.74 −0.32 0.01 −0.18 −0.24

BPAQ3 2.3 0.71 0.2 −0.33 2.19 0.67 0.29 −0.32 −0.10 −0.15

BPAQ4 2.38 0.75 0 −0.27 2.13 0.77 0.14 −0.69 −0.24 −0.33

YSIS3 1.94 1.07 0.9 0.04 1.96 1.07 0.86 −0.09 0.03 0.02

YSIS4 1.77 1.05 1.24 0.76 1.68 0.95 1.25 0.79 −0.09 −0.08

YSIS5 1.73 1.04 1.31 0.85 1.58 0.92 1.59 1.93 −0.15 −0.13

YSIS6 2.2 1.22 0.67 −0.61 1.72 1.01 1.31 0.9 −0.48 −0.36

YSIS7 2.36 1.27 0.58 −0.69 1.87 1.08 1.08 0.31 −0.49 −0.36

YSIS8 1.88 1.09 1.1 0.42 1.64 0.95 1.47 1.46 0.25 −0.21
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Case-dropping test results indicated good stability for centrality 
indicators. 95% of bootstrapped CIs of edges were narrow 
(Supplementary Figure S3), suggesting that edges were trustworthy. 

The results of the non-parametric bootstrap procedure revealed that 
most comparisons among edge weights and centrality indicators were 
statistically significant (Supplementary Figures S4–S6).

FIGURE 1

Network structures and centrality indexes. (A) The network structure at the first time point. (B) The network structure at the second time point. (C) The 
strength centrality values between two-time points. (D) The bridge centrality values between two-time points.

FIGURE 2

Network structures and centrality indexes. (A) The OEI and IEI values of all nodes. (B) The CLPN structure.
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3.5 Network comparison between the 
baseline and the second time point

The t-test result is shown in Figure 4A, except for “difficulty in 
falling asleep” and “easily be  woken,” other symptoms decreased 
significantly. NCT results are shown in Figure 4. The value of the 
maximum difference in any edge weights (1,000 permutations) was 
not significant (M = 0.14, p = 0.39) (Figure  4B). The value of the 
difference in global network strength was also not significant 
(baseline = 4.31; second time = 4.60, p = 0.10) (Figure 4C).

4 Discussion

To the best of our knowledge, this is the first study on sleep 
disturbance and aggression among college students during COVID-
19. In the research, data were collected from 665 college students 
regarding their sleep quality and aggressive behaviors during the 
period of campus closure and post-closure. Two cross-sectional 
symptom networks and a CLPN were formed for further analysis. 
Several points in the study are worth discussing.

The most critical node in the networks of waves 1 and 2 was 
hostility, a psychological dimension of aggression known for its 
more detrimental impact on interpersonal relationships 
compared to physical aggression (62). Notably, hostility served as 

the connecting link between aggression and sleep disturbance in 
both waves, consistent with the findings of Sun et al. (63). The 
pandemic has the potential to induce significant psychological 
distress (64), often manifesting as hostility (30). Furthermore, 
our results align with a key discovery regarding the long-term 
effects of COVID-19: even after the lifting of containment 
measures, college students may continue to experience affective 
and somatic symptoms such as anxiety, sleep disturbance, and 
hostility, albeit to a lesser extent (65). Considering another factor, 
sleep disturbance, our findings echo the research conducted by 
Granö et al. (66) on employees, indicating a correlation between 
sleep disturbance and hostility across different populations. 
Bringing together all the relevant factors discussed in our study, 
it becomes evident that during the COVID-19 pandemic, societal 
factors contributed to increased engagement in online courses, 
internet usage, and video games, all of which were directly linked 
to sleep disturbance and, consequently, heightened hostility 
(67, 68).

In the two networks of waves 1 and 2, symptoms underlying sleep 
disturbance were significantly associated, particularly “easily 
be woken” – “wake up too early” and “wake up with tired” – “function 
hindrance.” On the one hand, this association highlights a mutually 
reinforcing relationship. For instance, a college student who tends to 
wake up too early is also more likely to be easily awakened and vice 
versa. Similarly, the connection between “wake up with tired” and 

FIGURE 3

Case-dropping bootstrap test of centrality indices. The x-axis indicates the percentage of cases in the original sample included at each step. The y-axis 
indicates the correlations between the centrality indices from the original network and the indices from the networks re-estimated after excluding 
increasing percentages of cases. (A) First-time point. (B) Second time point. (C) CLPN.
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“function hindrance” follows a similar pattern. On the other hand, our 
findings, consistent with the GAM, indicate that two associations 
between sleep disturbances can be attributed to biological factors, as 
supported by various studies (11). In summary, COVID-19 serves as 
a significant catalyst for sleep disturbance, further exacerbating 
aggressive behaviors (39, 69). Additionally, when individuals find 
themselves in aggressive environments, such as those prevalent on 
college campuses, they are more likely to experience sleep 
disturbances (70).

In addition to examining symptom networks, we investigated 
changes in networks during the closure period and after the lifting 
of closures. With the exception of difficulty in falling asleep and 

easily be woken, two symptoms of sleep disturbance did not show 
significant changes in statistics, all other symptoms decreased 
1 month after the containment measures were lifted. Previous studies 
have yielded varied results, primarily due to differences in 
considering all dimensions of sleep disturbance. In our current 
study, we obtained similar results to those of Salfi et al. (41) in Italy, 
indicating that although most sleep disturbance symptoms diminish 
after home quarantine, COVID-19 still has a long-term effect on 
reducing the sleep quality of college students. Regarding aggression, 
our findings provide further insights from two perspectives. First, 
during the closure period, the uncertainties brought about by 
COVID-19 led to a greater increase in aggressive behavior than 

FIGURE 4

T-test results of all nodes and NCT results between two-time points. (A) The t-test results of BPAQ and YSIS. (B) The network edge invariance. (C) The 
network global invariance.
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usual (21, 22, 71). Additionally, our results strongly support the 
GAM, suggesting that closure can serve as a triggering situation for 
aggressive decision-making. Consequently, when such circumstances 
dissipate, the corresponding aggressive behavior also 
significantly decreases.

At the disease level, sleep disturbance, as a comprehensive issue, 
can potentially lead to aggressive behaviors (72). However, as 
indicated by Bubier and Drabick (73), conclusions drawn at the 
symptom level may even overturn results obtained at the disease 
level. In our current study, physical aggression and hostility emerge 
as two symptoms capable of inducing other symptoms. In essence, 
while sleep disturbance may seem to cause aggressive behaviors 
when viewed broadly, a closer examination of symptoms reveals 
that aggressive symptoms can trigger other symptoms within the 
network. Physical aggression entails intentional actions aimed at 
physically harming others (74). In college students, physical 
aggression can be  predicted by personality traits such as low 
agreeableness, high extraversion, and high conscientiousness (75). 
Additionally, anger is identified as a critical risk factor for physical 
aggression among college students (76). Observations by Ostrov 
et al. (77) suggest that, typically, college students resort to physical 
aggression when they find themselves victimized in peer relations, 
which can exacerbate hostile attribution bias. Drawing from our 
results and previous observations, and considering the GAM, in the 
context of the COVID-19 pandemic, college students experiencing 
rejection or low-quality relationships with peers may resort to 
physical aggression as a coping mechanism, particularly when they 
exhibit impulsive traits or other personality characteristics such as 
low extraversion.

In terms of hostility, our results successfully replicate the findings 
of Shapiro et al. (78), indicating that negative mood and hostility can 
elevate blood pressure during sleep. Moreover, our results suggest 
that, on the one hand, the isolation resulting from COVID-19 is also 
a risk factor for hostility among college students (79). On the other 
hand, our findings provide somatic evidence of the chain effect of 
COVID-19 on college students. During the closure period, students 
tend to increase their internet usage for online courses, and this 
heightened social isolation may predispose them to internet addiction 
or substance abuse (80). In our current study, we take a step further 
by showing that during the closure, college students who exhibit 
problematic internet use are more likely to display hostility both 
online and offline (81).

An important factor worth noting is waking up too early. This 
finding aligns with previous studies on the impact of COVID-19 
on the sleep quality of college students (18, 82, 83). During 
closures, negative news, academic stress, depression, and 
interpersonal relationships can act as early risk factors (65, 84). 
Our results reveal an additional pathway: aggressive behaviors 
such as “physical aggression” and “hostility” can trigger 
early awakening.

5 Limitations

In the current study, we disclose features of sleep disturbance and 
aggressive behaviors via longitudinal data. However, several 

shortcomings should be mentioned for further research. First, in the 
current research, self-report scales are utilized as tools to measure the 
tendency toward aggression and sleep disturbance. In the future, 
researchers can incorporate additional methods to facilitate diagnosis. 
Second, the current generalizability of the results is somewhat limited 
due to the inadequate consideration of whether participants have been 
diagnosed with insomnia disorders in the past or present, as well as 
factors measuring participants’ levels of academic stress during 
participant recruitment. Finally, since aggression and sleep 
disturbance are closely related to depression and anxiety, future 
studies could include more variables to enable more precise 
speculation (81).

6 Conclusion

In the current study, with longitudinal data, we  disclose the 
bidirectional relationship between sleep disturbance and aggression. 
In the cross-sectional symptom network, hostility is the critical 
symptom both in waves 1 and 2. Furthermore, hostility can cause 
aggression and sleep disturbance in college students. In a time 
sequence, difficulty in falling asleep and easily be  woken did not 
change after closure lifted significantly, whereas other symptoms 
declined. Two symptoms, physical aggression and hostility, can trigger 
other symptoms and easily be  woken, which are induced by 
other symptoms.
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